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Abstract: An initial value problem for a scalar nonlinear differential equation with a variable order
for the generalized proportional Caputo fractional derivative is studied. We consider the case of
a piecewise constant variable order of the fractional derivative. Since the order of the fractional
integrals and derivatives depends on time, we will consider several different cases. The argument
of the variable order could be equal to the current time or it could be equal to the variable of the
integral determining the fractional derivative. We provide three different definitions of generalized
proportional fractional integrals and Caputo-type derivatives, and the properties of the defined
differentials/integrals are discussed and compared with what is known in the literature. Appropriate
auxiliary systems with constant-order fractional derivatives are defined and used to construct solu-
tions of the studied problem in the three cases of fractional derivatives. Existence and uniqueness
are studied. Also, the Ulam-type stability is defined in the three cases, and sufficient conditions are
obtained. The suggested approach is more broadly based, and the same methodology can be used in
a number of additional issues.

Keywords: variable-order fractional differential equations; generalized proportional Caputo
fractional derivatives; Hyers–Ulam stability

MSC: 34A34; 34A08; 34D20

1. Introduction

Differential systems of fractional order are important due to their many applications
in numerous fields of science and engineering and their utilization in real-world models
(see, for example, [1–4]).

Fractional-order differential operators with different definitions have been introduced
in the literature, notably the Caputo, Grunwald–Letnikov, Hadamard, Riemann–Liouville,
and Riesz operators. Fractional calculus operators are nonlocal operators, which makes
them suitable for describing long-term memory or nonlocal effects prevalent in non-regular
real-world phenomena (see, for example, [5] for several applications of fractional calculus
in the fields of physics, mechanics, biology, engineering, and signal processing, [6] for
several real-world applications in science and engineering, [7] for fractional models in
bioengineering, and [8] for modeling of viscoelastic systems). Also, for fractional differential
equations, many mathematical techniques via numerical methods have been used (see, for
example, [9] for discretization of Caputo fractional derivatives using the L1 scheme, [10] for
the orthogonal spline collocation method for differential equations with a sum of Caputo

Mathematics 2024, 12, 233. https://doi.org/10.3390/math12020233 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12020233
https://doi.org/10.3390/math12020233
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-4096-1469
https://orcid.org/0000-0003-0634-2370
https://orcid.org/0000-0002-4922-641X
https://orcid.org/0000-0002-3803-8114
https://doi.org/10.3390/math12020233
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12020233?type=check_update&version=1


Mathematics 2024, 12, 233 2 of 16

fractional derivatives of different constant orders, and [11] for the first-order fractional
convolution quadrature scheme and backward Euler alternating direction implicit method
for the Riemann–Liouville fractional integral term and temporal derivative).

Another form of differential operator, where the order is taken as a continuous function,
was introduced in [12]. We note that selecting the order as a function depending on time
makes the operator more flexible, offering more degrees of freedom. In the last two decades,
researchers have considered variable-order fractional differential operators and established
their existence, uniqueness, stability, and numerical results. Recently, a comprehensive
review of variable fractional calculus was given in [13]. Also, fractional derivatives where
the order is a random variable have been defined, studied, and applied to differential
equations ([14]). One of the most studied and applied cases of variable order is when
there is a partition of the interval of consideration, and the order is a constant on each
subinterval, i.e., the order is a piecewise constant function. This kind of variable order of
fractional derivatives has been applied and studied in several papers, and we will discuss
these results in the main body of this paper and correct some of them. In this paper,
we use the generalized proportional Caputo fractional derivative with a constant order
(GPCFD) (see, for example, [15–18]). It should be noted that the classical Caputo fractional
derivative is a partial case of GPCFD, and we will generalize GPCFD to a fractional
derivative of a piecewise constant variable order. Motivated by the literature on Caputo
fractional derivatives of variable order, we will define three different types of variable-
order fractional integrals and Caputo-type fractional derivatives. The main characteristic
of these types of derivatives is the time argument of the variable order, which could be the
recent time or the same as the variable of the integral. We discuss the main characteristics
and properties of these three types. Also, we compare them to what is known in the
literature on piecewise constant variable-order fractional derivatives. We give algorithms
for constructing solutions of the initial value problems of differential equations with any
of the three defined fractional derivatives with a constant order. We prove the existence
and uniqueness. Ulam-type stability is appropriately defined, and sufficient conditions are
obtained. We note that the definitions of Ulam-type stability depend significantly on the
applied derivatives.

2. Basic Definitions and Preliminaries

In the literature, there are several types of fractional integrals and derivatives of
variable order. In [19], three types of Caputo derivatives with variable order were defined
and applied, with the main difference between the fractional derivatives being related to
the argument of the variable order.

In this paper, we extend the notions of the generalized proportional fractional deriva-
tives and integrals of constant order [17,18] in three different ways. We consider the
derivative order as δ(·) : [0, T] → (0, 1), 0 < T ≤ ∞.

In the definitions of the variable order, unlike the constant order, the argument of the
variable order δ(.) is important. It could be equal to the current time or it could be equal to
the variable of the integral. This leads to different definitions of variable-order fractional
differential/integrals, and we consider three different types of differentials/integrals. In
these cases, we compare the definitions with existing ones in the literature.

2.1. Variable-Order Generalized Proportional Integrals and Caputo Derivatives of Type I

We consider the case when the argument of the variable order is equal to the cur-
rent time.

Definition 1. Let ϱ ∈ (0, 1], δ : [a, b] → (0, 1), 0 ≤ a < b ≤ ∞. The variable-order generalized
proportional fractional integral of type I of a function g ∈ L([a, b]) is defined by

I
δ(t),ϱ
a+ g(t) =

1
ϱδ(t)Γ(δ(t))

∫ t

a
e

ϱ−1
ϱ (t−s)

(t − s)δ(t)−1g(s) ds, t ∈ (a, b]. (1)
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Definition 2. Let ϱ ∈ (0, 1], δ : [a, b] → (0, 1), 0 ≤ a < b ≤ ∞. The generalized proportional
Caputo fractional derivative of type I (GPFI) of a function g ∈ C1[a, b] is defined by

CD
δ(t),ϱ
a+ g(t) =

1
ϱδ(t)Γ(1 − δ(t))

(
(1 − ϱ)

∫ t

a
e

ϱ−1
ϱ (t−s)

(t − s)−δ(t)g(s) ds

+ ϱ
∫ t

a
e

ϱ−1
ϱ (t−s)

(t − s)−δ(t)g′(s) ds
)

, t ∈ (a, b].
(2)

In the case where ϱ = 1, Definitions 1 and 2 reduce to the variable-order fractional
integrals and fractional Caputo derivative defined and successfully used in [12,20,21]. Also,
the variable-order Hadamard fractional derivative was defined and applied in [22].

Remark 1. In some papers, such as [23,24], the definitions of variable-order fractional differen-
tials/integrals differ, incorrectly citing the definitions of [20,21].

2.2. Variable-Order Generalized Proportional Integrals and Caputo Derivatives of Type II

We consider the case when the argument of the variable order is equal to the variable
of the integral, but in the Gamma function, it is equal to the current time.

Definition 3. Let ϱ ∈ (0, 1], δ : [a, b] → (0, 1), 0 ≤ a < b ≤ ∞. The variable-order generalized
proportional fractional integral of type II of a function g ∈ L([a, b]) is defined by

Iδ(t),ϱ
a+ g(t) =

1
ϱδ(t)Γ(δ(t))

∫ t

a
e

ϱ−1
ϱ (t−s)

(t − s)δ(s)−1g(s) ds, t ∈ (a, b]. (3)

Definition 4. Let ϱ ∈ (0, 1], δ : [a, b] → (0, 1), 0 ≤ a < b ≤ ∞. The variable-order generalized
proportional Caputo fractional derivative of type II (GPFII) of a function g ∈ C1[a, b] is defined by

CDδ(t),ϱ
a+ g(t) =

1
ϱδ(t)Γ(1 − δ(t))

(
(1 − ϱ)

∫ t

a
e

ϱ−1
ϱ (t−s)

(t − s)−δ(s)g(s)

+ ϱ
∫ t

a
e

ϱ−1
ϱ (t−s)

(t − s)−δ(s)g′(s) ds
)

, t ∈ (a, b].
(4)

In the case where ϱ = 1, Definitions 3 and 4 reduce to the variable-order fractional
integrals and fractional derivative used in [25].

2.3. Variable-Order Generalized Proportional Integrals and Caputo Derivatives of Type III

We consider the case when the argument of the variable order is equal to the variable
of the integral.

Definition 5. Let ϱ ∈ (0, 1], δ : [a, b] → (0, 1), 0 ≤ a < b ≤ ∞. The variable-order generalized
proportional fractional integral of type III of a function g ∈ L([a, b]) is defined by

Iδ(t),ϱ
a+ g(t) =

∫ t

a

e
ϱ−1

ϱ (t−s)

ϱδ(s)Γ(δ(s))
(t − s)δ(s)−1g(s) ds, t ∈ (a, b]. (5)

Definition 6. Let ϱ ∈ (0, 1], δ : [a, b] → (0, 1), 0 ≤ a < b ≤ ∞. The variable-order generalized
proportional Caputo fractional derivative of type III (GPFIII) of a function g ∈ C1([a, b]) is
defined by

CDδ(t),ϱ
a+ g(t) = (1 − ϱ)

∫ t

a

e
ϱ−1

ϱ (t−s)

ϱδ(s)Γ(1 − δ(s))
(t − s)−δ(s)g(s)

+ ϱ
∫ t

a

e
ϱ−1

ϱ (t − s)
ϱδ(s)Γ(1 − δ(s))

(t − s)−δ(s)g′(s) ds, t ∈ (a, b].

(6)
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In the case where ϱ = 1, Definitions 5 and 6 reduce to the variable-order fractional
integrals and fractional derivative used in [20,26].

Remark 2. The partial case of the fractional derivative of type III (with ϱ = 1) was defined and
applied in [27] for a particular type of differential equation.

Remark 3. In [20], the authors defined three types of fractional integrals and derivatives. The types
C1 and C2, defined in [20], are similar to the special case of our type I and type II (with ϱ = 1).

2.4. Constant-Order Generalized Proportional Diffintegrals

In the case of a constant order of the fractional integrals, the fractional integrals defined
in Definitions 1, 3 and 5 coincide and reduce to the generalized proportional fractional
integrals [17,18], i.e., if δ(t) ≡ α = const, ϱ ∈ (0, 1], then

Iα,ϱ
a g(t) = I

α,ϱ
a g(t) = Iα,ϱ

a g(t) = Iα,ϱ
a g(t), (7)

where

Iα,ϱ
a+ g(t) =

1
ϱαΓ(α)

∫ t

a
e

ϱ−1
ϱ (t−s)

(t − s)α−1g(s) ds, t ∈ (a, b]. (8)

In the case of a constant order, the three fractional derivatives defined in Definitions 2, 4 and 6
coincide and reduce to generalized proportional Caputo fractional derivative ([17,18]), i.e.,
if δ(t) ≡ α = const, then

CDα,ϱ
a g(t) = CD

α,ϱ
a g(t) = CDα,ϱ

a g(t) = CDα,ϱ
a g(t), (9)

where

CDα,ϱ
a+ g(t) =

1
ϱαΓ(1 − α)

(
(1 − ϱ)

∫ t

a
e

ϱ−1
ϱ (t−s)

(t − s)−αg(s) ds

+ ϱ
∫ t

a
e

ϱ−1
ϱ (t−s)

(t − s)−αg′(s) ds
)

, t ∈ (a, b].
(10)

In this section, we present some known results in the literature concerning generalized
proportional integrals and derivatives of a constant order.

Lemma 1 (Gronwall inequality, Corollary 3 [15]). Let ϱ ∈ (0, 1], α ∈ (0, 1), 0 ≤ a < b ≤ ∞
and u(t) be nonnegative functions locally integrable on [a, b], and ν(t), w(t) be nonnegative,
nondecreasing, and continuous functions defined on [a, b] such that w(t) ≤ M, M > 0. If

u(t) ≤ ν(t) + ϱαΓ(α)w(t)Iα,ϱ
a u(t), t ∈ [a, b],

then
u(t) ≤ ν(t)Eα

(
w(t)Γ(α)(t − a)α

)
,

where Eα(.) is the Mittag–Leffler function with one parameter α.

We use the following existence results for the generalized proportional Caputo frac-
tional differential equation with a constant order α:

CDα,ϱ
a u(t) = f (t, u(t)), t ∈ (a, b], u(a) = u0. (11)

Lemma 2 (Corollary 4.5 [18]). Let ϱ ∈ (0, 1], α ∈ (0, 1), f ∈ C([a, b] × R,R) be Lipschtz
with a constant L > 0, | f (t, 0)| ≤ Ω(t) with Ω ∈ C([a, b], [0, ∞)) and L < (1 − ϱ)α. Then,
Problem (11) has a unique solution on [a, b].
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We use the following integral presentation of the solution of the constant-order frac-
tional differential equation:

Lemma 3 (Theorem 5.3 [17]). Let ϱ ∈ (0, 1] and α ∈ (0, 1). Then, the solution of the initial value
problem (11) satisfies the integral presentation

u(t) = u0e
ϱ−1

ϱ (t−a)
+ Iα,ϱ

a+ f (t, u(t)), t ∈ (a, b].

Lemma 4. Let ϱ ∈ (0, 1], α ∈ (0, 1) and a ∈ [0, ∞). Then,

Iα,ϱ
a 1 ≤ (t − a)α

ϱαΓ(1 + α)
, t > a.

Proof. From Equation (5), we have

Iα,ϱ
a 1 =

∫ t

a

e
ϱ−1

ϱ (t−s)

ϱαΓ(α)
(t − s)α−1 ds ≤ 1

ϱαΓ(α)

∫ t

a
(t − s)α−1 =

(t − a)α

ϱαΓ(1 + α)
. (12)

3. Statement of the Problem and Existence Results

Let n be a positive integer and {Tk}n
k=0 be a finite sequence such that

0 = T0 < Tk−1 < Tk < Tn = T, k = 2, · · · , n − 1.

Denote Jk := [Tk−1, Tk), k = 1, 2, · · · , n. Then, P = {Jk : k = 1, 2, · · · , n} is a partition of
the interval [0, T].

In this paper, we study the case of a piecewise constant order of the fractional integrals
and derivatives, i.e., the variable order δ : J → (0, 1) is given by

δ(t) =
n

∑
k=1

δk Ik(t) =


δ1, if t ∈ J1,
δ2, if t ∈ J2,
...
δn, if t ∈ Jn,

(13)

where δk ∈ (0, 1) are positive constants and the function Ik is the indicator of the interval
Jk, k = 1, 2, · · · , n, with

Ik(t) =

{
1, if t ∈ Jk,
0, otherwise.

Denote

PC([0, T]) = {u : [0, T] → R : u ∈ C[Tk−1, Tk), k = 1, 2, . . . , n},

PC1([0, T]) = {u : [0, T] → R : u ∈ C1[Tk−1, Tk), k = 1, 2, . . . , n}.

In this paper, we study the nonlinear fractional differential equation

CDδ(t),ϱ
0+ ω(t) = F(t, ω(t)), t ∈ (0, T],

ω(0) = V0,
(14)

where the fractional derivative CDδ(t),ϱ
0+ denotes the variable-order generalized proportional

Caputo fractional derivatives of type I, CD
δ(t),ϱ
0+ , defined by (2), or the variable-order gener-

alized proportional Caputo fractional derivatives of type II, CDδ(t),ϱ
0+ , defined by (4), or the
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variable-order generalized proportional Caputo fractional derivatives of type III, CDδ(t),ϱ
0+ ,

defined by (6).
We introduce the following assumptions:

Assumption 1. The function δ : [0, T] → (0, 1) is defined by (13) and ϱ ∈ (0, 1].

Assumption 2. The function F ∈ C([0, T] × R,R) is Lipschitz with a constant L > 0 :
L < (1 − ϱ)mink=1,2,...,n δk , and |F(t, 0)| ≤ Ω(t) with Ω ∈ C([0, T], [0, ∞)).

The assumptions are deeply connected with the studied Equation (14), and they
are natural and nonrestrictive. Assumption 1 is connected with the type of order of the
fractional derivatives studied in this paper. Assumption 2 is about the right-hand side of
the studied nonlinear differential Equation (14), and it is connected with its continuity and
boundedness.

For example, if the interval of consideration is [0, 3], its partition is J1 = [0, 1),
J2 = [1, 2), J3 = [2, 3], and then the variable order δ : [0, 2] → (0, 1) could be defined by

δ(t) =


0.8, if t ∈ J1,
0.3, if t ∈ J2,
0.5, if t ∈ J3,

(15)

ϱ = 0.6, mink=1,2,3 δk = 0.3, and the function F(t, x) = − t
t+1 e−x satisfies Assumption 2

with L = 0.75 < (1 − 0.6)0.3 ≈ 0.759658 and Ω(t) = t.

Remark 4. Note that the semi-group property is not fulfilled for the case of variable-order general-
ized proportional fractional integrals of type I, type II, and type III, i.e., for general functions δ(t),
η(t). Note:

Iδ(t),ϱ
a Iη(t),ϱ

a g(t) ̸= Iδ(t)+η(t),ϱ
a g(t),

I
δ(t),ϱ
a I

η(t),ϱ
a g(t) ̸= I

δ(t)+η(t),ϱ
a g(t),

and
Iδ(t),ϱ

a Iη(t),ϱ
a g(t) ̸= Iδ(t)+η(t),ϱ

a g(t)

hold.
Thus, we cannot transform a differential equation with a variable-order generalized proportional

fractional derivative of type I, type II, and type III into an equivalent integral equation and apply
it. As a result, we require a different approach to studying the properties of solutions of differential
equations with GPFI, GPFII, and GPFIII.

3.1. Variable-Order Generalized Proportional Caputo Fractional Derivatives of Type I

Consider the initial value problem for the nonlinear differential equation with GPDI:

CD
δ(t),ϱ
0+ ω(t) = F(t, ω(t)), t ∈ (0, T],

ω(0) = V0,
(16)

where ϱ ∈ (0, 1], δ(t) is defined by (13), CD
δ(t),ϱ
0+ denotes the variable-order general-

ized proportional Caputo fractional derivatives of type I defined by (2), and F : [0, T]×
C([0, T],R) → R is a given function.

We discuss some properties of the applied fractional derivative.
Let t ∈ (Tk−1, Tk), k = 1, 2, . . . , n. According to (13), δ(t) = δk for t ∈ (Tk−1, Tk), and

we could write∫ t

0
e

ϱ−1
ϱ (t−s)

(t − s)−δ(t)g(s) ds =
∫ t

0
e

ϱ−1
ϱ (t−s)

(t − s)−δk g(s) ds, (17)
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and according to (13) and δ(t) ̸= δj, for t ∈ (Tk−1, Tk), j = 1, 2, . . . , k − 1, we have

∫ t

0
e

ϱ−1
ϱ (t−s)

(t − s)−δ(t)g(s) ds =
∫ t

0
e

ϱ−1
ϱ (t−s)

(t − s)−δk g(s) ds

̸=
k−1

∑
j=1

∫ Tj

Tj−1

e
ϱ−1

ϱ (t−s)
(t − s)−δj g(s) ds +

∫ t

Tk−1

e
ϱ−1

ϱ (t−s)
(t − s)−δk g(s) ds

(18)

(compare (18) in the special case of ϱ = 1 with Equation (9) [28], Equation (9) [29],
Equation (5) [30], Equation (30) [31], Equation (5) [32], Equation (5) [33], and Equation
(3.1) [34]).

Also, from (17), we obtain∫ t

0
e

ϱ−1
ϱ (t−s)

(t − s)−δ(t)g(s) ds

=
k−1

∑
j=1

∫ Tj

Tj−1

e
ϱ−1

ϱ (t−s)
(t − s)−δk g(s) ds +

∫ t

Tk−1

e
ϱ−1

ϱ (t−s)
(t − s)−δk g(s) ds,

(19)

and ∫ t

0
e

ϱ−1
ϱ (t−s)

(t − s)−δ(t)g(s) ds

̸=
k−1

∑
j=1

∫ Tj

Tj−1

e
ϱ−1

ϱ (Tj−s)(Tj − s
)−δk g(s) ds +

∫ t

Tk−1

e
ϱ−1

ϱ (t−s)
(t − s)−δk g(s) ds.

(20)

Therefore, from Definition 6 and (20), for any t ∈ (Tk−1, Tk) k = 1, 2, . . . , n, we have

CD
δ(t),ϱ
0 ω(t) ̸=

k−1

∑
j=1

CD
δ(t),ϱ
Tj−1

ω(t)
∣∣∣
t=Tj

+ CD
δ(t),ϱ
Tk−1

ω(t). (21)

As a result, we require a new approach to studying the behavior of the solutions of the IVP
(16) (different from the ones applied in [29–34]).

From Equation (17), for any t ∈ (Tk−1, Tk], k = 1, 2, . . . , n, and Equation (9), we have
the equality

CD
δ(t),ϱ
0 ω(t) = CDδk ,ϱ

0 ω(t). (22)

Applying (22) to the initial value problem (16), we consider for every k = 1, 2, . . . , n the
auxiliary scalar differential equation with a generalized proportional Caputo fractional
derivative of the constant order δk ∈ (0, 1)

CD
δk ,ϱ
0+ ω(t) = F(t, ω(t)), t ∈ (0, Tk],

ω(0) = V0,
(23)

Theorem 1. Let conditions Assumptions 1 and 2 be satisfied. Then, Problem (16) has a unique
solution.

Proof. According to Lemma 2, Problem (23) has a unique solution ωk(t), t ∈ (0, Tk] for any
k = 1, 2, 3, . . . , n.

Define the function

ω(t) =


ω1(t), if t ∈ [T0, T1),
ω2(t), if t ∈ [T1, T2),
...
ωn(t), if t ∈ [Tn−1, Tn].

(24)
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The function ω(·) ∈ PC1[0, T] is a solution of Problem (16). Indeed, ω(0) = ω1(0) = V0,
and from Equations (22) and (24), for any t ∈ [Tk−1, Tk), k = 1, 2, . . . , n, we have

CD
δ(t),ϱ
0 ω(t) = CDδk ,ϱ

0 ω(t) = CDδk ,ϱ
0 ωk(t) = F(t, ωk(t)) = F(t, ω(t)).

From Assumption 2, the function F(t, x) is Lipschitz with a constant L < 1 and, therefore,
the initial value problem (16) has a unique solution.

3.2. Variable-Order Generalized Proportional Caputo Fractional Derivatives of Type II

Consider the initial value problem for the nonlinear differential equation with GPDII:

CDδ(t),ϱ
0+ ω(t) = F(t, ω(t)), t ∈ J ,

ω(0) = V0,
(25)

where ϱ ∈ (0, 1], δ(t) is defined by (13), CDδ(t),ϱ
0+ denotes the variable-order generalized

proportional Caputo fractional derivatives of type II defined by Definition 4, and F :
[0, T]× PC1([0, T]R) → R is a given function.

We discuss some properties of the applied fractional derivative.
Let t ∈ (Tk−1, Tk), k = 1, 2, . . . , n. Then, from (13), δ(s) = δj for s ∈ (Tj−1, Tj],

j = 1, 2, . . . , k − 1, and δ(s) = δk for s ∈ (Tk−1, t], and we obtain∫ t

0
e

ϱ−1
ϱ (t−s)

(t − s)−δ(s)g(s) ds

=
k−1

∑
j=1

∫ Tj

Tj−1

e
ϱ−1

ϱ (t−s)
(t − s)−δj g(s) ds +

∫ t

Tk−1

e
ϱ−1

ϱ (t−s)
(t − s)−δk g(s) ds,

(26)

and from Definition 2, we obtain∫ Tj

Tj−1

e
ϱ−1

ϱ (t−s)
(t − s)−δ(s)g(s) ds ̸=

∫ Tj

Tj−1

e
ϱ−1

ϱ (Tj−s)(Tj − s
)−δj g(s) ds,

j = 1, 2, . . . , n
(27)

(compare (27) in the special case of ϱ = 1 with Equation (5) [25]).
From Equation (26), the definition of the variable order δ(t), and the definition of the

fractional derivative, we obtain for any t ∈ (Tk−1, Tk),

CDδ(t),ϱ
0 g(t)

=
1

ϱδk Γ(1 − δk)

{
(1 − ϱ)

k−1

∑
j=1

∫ Tj

Tj−1

e
ϱ−1

ϱ (t−s)
(t − s)−δj g(s) ds

+ ϱ
k−1

∑
j=1

∫ Tj

Tj−1

e
ϱ−1

ϱ (t−s)
(t − s)−δj g′(s) ds

}
+ CDδk ,ϱ

Tk−1
g(t).

(28)

and
CDδ(t),ϱ

0 ω(t) ̸=
k−1

∑
j=1

Γ(1 − δj)

Γ(1 − δk)
CD

δj ,ϱ
Tj−1

ω(t)
∣∣∣
t=Tj

+ CDδk ,ϱ
Tk−1

ω(t). (29)

As a result, we require a new approach to studying the behavior of the solutions of the IVP
(25) (different from the ones applied in [25]).

Equation (28) does not directly allow us to define and use the corresponding auxiliary
scalar fractional differential equations with a generalized proportional Caputo fractional
derivative of constant order δk ∈ (0, 1), k = 1, 2, . . . , n, for the initial value problem (25) (as
is done in the case of a variable-order fractional derivative of type I to obtain a solution to
Problem (16)).
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In this case, we use the following auxiliary scalar fractional differential equations with
a generalized proportional Caputo fractional derivative of constant order δk ∈ (0, 1)

CDδk ,ϱ
Tk−1

+ω(t) = Gk(t, ω(t)), t ∈ (Tk−1, Tk],

ω(Tk−1) = Ak−1,
(30)

where the function Gk : [Tk−1, Tk]×R → R and the constant Ak−1 ∈ R are defined in the
proof of our next lemma.

As a consequence of Lemma 2, we obtain the following existence result for Problem (30):

Corollary 1. Let ϱ ∈ (0, 1), δk ∈ (0, 1), Gk ∈ C([Tk−1, Tk]×R,R) be Lipschtz with a constant
Lk > 0, |Gk(t, 0)| ≤ Ωk(t) with Ωk ∈ C([Tk−1, Tk], [0, ∞)) and Lk < (1 − ρ)δk . Then, Problem
(30) has a unique solution on [Tk−1, Tk].

Consider the following system of n differential equations with generalized propor-
tional Caputo fractional derivatives of constant orders:

CDδk ,ϱ
Tk−1

ωk(t) = F(t, ωk(t)), t ∈ (Tk−1, Tk], k = 1, 2, . . . , n (31)

with iterative initial conditions

ω1(0) = V0,

ωk(Tk−1) = ωk−1(Tk−1), k = 2, 3, . . . , n.
(32)

We now prove an existence result for the initial value problem of the iterative system
in (31) and (32).

Lemma 5. Let Assumptions 1 and 2 be satisfied. Then, Problems (31) and (32) have a unique
solution.

Proof. Let k = 1. Consider the first equation (k = 1) in the system (31) and the first
equation in the initial condition (32). Thus, we obtain an initial value problem for a scalar
equation in the form (30) with k = 1, A0 = V0, G1(t, x) = F(t, x), t ∈ [0, T1], x ∈ R, L1 = L.
According to Corollary 1, the problem for k = 1 has a unique solution ω1(t), t ∈ [0, T1].

Consider the second equation (k = 2) in the system (31) and the second equation in
the initial condition (32). Thus, we obtain an initial value problem for a scalar equation in
the form (30) with k = 2, A1 = ω1(T1), L2 = L, and G2(t, x) = F(t, x), t ∈ [T1, T2], x ∈ R.
According to Corollary 1, this problem has a solution ω2(t), t ∈ [T1, T2].

Continue this process inductively by taking the j-th equation in the system (31) and
the j-th equation in the initial condition (32). We obtain an initial value problem in the form
(30) with k = j, Aj−1 = ωj−1(Tj−1), Gj(t, x) = F(t, x), t ∈ [Tj−1, Tj], and Lj = L. According
to Corollary 1, this problem has a unique solution ωj(t), t ∈ [Tj−1, Tj] for all j = 1, 2, . . . , n.

Following this procedure, we obtain unique functions ωk ∈ C([Tk−1, Tk]), k = 1, 2, . . . , n,
which satisfy Problems (31) and (32).

We connect Problems (31) and (32) with the studied problem (25).

Definition 7. The function ω ∈ PC1([0, T]) is called a mild solution of Problem (25) if it is
defined by

ω(t) =


ω1(t), if t ∈ [T0, T1),
ω2(t), if t ∈ [T1, T2),
...
ωn(t), if t ∈ [Tn−1, Tn],

(33)
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where the functions ωk ∈ C1([Tk−1, Tk]), k = 1, 2, . . . , n, satisfy Problems (31) and (32).

Theorem 2. Let Assumptions 1 and 2 be satisfied. Then, Problem (25) has a unique mild solution.

Proof. According to Lemma 5, for any k = 1, 2, . . . , n, Problems (31) and (32) have a unique
solution ωk(t) ∈ C1([Tk−1, Tk],R). Then, the function ω(t), defined by (33), is a mild
solution of (25). Assumption 2 guarantees the uniqueness of the mild solution of (25).

Some Changes in the Algorithm for Constructing a Solution

The procedure described in Section 3.2 can be changed slightly.
If {ω1(t), ω2(t), . . . , ωn(t)} with ωj(t) ∈ C1([Tj−1, Tj],R), j = 1, 2, . . . , n, is the unique

solution of Problems (31) and (32). Then, for any k = 1, 2, . . . , n, we define the functions
hk : [0, Tk] → R by the equalities

hk(t) =

{
0, if t ∈ [T0, Tk−1),
ωk(t), if t ∈ [Tk−1, Tk],

(34)

and the function ω ∈ PC1([0, T]) by

ω(t) =


h1(t), if t ∈ [T0, T1],
h2(t), if t ∈ (T1, T2],
...
hn(t), if t ∈ (Tn−1, Tn].

(35)

The function hk, k = 1, 2, . . . , n, is defined on [0, Tk], it has a discontinuity at Tk−1, hk(Tk−1 −
0) = 0, hk(Tk−1) = hk(Tk−1 + 0) = ωk−1(Tk−1) = hk−1(Tk−1). According to (28), we obtain

CDδ(t),ϱ
0 hk(t) = CDδk ,ϱ

Tk−1
ωk(t) = F(t, ωk(t)) = F(t, hk(t)), t ∈ (Tk−1, Tk]. (36)

Weslightly modify Definition 7.

Definition 8. The function ω ∈ PC1([0, T]), defined by (35), is called a mild solution of Problem
(25) if for any k = 1, 2, . . . , n, the equality CDδ(t),ϱ

0 ω(t) = CDδ(t),ϱ
0 hk(t), t ∈ [0, Tk] holds.

According to (28) and the properties of the functions hk(t), it follows from Definition 8
that the function ω(t) is a mild solution of (25). Note that if Definition 8 is not applied in
this procedure, we cannot conclude that the function defined by (35) is a solution of (25)
(as done in [24]).

3.3. Variable-Order Generalized Proportional Caputo Fractional Derivatives of Type III

Consider the initial value problem for the nonlinear differential equation with GPDIII:

CDδ(t),ϱ
0+ ω(t) = F(t, ω(t)), t ∈ [0, T],

ω(0) = V0,
(37)

where ϱ ∈ (0, 1], δ(t) is defined by (13), CDδ(t),ϱ
0+ denotes the variable-order generalized

proportional Caputo fractional derivatives of type III defined by (6), and F : [0, T] ×
PC1([0, T],R) → R is a given function.

We discuss some properties of the applied fractional derivative.
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Let t ∈ (Tk−1, Tk), k = 1, 2, . . . , n. Then, from (13), δ(s) = δj for s ∈ (Tj−1, Tj],
j = 1, 2, . . . , k − 1, and δ(s) = δk for s ∈ (Tk−1, t], and we obtain

∫ t

0

e
ϱ−1

ϱ (t−s)

ϱδ(s)Γ(1 − δ(s))
(t − s)−δ(s)g(s) ds

=
k−1

∑
j=1

∫ Tj

Tj−1

e
ϱ−1

ϱ (t−s)

ϱδj Γ(1 − δj)
(t − s)−δj g(s) ds

+
∫ t

Tk−1

e
ϱ−1

ϱ (t−s)

ϱδk Γ(1 − δk)
(t − s)−δk−1 g(s) ds.

(38)

From Equation (38), the definition of the variable order δ(t), and the definition of the
fractional derivative, we obtain for any t ∈ (Tk−1, Tk),

CDδ(t),ϱ
0 g(t)

= (1 − ϱ)
k−1

∑
j=1

∫ Tj

Tj−1

e
ϱ−1

ϱ (t−s)

ϱδj Γ(1 − δj)
(t − s)−δj g(s) ds

+ ϱ
k−1

∑
j=1

∫ Tj

Tj−1

e
ϱ−1

ϱ (t−s)

ϱδj Γ(1 − δj)
(t − s)−δj g′(s) ds

}
+ CDδk ,ϱ

Tk−1
g(t).

(39)

Also, for any j = 1, 2, . . . , n we obtain

∫ Tj

Tj−1

e
ϱ−1

ϱ (t−s)

ϱδj Γ(1 − δj)
(t − s)−δj g(s) ds ̸=

∫ Tj

Tj−1

e
ϱ−1

ϱ (Tj−1−s)

ϱδj Γ(1 − δj)

(
Tj−1 − s

)−δj g(s) ds.

Therefore, for any t ∈ (Tk−1, Tk], k = 1, 2, . . . , n, we have

CDδ(t),ϱ
0 ω(t) ̸=

k−1

∑
j=1

CD
δj ,ϱ
Tj−1

ω(t)
∣∣∣
t=Tj

+ CDδk ,ϱ
Tk−1

ω(t). (40)

Similar to the case of the fractional derivative of type II discussed in Section 3.2, we
consider the scalar Equation (30) as an auxiliary scalar fractional differential equation
with a generalized proportional Caputo fractional derivative of constant order δk ∈ (0, 1).
Furthermore, we define a mild solution of the nonlinear problem (37) and construct it as
shown in Section 3.2.

Remark 5. Note that in the case of the fractional derivative of type I, we could proceed directly and
obtain a solution of the given problem (3). However, this could not be done directly for problems
with fractional derivatives of type II and type III. In this case, we had to define a special type of
solution and study it.

Remark 6. In [35], a system similar to (31) was studied directly with the iterative initial condi-
tions (32).

4. Ulam-Type Stability

We define and study Ulam-type stability for the differential equations with the three
types of fractional derivatives.
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4.1. Variable-Order Generalized Proportional Caputo Fractional Derivatives of Type I

Definition 9. Equation (16) is said to be Ulam–Hyers stable if there exists a constant C0 > 0 such
that for any ϵ > 0 and any function η = (η1, η2, . . . , ηn) : ηk ∈ C1([0, Tk],R), k = 1, 2 . . . , n,
satisfying the inequalities∣∣∣ CDδk ,ϱ

0 ηk(t)− F(t, ηk(t))
∣∣∣ ≤ ϵ, t ∈ [0, Tk], k = 1, 2, . . . , n, (41)

there exists a solution ω ∈ PC1[0, T] of (16) with

|ω(t)− ν(t)| ≤ C0ϵ, t ∈ [0, T],

where

ν(t) =


η1(t), if t ∈ [T0, T1),
η2(t), if t ∈ [T1, T2),
...
ηm(t), if t ∈ [Tn−1, Tn].

(42)

Theorem 3. (UHS). Let conditions (A) be satisfied. Then, (16) is Ulam–Hyers stable with a

constant C0 = P(1+ M), where P = maxk=1,2,...,n Eδk (
L
δk

Tδk
k ) and M = maxk=1,2,...,n

T
δk
k

ϱδk Γ(1+δk)
.

Proof. Let ϵ > 0 be an arbitrary number. Let η = (η1, η2, . . . , ηn) : ηk ∈ C1([0, Tk],R),
k = 1, 2, . . . , n, be a solution of the system of inequalities (41) and the function ν ∈ PC1[0, T]
be defined by (42). Then, for any k = 1, 2, . . . , n there exists a function gk ∈ C([Tk−1, Tk],R) :
|gk(t)| ≤ ϵ such that the function ηk(.) satisfies the fractional equation

CDδk ,ϱ
0 ηk(t) = F(t, ηk(t)) + gk(t), t ∈ [0, Tk]. (43)

According to Lemma 3 with a = 0, b = Tk, u(t) ≡ ηk(t), α = δk, u0 = ηk(0),
f (t, x) ≡ F(t, u) + gk(t), for any k = 1, 2, . . . , n, from Equation (43), we have

ηk(t) = e
ϱ−1

ϱ (t−0)
ηk(0) + Iδk ,ϱ

0+ (F(t, ηk(t)) + gk(t)), t ∈ [0, Tk]. (44)

Choose V0 ∈ [C − ϵ, K + ϵ], where C = mink=1,2,...,n ηk(0) and K = maxk=1,2,...,n ηk(0).
Thus, |V0 − ηk(0)| ≤ ϵ, k = 1, 2, . . . , n, and consider the initial value problem (16). Ac-
cording to Theorem 1, the initial value problem (16) has a unique solution ω(t), defined
by (24).

For any integer k = 1, 2, . . . , n from Lemma 3 applied to (23) with a = 0, b = Tk, α = δk,
we have

ωk(t) = V0e
ϱ−1

ϱ t
+ Iδk ,ϱ

0+ F(t, ωk(t)), t ∈ (0, Tk]. (45)

Thus, using Lemma 4, Condition (A2), and Equations (44) and (45), we obtain for t ∈ (0, Tk]

|ωk(t)− ηk(t)| ≤
∣∣∣ηk(t)− e

ϱ−1
ϱ t

ηk(0)− Iδk ,ϱ
0+

(
F(t, ηk(t)) + gk(t)

)∣∣∣
+

∣∣∣ωk(t)− e
ϱ−1

ϱ tV0 − Iδ1,ϱ
0+ F(t, ωk(t))

∣∣∣+ |(V0 − ηk(0)))e
ϱ−1

ϱ t|+ |Iδk ,ϱ
0+ gk(t)|

+ Iδk ,ϱ
0+

∣∣∣F(t, ωk(t))− F(t, ηk(t))
∣∣∣

≤ ϵ
(

1 +
tδk

ϱδk Γ(1 + δk)

)
+ LIδk ,ϱ

0+ |ωk(t)− ηk(t)|

≤ ϵ(1 + M) + LIδk ,ϱ
0+ |ωk(t)− ηk(t)|, t ∈ [0, Tk].

(46)



Mathematics 2024, 12, 233 13 of 16

According to Lemma 1, from Inequality (46), we obtain

|ηk(t)− ωk(t)| ≤ ϵEδk

(
L
δk
(Tk − T0)

δk

)
(1 + M) ≤ ϵP(1 + M), t ∈ [0, Tk].

Thus, |ω(t)− η(t)| ≤ ϵP(1 + M), t ∈ [0, T].

4.2. Variable-Order Generalized Proportional Caputo Fractional Derivatives of Type II and Type III

As mentioned in Sections 3.2 and 3.3, the study of differential equations with fractional
derivatives of type II and type III is similar, so we combine the study of Ulam-type stability
for both types of derivatives into one section.

Definition 10 (Equation (25) (respectively, (37))). is said to be Ulam–Hyers stable if there
exists a constant C0 > 0 such that for any ϵ > 0 and any function η = (η1, η2, . . . , ηn) :
ηk ∈ C1([Tk−1, Tk],R), k = 1, 2 . . . , n, satisfying the inequalities∣∣∣ CDδk ,ϱ

Tk−1
ηk(t)− F(t, ηk(t))

∣∣∣ ≤ ϵ, t ∈ [Tk−1, Tk], k = 1, 2, . . . , n, (47)

there exists a mild solution ω ∈ PC1[0, T] of (25) (respectively, (37)) such that

|ω(t)− ν(t)| ≤ C0ϵ, t ∈ [0, T],

where ν is defined by (42).

Theorem 4. (UHS). Let conditions (A) be satisfied. Then, (25) (respectively, (37)) is Ulam–Hyers
stable with a constant C0 = nPn M, where

M = max
k=1,2,...,n

(Tk − Tk−1)
δk

ϱδk Γ(1 + δk)
, P = max

k=1,2,...,n
EδK

(
L

ϱδk
(Tk − Tk−1)

δk

)
> 1.

Proof. Let ϵ > 0 be an arbitrary number. Let η = (η1, η2, . . . , ηn) : ηk ∈ C1([Tk−1, Tk],R),
k = 1, 2, . . . , n, be a solution of the system of inequalities (47). Then, for any k = 1, 2, . . . , n,
there exists a function gk ∈ C([Tk−1, Tk],R) : |gk(t)| ≤ ϵ such that the function ηk(.)
satisfies the fractional equation

CDδk ,ϱ
Tk−1

ηk(t) = F(t, ηk(t)) + gk(t), t ∈ (Tk−1, Tk]. (48)

Accordingto Lemma 3 with a = Tk−1, b = Tk, u(t) ≡ ηk(t), α = δk, u0 = ηk−1(Tk−1), and
f (t, x) ≡ F(t, u) + gk(t), for any k = 1, 2, . . . , n, we have

ηk(t) = e
ϱ−1

ϱ (t−Tk−1)ηk−1(Tk−1) + Iδk ,ϱ
Tk−1+

(
F(t, ηk(t)) + gk(t)

)
, t ∈ [Tk−1, Tk]. (49)

Consider Problem (25) with the initial value V0 = η1(0). According to Theorem 2, the
initial value problem (25) has a unique mild solution ω, defined by (33).

Let k = 1. From Lemma 3 applied to (31) with k = 1 and the first equation of (32) with
a = 0, b = T1, α = δ1, we have

ω1(t) = η1(0)e
ϱ−1

ϱ t
+ Iδ1,ϱ

0+ F(t, ω1(t)), t ∈ (0, T1]. (50)
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From Condition (A2), Lemma 4, and Equalities (49) and (50), we obtain

|ω1(t)− η1(t)| ≤
∣∣∣η1(t)− e

ϱ−1
ϱ (t−0)

η1(0)− Iδ1,ϱ
0+

(
F(t, η1(t)) + g1(t)

)∣∣∣
+

∣∣∣ω1(t)− e
ϱ−1

ϱ (t−0)
η1(0)− Iδ1,ϱ

0+ F(t, ω1(t))
∣∣∣+ |Iδ1,ϱ

0+ g1(t)|

+ Iδ1,ϱ
0+

∣∣∣F(t, ω1(t))− F(t, η1(t))
∣∣∣

≤ ϵ
tδ1

ϱδ1 Γ(1 + δ1)
+ Iδ1,ϱ

0+ |ω1(t)− η1(t)|, t ∈ [0, T1].

(51)

According to Lemma 1, from Inequality (51), we have

|η1(t)− ω1(t)| ≤ ϵMEδ1

(
L

ϱδ1
(T1 − T0)

δ1

)
≤ ϵPM, t ∈ [T0, T1]. (52)

Let k = 2. From Lemma 3 applied to (31) with k = 2 and the second equation of (32)
with a = T1, b = T2, α = δ2, we have

ω2(t) = ω1(T1)
ϱ−1

ϱ (t−T1) + Iδ2,ϱ
T+

1
F(t, ω2(t)), t ∈ (T1, T2]. (53)

For any t ∈ (T1, T2], from Assumption 2, Lemma 4, Equations (49) and (53), and Inequal-
ity (52) for t = T1, we obtain

|ω2(t)− η2(t)|

≤
∣∣∣η2(t)− e

ϱ−1
ϱ (t−Tk−1)η1(T1)− Iδ2,ϱ

T1+
F(t, η(t))

∣∣∣
+

∣∣∣ω2(t)− e
ϱ−1

ϱ (t−T1)ω1(T1)− Iδ2,ϱ
T1+

F(t, ω2(t))
∣∣∣

+ Iδ2,ϱ
T1+

|g2(t)|+ Iδ2,ϱ
T1+

∣∣∣F(t, η2(t))− F(t, ω2(t))
∣∣∣

+ |η1(T1)− ω1(T1)|

≤ ϵIδ2,ϱ
T1+

1 + LIδ2,ϱ
T1+

|η2(t))− ω2(t))|+ |η1(T1)− ω1(T1)|

≤ LIδ2,ϱ
T1+

|η2(t))− ω2(t))|+ ϵM + ϵPM

≤ LIδ2,ϱ
T1+

|η2(t))− ω2(t))|+ 2ϵPM.

(54)

According to Lemma 1, from Inequality (54), we have

|η2(t)− ω2(t)| ≤ 2ϵP2M, t ∈ [T1, T2].

Inductively, for any k from Lemma 3 applied to (31) with k, and the second equation of (32)
with a = Tk−1, b = Tk, α = δk, we have

ωk(t) = ωk−1(Tk−1)
ϱ−1

ϱ (t−T1) + Iδk ,ϱ
T+

k−1
F(t, ωk(t)), t ∈ (Tk−1, Tk]. (55)

Then, for t ∈ (Tk−1, Tk], from Assumption 2, Lemma 4, and Equalities (49) and (55),
we obtain

|ωk(t)− ηk(t)|

≤ ϵM + LIδk ,ϱ
TK−1+

|ηk(t))− ωk(t))|+ |ηk−1(Tk−1)− ωk−1(Tk−1)|

≤ LIδk ,ϱ
TK−1+

|ηk(t))− ωk(t))|+ ϵM + ϵ(k − 1)Pk−1M

≤ LIδk ,ϱ
TK−1+

|ηk(t))− ωk(t))|+ kϵPk−1M.

(56)
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Accordingto Lemma 1, from Inequality (54), it follows that

|ηk(t)− ωk(t)| ≤ kPk M, t ∈ [Tk−1, Tk].

Thus, |ω(t)− η(t)| ≤ ϵnPn M, t ∈ [0, T].

Remark 7. In the case of fractional differential equations with Caputo-type fractional derivatives
with constant orders, the preservation of some important physical properties and physical structures,
such as positivity preservation and the maximum principle, has been studied, for example, in [36]
(for Nagumo-type differential equations with several Caputo fractional derivatives of constant orders)
and in [37] (for subdiffusion equations on general non-conforming distorted meshes).

5. Conclusions

In this paper, we investigate nonlinear scalar differential equations featuring the
variable-order generalized proportional Caputo fractional derivative. We study the case
where there is a partition of the finite interval of consideration, and the fractional order
remains constant across the corresponding subintervals. Motivated by the literature on
variable-order fractional differentials/integrals, we propose three types of fractional inte-
grals and derivatives. The main difference between these derivatives is the argument of
the variable order: it can either be equal to the current time or be equal to the variable of
the integral in the definition. For these three types of corresponding nonlinear differential
equations, we suggest algorithms for constructing solutions and establish their existence
and Ulam-type stability.

In future work, we hope to propose various types of variable fractional derivatives
and algorithms to obtain solutions of the corresponding nonlinear differential equations,
aiming to model some real-world problems. Furthermore, we hope to study positivity
preservation, the maximum principle, long-term behavior, singular solutions, etc.
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