

 mathematics-12-00230

mathematics-12-00230

Mathematics 2024, 12(2), 230; doi:10.3390/math12020230

Article

The Budgeted Labeled Minimum Spanning Tree Problem

Raffaele Cerulli, Ciriaco D’Ambrosio, Domenico Serra and Carmine Sorgente *

Department of Mathematics, University of Salerno, 84084 Fisciano, SA, Italy

*

Correspondence: csorgente@unisa.it

Citation: Cerulli, R.; D’Ambrosio, C.; Serra, D.; Sorgente, C. The Budgeted Labeled Minimum Spanning Tree Problem. Mathematics 2024, 12, 230. https://doi.org/10.3390/math12020230

Academic Editor: Carsten Schneider

Received: 17 November 2023 / Revised: 26 December 2023 / Accepted: 3 January 2024 / Published: 10 January 2024

Abstract

:

In order to reduce complexity when designing multi-media communication networks, researchers often consider spanning tree problems defined on edge-labeled graphs. The earliest setting addressed in the literature aims to minimize the number of different media types, i.e., distinct labels, used in the network. Despite being extensively addressed, such a setting completely ignores edge costs. This led to the definition of more realistic versions, where budgets for the total cost, or the number of distinct labels allowed, were introduced. In this paper, we introduce and prove the NP-hardness of the Budgeted Labeled Minimum Spanning Tree problem, consisting in minimizing the cost of a spanning tree while satisfying specified budget constraints for each label type. This problem combines the challenges of cost efficiency and label diversity within a fixed budgetary framework, providing a more realistic and practical approach to network design. We provide three distinct mathematical programming formulations of the problem and design a Lagrangian approach to derive tighter lower bounds for the optimal solution of the problem. The performances of the proposed methods are assessed by conducting a series of computational experiments on a variety of randomly generated instances, which showed how the complexity of the problem increases as the size of the network, as well as the number of labels, increase and the budget restrictions are tightened.

Keywords:

network design; minimum spanning tree; labeled graphs; integer linear programming

MSC:

90B18; 90C11

1. Introduction

Designing effective multi-media communication networks is becoming increasingly relevant in today’s digital era. One of the most studied network design problems is the well-known Minimum Spanning Tree (MST) problem, in which a cost is associated with each edge of the network and the objective is to identify a spanning tree, namely a connected acyclic subgraph spanning all the nodes of the network, of minimum cost. The applications of this problem extend beyond the network design scenarios, encompassing several fields such as constructing highways or railroads connecting multiple cities; laying pipelines to connect offshore drilling sites, refineries, and consumer markets; designing local access networks; and even making electric wire connections on a control panel [1]. Researchers have delved into a wide range of spanning tree problems, particularly those associated with edge-labeled graphs [2].

One of the first proposed natural extensions of the MST is the Minimum Label Spanning Tree (MLST) problem, consisting in finding a spanning tree in a connected, undirected graph with labeled (or colored) edges, while minimizing the number of distinct labels used. Such an extension models more realistic scenarios in which different communication media, including fiber optics, cable, microwave, or telephone lines, may be implemented. In such contexts, building a spanning tree that relies on a smaller number of media types is more desirable, as it is associated with a reduced complexity of the communication process. However, the MLST does not take into account the cost of the installed edges. For this reason, more realistic variants, incorporating spanning tree cost restrictions, as well as constraints on the number of distinct labels permitted, have been proposed [3]. In the former case, one can have a maximum cost budget available to establish the links of the network and focus on using as few different media types as possible, represented by distinct labels, aiming at reducing communication complexity. In the latter case, instead, the number of different media types is upper bounded by a provided budget and the construction costs are minimized.

While this line of research has been extensively pursued, it often overlooks a critical aspect: in numerous applications, the availability of a specific type of connection may be limited and the outcome may consequently depend on the number of available connections supporting each media type.

Furthermore, as considered in previous works [4], multiple labels can be associated with each edge, representing the requirement of supporting different technologies, as well as different transmission frequencies, when establishing a connection between two endpoints. In this case, a label set is associated with each edge of the network and selecting such an edge in the solution entails the implementation of all the technologies supported by the related connection, as indicated by its label set. Budget constraints also enable the decision maker to express preferences on the available media types, thus influencing the homogeneity of the network.

To model this scenario from a cost-minimization perspective, this paper introduces the Budgeted Labeled Minimum Spanning Tree (BLMST) problem, which extends the MST problem by considering budget constraints for each label. The BLMST problem aims to minimize the total cost of the spanning tree while ensuring that, for each type of label, the number of edges using that label does not exceed the specified budget. Unlike the MST problem, which can be efficiently solved in polynomial time, the BLMST problem is NP-hard due to budget constraints. We provide three distinct mathematical programming formulations for the BLMST problem and propose a Lagrangian approach to derive tight lower bounds on the optimal solution value. Through comprehensive computational experiments conducted on randomly generated instances, we provide a comparative analysis of the formulations and detect relevant trends in terms of solution costs and computational times, as a function of several characteristics of the instances.

The rest of the paper is divided into the following sections: review of the literature on MST-related optimization problems, with a focus on those defined on edge-colored graphs and the ones equipped with budget constraints (Section 2); formal definitions and notations used in our study to describe the problem (Section 3); proof of the NP-hardness of the BLMST problem and presentation of the mathematical models proposed to solve it (Section 4 and Section 5); properties of the BLMST problem (Section 6); description of a Lagrangian approach designed to derive tighter lower bounds, eventually with upper bounds, for the problem (Section 7); computational experiments conducted to validate the proposed approaches (Section 8); and summary of the key findings, contributions, and implications of this study (Section 9).

2. Literature Review

Numerous problems defined on edge-colored graphs have been addressed in the literature, including extensions of the traveling salesman problem [5] and the Hamiltonian cycle problem [6], as well as the labeled perfect matching problem [7].The aforementioned MLST problem was first introduced and proven to be NP-complete in [8], along with an exact algorithm based on the A * paradigm and two heuristic algorithms. Since then, several contributions have been provided, including exact approaches [9], heuristics [10], and metaheuristics [11,12]. In [13], Consoli and Moreno Pérez introduced a hybrid local search algorithm for the MLST, combining variable neighborhood search and simulated annealing paradigms, while an intelligent optimization approach was proposed in [14], integrating variable neighborhood search with machine learning, statistics, and soft computing techniques.

Generalizations of the problem have subsequently been investigated. In this context, Chen et al. introduced the Generalized Minimum Labeling Spanning Tree (GMLST) problem [15], for which Silva et al. recently provided a compact binary integer programming formulation and an analysis of the associated polytope [16]. The GMLST has the same objective as the MLST, i.e., minimizing the number of used labels, but it is defined on graphs whose edges are associated with multiple labels. Chwatal and Raidl adapted single commodity flow and Miller–Tucker–Zemlin-based formulations to the GMLST problem and proposed new formulations, together with strengthening cuts [17]. Since a single label can be selected when including an edge in the solution, the GMLST problem can be reduced to the MLST problem by replacing each edge e ∈ E with a set of parallel edges whose cardinality corresponds to the number of labels associated with e [16]. Afterwards, Cerrone et al. introduced the Strong Generalized Minimum Label Spanning Tree (SGMLST) problem [4]. This further generalization of both the MLST and GMLST problems aims at minimizing the number of labels used while designing a spanning tree in contexts where selecting an edge entails the usage of all the labels associated with it. The authors proposed a mathematical programming formulation and three heuristic approaches for the problem, based on greedy, carousel greedy, and pilot-method [18] techniques.

In [19], a more realistic extension of the MLST problem, namely the Label-Constrained Minimum Spanning Tree (LCMST) problem, has been introduced. The LCMST consists in finding the min-cost spanning tree of a graph that does not exceed a specified number of labels. The authors proposed a mixed integer programming formulation of the problem, a local search heuristic, and a genetic algorithm to solve it. In the same paper, a further extension of the MLST, named Cost Constrained Minimum Spanning Tree (CCMST) problem, has been introduced. Specularly to the LCMST, the CCMST aims to find a spanning tree using the minimum number of labels without exceeding a given cost budget. Both problems have been shown to be NP-complete. In [3], a variable neighborhood search method has been proposed for the CCMST and then adapted for the LCMST as well.

Other extensions of the MLST problem include the Minimum Labeling Steiner Tree (MLST) problem [20], aiming to minimize the number of different labels while covering specified vertices of the graph, as well as the Minimum Spanning Tree with Conflicts (MSTC), involving conflicting pairs of edges, among which at most one of each pair can belong to a feasible solution. This problem was initially proposed as “MST with disjunctive constraints” in [21,22], where conflicts between edges are represented in a conflict graph. Since then, several solution approaches have been proposed in the literature [23,24,25,26,27].

3. Definitions and Notations

The BLMST problem, addressed in this paper, is defined on an undirected and weighted graph G = (V , E) , together with a set L of distinct labels. When referring to an edge of G, we adopt two alternative notations: when we do not need to refer to edge endpoints, we write e ∈ E ; otherwise, we use the notation { i , j } ∈ E . Additionally, let us define the neighborhood δ (i) of any node i ∈ V as the set containing all the nodes that are directly connected to node i in G, formally δ (i) = { j ∈ V : { i , j } ∈ E } .

Each edge e ∈ E is associated with a cost c e , contributing to the total cost of the spanning tree if e is selected, as well as with a subset of labels, specified by an edge-labeling function ϕ : E → P (L) , where P (L) indicates the set of all possible subsets of L. Note that the same label can be associated with multiple edges and vice versa. Let us denote by E ℓ the set of edges labeled with ℓ, namely E ℓ = { e ∈ E : ℓ ∈ ϕ (e) } . For each label ℓ ∈ L , the number of edges in the spanning tree with label ℓ must not exceed a given budget B ℓ . The objective of the BLMST problem is to find a minimum spanning tree that minimizes the total coverage cost while satisfying the budget constraints for each label. Formally, the BLMST problem asks for a spanning tree T = (V , E T) of G such that:

	
 ∑ e ∈ E T c e ≤ ∑ e ∈ E T ˜ c e ∀ spanning tree T ˜ of G ;

	
 | E ℓ ∩ E T | ≤ B ℓ ∀ ℓ ∈ L , i.e., budget constraints are satisfied for each label.

4. Complexity

In this section, we prove the NP-hardness of the BLMST problem by providing a polynomial reduction from the Degree Constrained Minimum Spanning Tree (DCMST) problem, which is known to be NP-hard [28]. The DCMST problem consists in finding a min-cost spanning tree of a given weighted graph G = (V , E) while ensuring that the degree of each node does not exceed a specified integer k, i.e., | δ (v) | ≤ k , ∀ v ∈ V .

The decision version of the DCMST and BLMST problems are given below.

 DCMST d : Given an undirected and weighted graph G = (V , E) , a non-negative integer k, and a cost threshold C, determine whether there exists a spanning tree of G of cost at most C, where the degree of each node is at most k.

BLMST d : Given an undirected and weighted graph G = (V , E) , a set of labels L, an edge-labeling function ϕ : E → P (L) , a budget B ℓ for each label ℓ ∈ L m. and a cost threshold C, determine if there exists a spanning tree of G of cost at most C, s.t. the number of edges in E ℓ is at most B ℓ for each ℓ ∈ L .

Proposition 1.

Given an instance I D = (G , k , C) of DCMST d , where G = (V , E) is a weighted graph, k is an integer, and C is a cost threshold, it holds that DCMST d ≤ p BLMST d .

Proof.

We prove a polynomial-time reduction from any instance I D = (G , k , C) of DCMST d to an instance I B = (G ′ , L , ϕ , B , C ′) of BLMST d . Let G = (V , E) be the graph in I D . In order to build I B , let us define G ′ = (V ′ , E ′) , with V ′ = V and E ′ = E . Furthermore, let L contain a distinct label for each node in G, i.e., L = { ℓ v : v ∈ V } , and assign a unique label ℓ v to each node v ∈ V ; for each edge e = { u , v } ∈ E , define ϕ (e) = { ℓ u , ℓ v } , meaning that each edge is associated with both the labels of its endpoints; set the budget B ℓ v of each label ℓ v ∈ L to k. This models the degree constraint in DCMST d ; finally, impose the same cost threshold for the BLMST d instance, i.e., C ′ = C . This reduction maps each feasible solution of DCMST d (I D) to a feasible solution of BLMST d (I B) with an equivalent cost and vice versa. Indeed, the degree constraint in DCMST d is effectively captured by the label budgets in BLMST d . Therefore, a spanning tree of G with a total cost at most C and maximum node degree k corresponds to a spanning tree in G ′ with a total cost at most C ′ s.t. the number of selected edges in | E ℓ | is at most k, which corresponds to B ℓ , for each label ℓ ∈ L ; thus, all the budget constraints are satisfied. Conversely, via construction, a spanning tree of G ′ with a total cost at most C ′ never uses more than B ℓ = k edges labeled with ℓ, ∀ ℓ ∈ L . This means that the degree of each node v ∈ V ′ is always at most k; thus, this represents a feasible solution for the DCMST d of cost at most C. As a result, DCMST d polynomially reduces to BLMST d . □

Figure 1 visually represents the reduction process from DCMST to BLMST. Initially, in Figure 1a,b, we assume the cost of each edge to be one for simplicity. It is essential to note, however, that this reduction is generalizable to cases where edges have varying positive integer costs. Figure 1a shows an instance of the DCMST problem on a graph, where the maximum degree constraint is k = 2 . This figure establishes the baseline scenario for the reduction, depicting a graph where each edge is assigned a cost of one. In Figure 1b,c, we illustrate the transformation of the DCMST instance into a BLMST instance. Here, we first assign a unique label to each node (e.g., labels {a, b, c, d, e}). Then, each edge inherits labels from the nodes it connects, effectively defining its own set of labels. The budget in the BLMST instance is set for each label, which corresponds to the degree constraint of k = 2 from the DCMST problem. Thus, the budget for each label, pertaining to the edges labeled with it, is also k = 2 . Figure 1d shows a spanning tree constituting the optimal solution of both the DCMST and BLMST instances. Given the constraints and cost assumptions, the same spanning tree is identified as the optimal solution for both problems, demonstrating the effectiveness of the reduction.

5. Mathematical Formulations

The classical packing formulation based on the well-known subtour elimination constraints [29] can be extended to impose the budget requirements. The resulting linear program (LP) is as follows.

 min x ∑ { i , j } ∈ E c i j x i j

(1)

 s . t . ∑ { i , j } ∈ E x i j = | V | − 1

(2)

 ∑ j ∈ δ (i) x i j ≥ 1 ∀ i ∈ V

(3)

 ∑ { i , j } ∈ E (S) x i j ≤ | S | − 1 ∀ S ⊂ V : | S | ≥ 3

(4)

 ∑ { i , j } ∈ E ℓ x i j ≤ B ℓ ∀ ℓ ∈ L

(5)

 x i j ∈ { 0 , 1 } ∀ { i , j } ∈ E

(6)

Formulation (1)–(6) uses a binary decision variable x i j associated with each edge { i , j } ∈ E , defined in such a way that x i j assumes a value equal to 1 if { i , j } belongs to the spanning tree, and 0 otherwise. The objective function (1) minimizes the total cost associated with the selected edges, i.e., the ones s.t. x i j = 1 . In order to obtain a tree, constraints (2) impose that the number of selected edges is exactly equal to the number of vertices minus one, while constraints (4) prevent cycles by forbidding, for each subset of nodes S ⊂ V , the selection of strictly more than | S | − 1 edges with both endpoints in S. Furthermore, constraints (3) are valid inequalities, satisfied by every feasible solution of the BLMST problem, eventually improving the continuous relaxation of Formulation (1)–(6) by requiring that each vertex is spanned by at least one edge. Finally, constraints (5) impose, for each label ℓ ∈ L , that the number of selected edges associated with such a label, i.e., the number of edges { i , j } in E ℓ s.t. x i j = 1 , does not exceed the budget available B ℓ .

Alternatively, constraints (5) can be modified by using additional variables to keep track of budget violations and assigning sufficiently large cost coefficients to those variables, actually preventing budget violations. To this aim, let us introduce a binary auxiliary variable y ℓ defined for each ℓ ∈ L , equal to 1 if the number of edges { i , j } ∈ E s.t. ℓ ∈ ϕ ({ i , j }) and x i j = 1 is strictly larger than B ℓ . The resulting penalization-based formulation is given below.

 min x ∑ { i , j } ∈ E c i j x i j + P ∑ ℓ ∈ L y ℓ

(7)

 s . t . ∑ { i , j } ∈ E x i j = | V | − 1

(8)

 ∑ j ∈ δ (i) x i j ≥ 1 ∀ i ∈ V

(9)

 ∑ { i , j } ∈ E (S) x i j ≤ | S | − 1 ∀ S ⊂ V : | S | ≥ 3

(10)

 ∑ { i , j } ∈ E ℓ x i j ≤ | E ℓ | y ℓ + B ℓ ∀ ℓ ∈ L

(11)

 x i j ∈ { 0 , 1 } ∀ { i , j } ∈ E

(12)

 y ℓ ∈ { 0 , 1 } ∀ ℓ ∈ L

(13)

The objective function (7) sums up the costs associated with the selected edges and a penalty P for each budget violation. The value of P must be an upper bound on the cost of every feasible solution of the BLMST problem. A natural choice for P is the cost of the maximum spanning tree of G, which can be computed in polynomial time by replacing the cost of each edge with its additive inverse and then computing the minimum spanning tree of the resulting graph [30].

A third alternative is to incorporate the budget constraints within a single-commodity flow formulation, in which an arbitrary node s ∈ V is selected as the source node, from which | V | − 1 units of flow are sent through the network, each destined for one of the remaining nodes. Continuous variables are associated with each arc of the directed network G D = (V , A) , having the same node set as G and an edge set containing both the arcs (i , j) and (j , i) for every edge { i , j } ∈ E . Specifically, a variable f i j ≥ 0 represents the amount of flow on the arc (i , j) , ∀ (i , j) ∈ A . If a positive flow is sent either on (i , j) or (j , i) , then { i , j } belongs to the spanning tree. Below is the compact single-commodity flow formulation.

 min f , x ∑ (i , j) ∈ A c i j x i j

(14)

 s . t . ∑ (i , j) ∈ A x i j = | V | − 1

(15)

 ∑ (i , j) ∈ A f i j − ∑ (j , i) ∈ A f j i = | V | − 1 if i = s − 1 if i ∈ V ∖ { s } ∀ i ∈ V

(16)

 f i j ≤ (| V | − 1) x i j ∀ (i , j) ∈ A

(17)

 x i j + x j i ≤ 1 ∀ { i , j } ∈ E

(18)

 ∑ (i , j) ∈ A ℓ x i j ≤ B ℓ ∀ ℓ ∈ L

(19)

 x i j ∈ { 0 , 1 } ∀ (i , j) ∈ A

(20)

 f i j ≥ 0 ∀ (i , j) ∈ A

(21)

The objective function (14) minimizes, as before, the total cost of the tree. The selection of exactly | V | − 1 arcs is imposed via constraints (15), while constraints (16) are flow conservation constraints guaranteeing that each node receives exactly one unit of flow, except for the source. Constraints (17) link the f and x variables by allowing a positive flow on a given arc only if the corresponding edge belongs to the spanning tree. Although the model contains two variables for each edge of the original graph, constraints (18) prevent the related directed arcs from simultaneously carrying positive flow. Finally, the budget restrictions are imposed via constraints (19), where A ℓ denotes the set of directed arcs of G D whose corresponding edges of G have label ℓ, i.e., A ℓ = { (i , j) ∈ A : ℓ ∈ ϕ ({ i , j }) } .

6. Properties of BLMST Solutions

Since, without the restriction on the budget, the BLMST problem reduces to the MST problem, the cost associated with an optimal solution of the latter constitutes a trivial lower bound for the former, as no spanning tree of G of a smaller cost exists. Furthermore, let us denote by ϕ (i) the set of labels associated with at least one edge incident on node i, ∀ i ∈ V .

 ϕ (i) = ⋃ j ∈ δ (i) ϕ ({ i , j })

(22)

In any feasible solution of the BLMST, the number of selected edges incident on any node i is always at least one, for node i to the spanned, and never exceeds the sum of the budgets available for the labels associated with such edges.

 1 ≤ ∑ j ∈ δ (i) x i j ≤ ∑ ℓ ∈ ϕ (i) B ℓ ∀ i ∈ V

(23)

7. Lagrangian Approach

To provide lower bounds for the BLMST problem, we employed a methodology inspired by the Lagrangian Relaxation method, previously adopted in other MST problem extensions [27,31], as well as in other contexts including assignment, network optimization, and wireless sensor network problems [32]. This involves the creation of a Lagrangian relaxation for the problem and the resolution of its associated Lagrangian dual. In our strategy, we include a greedy heuristic at the start of the Lagrangian dual algorithm to potentially enhance the upper bound for the BLMST problem.

7.1. Greedy Algorithm for BLMST

In the following, a heuristic to find feasible solutions to the problem is described.

Algorithm 1 is a modification of Kruskal’s algorithm, adapted for the BLMST problem. It begins by initializing an empty tree (Line 1) and setting the residual budget for each label (Line 2). The edges of the graph G are sorted in non-decreasing order of cost (Line 3). The algorithm then iteratively examines each edge { i , j } ∈ E (Line 4), verifying whether adding it to the tree would violate the budget constraints of any label, while also ensuring that it does not introduce cycles (Line 5). If the edge can be added without violating these constraints, it is added to the tree (Line 6) and the residual budgets are updated accordingly (Line 7). The process continues until all edges have been examined. The algorithm returns the constructed spanning tree (Line 10). Due to the budget constraints, the algorithm cannot guarantee a feasible solution as Kruskal’s algorithm does. Consequently, the resulting solution might be disconnected.

	Algorithm 1: GreedyBLMST

	[image: Mathematics 12 00230 i001]

7.2. Lagrangian Relaxation

We address the BLMST problem by focusing on the classical packing formulation introduced in Section 5. This formulation serves as the foundation for applying the Lagrangian relaxation method, allowing us to relax the budget constraints (5) and integrate them into the objective function. The relaxation process involves introducing a Lagrangian multiplier λ ℓ ≥ 0 for each label ℓ ∈ L , which leads to our Lagrangian function L (x , λ) . Each multiplier can be seen as a “tool” for weighing the importance of the associated constraint in the objective function, allowing us to remove the constraints in the definition of the feasible region of the relaxed problem, but taking into account the satisfaction or violation of the constraints themselves in the objective function. The term added to the original objective function rewards the satisfaction of the constraints and penalizes their violation, so the objective function goes in the direction of satisfying all constraints. If the multiplier is too small, the associated constraint’s impact on the objective function becomes minimal, leading to insufficient emphasis on fulfilling this constraint. Conversely, if the multiplier is too large, it can overly influence the objective function, causing it to focus excessively on satisfying the particular constraint. It is not trivial to find the right values to associate with these multipliers. This function modifies the original objective by integrating the weighted relaxed constraints, resulting in

 L (x , λ) = ∑ { i j } ∈ E c i j x i j − ∑ ℓ ∈ L (λ ℓ B ℓ) + ∑ ℓ ∈ L ∑ { i j } ∈ E ℓ λ ℓ x i j

which leads us to formulate the Relaxed Lagrangian Problem (RLP) as follows.

 R L P L (x , λ) = ∑ { i , j } ∈ E c i j x i j − ∑ ℓ ∈ L (λ ℓ B ℓ) + ∑ ℓ ∈ L ∑ { i , j } ∈ E ℓ λ ℓ x i j

(24a)

 s . t . ∑ { i , j } ∈ E x i j = | V | − 1

(24b)

 ∑ j ∈ δ (i) x i j ≥ 1 ∀ i ∈ V

(24c)

 ∑ { i , j } ∈ E (S) x i j ≤ | S | − 1 ∀ S ⊂ V : | S | ≥ 3

(24d)

 x i j ∈ { 0 , 1 } ∀ { i , j } ∈ E

(24e)

Except for the constant term − ∑ ℓ ∈ L (λ ℓ B ℓ) , Formulation (24) essentially conforms to a standard MST problem. In this scenario, the edge weights are determined according to a specific assignment rule: c i j ^ = c i j + ∑ ℓ ∈ ϕ ({ i , j }) λ ℓ . Given this property, the RLP can be solved using a classic greedy algorithm typically designed for the MST problem (like Kruskal, Prim). The feasible set of the RLP is defined as

 X = x i j ∈ { 0 , 1 } | E | : ∑ { i , j } ∈ E x i j = | V | − 1 , ∑ { i j } ∈ E (S) x i j ≤ | S | − 1 ∀ S ⊂ V , | S | ≥ 3

thus, we can reformulate the RLP in a compact way:

 R L P : min x ∈ X , λ ≥ 0 L (x , λ)

(25)

For a given vector λ of Lagrangian multipliers and a corresponding set of decision variables x for the problem, we define an instance of RLP as R L P (λ , x) . The Lagrangian Dual is formulated as

 L D : max λ ≥ 0 min x ∈ X L (x , λ)

(26)

In addressing the Lagrangian dual for this problem, we encounter a maximization problem where the objective function exhibits concavity and a piecewise affine nature, indicative of its nonsmooth characteristic. A comprehensive exploration of both theoretical foundations and practical computational strategies for nonsmooth optimization can be found in [33]. The LD problem could be solved as a Continuous Linear Programming problem, but it is often very computationally expensive. To solve LD, other heuristic methods are therefore used, including the Subgradient algorithm which is a technique for determining good Lagrangian multipliers.

7.3. Subgradient Algorithm for the BLMST Problem

We now proceed to detail our approach for updating multipliers in tackling the Lagrangian dual. In this context, we delve into the dual ascent strategy, a technique for handling nonsmooth optimization, which is crucial for enhancing our approach to derive effective lower bounds while maintaining computational efficiency.

The Subgradient Algorithm for BLMST (Algorithm 2) requires the following inputs: (i) a graph G, which serves as the problem’s structure; (ii) the labeling function ϕ ; (iii) α , a parameter influencing the rate of change in the Lagrangian multipliers; (iv) Δ , the iteration threshold, which is an integer determining when to modify the step size; (v) Ω , the maximum number of iterations the algorithm will perform; and (vi) ε , the convergence tolerance, representing a stopping criterion of the algorithm based on the convergence toward the lower bound.

The algorithm outputs the tighter lower bound identified for the BLMST problem. During the initialization phase (Lines 1–7), the algorithm sets the initial values of the Lagrangian multipliers (λ ℓ) equal to zero. Then, it sets the lower bounds L B and L B ¯ to negative infinity, where L B records the current lower bound, while L B ¯ tracks the previously computed lower bound. After that, the algorithm initializes the upper bound U B using the UpperBoundInitialization procedure. This procedure returns the value of the solution computed via the GreedyBLMST algorithm when feasible; otherwise, it calculates the value of the maximum MST. At the end of the initialization phase, the algorithm initializes the iteration counter i and the improvement iteration tracker i m p r I t e r a t i o n . The counter i monitors the current iteration number, while i m p r I t e r a t i o n keeps track of the last iteration in which the bound was updated.

The iteration phase of the algorithm starts at Line 8 and consists of a singular while loop spanning Lines 9–23. Each iteration involves updating the vector λ to identify the most effective Lagrangian multipliers. The loop iterates up to a maximum of Ω times. Delving into the procedural steps within each iteration, at Line 10, the algorithm starts the construction of the Relaxed Lagrangian Problem (RLP), using the current values of the λ multipliers and the x variables, extracted from the graph G; the function ϕ is used to construct the budget constraints. At Line 11, the algorithm optimally solves the subproblem, yielding the optimal solution x * for the relaxed Lagrangian. On Lines 12–14, the algorithm evaluates whether the value of the Lagrangian function L (x * , λ) , calculated for the current iteration, exceeds the previously established lower bound L B . If so, the algorithm updates L B and stores the current iteration into i m p r I t e r a t i o n . The algorithm performs the computation of the Lagrangian subgradients s ℓ at Line 15, subsequently determining the value of the step size parameter θ at Line 16. As already mentioned, the Lagrangian multipliers provide a reward or a penalty based on whether the solution found satisfies the relaxed constraints or not, pushing the objective function to find a solution that does not violate the relaxed constraints. Here, s ℓ indicates the growth direction of the objective function, and θ represents the length of the step. On Lines 19–20, the algorithm verifies if the lower bound is equal to the upper bound and checks how much the lower bound computed in the current iteration (L B) differs from the previous one (L B ¯). On Line 20, the algorithm updates L B ¯ . The if statement on Lines 21–22 evaluates whether there has been no enhancement in the lower bound over the last Δ iterations. If this is the case, the value of α is halved to moderate the convergence of the algorithm. On Line 23, the algorithm increases the iteration counter i, while on Line 24, the best computed lower bound is returned.

	Algorithm 2: Subgradient algorithm for BLMST

	[image: Mathematics 12 00230 i002]

The UpperBoundInitialization algorithm (Algorithm 3) provides an upper bound estimate for the BLMST problem. It first runs the GreedyBLMST algorithm to eventually build a spanning tree T from the given graph G and labeling function ϕ (Line 1). If the resulting tree T is a feasible solution for the BLMST problem, then the algorithm computes and returns the cost associated with T (Line 2), which represents an upper bound for the value of the optimal solution. However, if T is not feasible for the BLMST problem, the algorithm calculates the cost of the Maximum Spanning Tree (MaxMST) of G (Line 6). The cost of such a tree, even if associated with an infeasible solution for BLMST, provides an upper bound for any feasible solution of the problem. The algorithm then returns this value as the upper bound (Line 7). This approach ensures that an upper bound is always provided.

	Algorithm 3: UpperBoundInitialization

	[image: Mathematics 12 00230 i003]

8. Computational Experiments

In this section, we compare the proposed methods presenting the results of our computational tests. The methods were coded in Python on an OSX platform, running on an Apple M2 Max system with a 64 GB unified memory. All the mathematical formulations were solved by using the IBM ILOG CPLEX 12.1.1 solver with a maximum number of threads equal to three and an imposed time limit of 1800 s.

8.1. Test Instances

Since no benchmark instances for the BLMST problem are available in the literature, we generated a set of random instances according to some choices presented in the following. Provided the desired number of nodes | V | , a uniformly random Prüfer sequence of length | V | − 2 is generated and then converted to the unique tree T associated with such sequence. Subsequently, a set of labels L is generated, according to a target size | L | ∈ { 5 , 10 , 20 } . Given a budget B ℓ associated with each label ℓ ∈ L , ℓ is assigned to exactly B ℓ randomly sampled edges of T, which ensures, via construction, the existence of at least one feasible solution of BLMST, i.e., the spanning tree T. A graph G = (V , E) is obtained by iteratively adding edges to T until a target density d is reached, where d = 2 | E | | V | (| V | − 1) . Finally, a random cost w i j ∈ [w m i n , w m a x] is assigned to each edge in { i , j } ∈ E and each label is assigned to each edge of G that does not belong to T with probability γ = 0.4 . In this way, one or more labels will be assigned to each edge.

We generated 162 instances by setting different values for each parameter. More in detail, in order to further investigate the impact of the budget restrictions, we organized the instances in three scenarios, composed of 54 instances each, depending on the values used for B ℓ . Fixed budget values have been considered, as detailed below.

	Scenario 1:

	
 B ℓ = ⌈ | V | / 2 ⌉ , ∀ ℓ ∈ L ;

	Scenario 2:

	
 B ℓ = ⌈ | V | / 3 ⌉ , ∀ ℓ ∈ L ;

	Scenario 3:

	
 B ℓ = ⌈ | V | / 4 ⌉ , ∀ ℓ ∈ L .

The tighter the budget, the more challenging is expected to be the resolution of an instance; thus, we will compare the performances of the proposed methods as B ℓ varies.

8.2. Results Discussion

In this section, we present the computational results obtained from solving the mathematical models using the commercial solver CPLEX, as well as the results obtained with our Subgradient algorithm.

8.2.1. Mathematical Models

We start our discussion with a comparison of the three formulations for Scenario 1. The results of this comparison are contained in Table 1 in which the first three columns report the information about the instances: the number of labels | L | , the number of nodes (| V |), and the network density (d). When available, the fourth column, heading Obj, reports the value of the optimal solution. If no optimal solution is available, (u) appears close to the value of the best feasible solution computed within the time limit. If no solution is available, (l) appears close to the value of the best lower bound given by the formulation. The fifth column, named Nodes, reports the number of nodes explored by CPLEX in the B&B tree, while the sixth column, i.e., Time, reports the computational times in seconds. The fourth, fifth, and sixth columns refer to the results obtained by Formulation (1)–(6), while the subsequent columns report the same information for Formulations (7)–(13) and (14)–(21), respectively.

The content of the table is divided into three main groups of instances, sharing the same number of labels | L | ∈ { 5 , 10 , 20 } . For each of these groups, two additional rows report the number of optimal solutions found by each formulation (#Opt), along with the average cost of the identified solution, computed considering only the instances where at least an upper bound is available, the average number of nodes of the B&B tree, and the average run time in seconds. The results show the computational dominance, on the tested instances, of the single commodity flow formulation, which optimally solves 40 out of 54 instances of Scenario 1, while both the packing- and the penalization-based formulations certify the optimality of the identified solution for only half this number of instances. Despite this, focusing on the upper bound values, we may notice that only in three cases the packing formulation identifies a worse solution than the single commodity flow formulation (i.e., scenarios 5-250-0.3, 5-300-0.3, and 20-300-0.2, where the notation | L | - | V | -d indicates an instance with | L | labels, | V | nodes, and a network density equal to d) and the cost percentage gap with respect to the solution identified by the latter is always reduced (1.44%, 0.27%, and 0.23%, respectively). On the other hand, the penalization-based formulation records five positive cost percentage gap values (i.e., scenarios 5-250-0.3, 5-300-0.2, 5-300-0.3, 10-300-0.4, and 20-300-0.2), but the maximum gap value equals 0.29%.

Table 2 and Table 3 confirm these results as the imposed budget changes. In particular, on Scenario 2, the single commodity flow formulation identifies 43 out of 54 optimal solutions, while the packing formulation and the penalization-based ones were able to certify optimality only in 16 and 21 cases, respectively. For the first two groups of instances, all the formulations always provided at least an upper bound, while for | L | = 20 , there exist instances for which CPLEX reaches the imposed time limit without identifying any feasible solution. This occurs in four cases for the single commodity flow formulation, five cases for the penalization-based formulation, and only one case for the packing formulation, which is then the one finding the largest number of feasible solutions in this scenario. Focusing on the instances for which a feasible solution has been identified by all the formulations, the single commodity flow formulation always identifies the best quality solutions, except for one instance (20-100-0.3), where a better solution is identified by the packing formulation and the single commodity flow one exhibits a cost percentage gap of 0.54%. On Scenario 3, the three formulations solve 23, 19, and 43 out of 54 instances to optimality, respectively. Also in this case, the single commodity flow formulation fails to identify a feasible solution for nine instances, while the packing formulation and the penalization-based one provide only lower bounds in six and two cases, respectively. A small positive percentage gap of 0.16%, with respect to the best solution found by the three methods, is recorded for the single commodity flow formulation for only one instance (20-100-0.3).

As we observed, as the number of labels increases and the budget restriction is tighter, the formulations struggle to certify optimality and sometimes even to provide a feasible solution. The single commodity flow formulation generally dominates the other ones, both in terms of computational times and the number of optimally solved instances, although it fails more frequently to identify feasible solutions for | L | = 20 . In all the scenarios, when reaching the time limit, the solutions identified by the penalized-based formulation are associated with smaller cost percentage gap values with respect to the best than those found by the packing formulation, namely 0.04%, 1.14%, and 0.93% versus 0.02%, 0.94%, and 0.89% in scenarios 1, 2, and 3, respectively.

Restricting the analysis to the best-performing formulation, Figure 2 shows how the number of instances solved to optimality by CPLEX increases with respect to the available computational time. In order to assess also the impact of the number of nodes on the computational times, a curve is associated with each group of instances with different value of n ∈ { 50 , 150 , 200 , 250 , 300 } , each one including 27 instances. In particular, the x-axis reports the run time limit t (in seconds), while the y-axis reports the number of instances optimally solved within t seconds. As we may notice, the set of instances with n = 50 is the only one for which all the 27 instances are solved to optimality, and the most challenging instance in this set is solved in ∼100 s. As for the remaining classes, the number of instances solved within 100 s is 20, 16, 11, 2n and 3 for n = 150 , 200 , 250 , 300 , respectively. Overall, the number of instances solved to optimality within the imposed time limit of 1800 s decreases as the value of n increases. With this time limit, indeed, 27 instances with n = 50 , 24 instances with n = 100 , 18 instances with n = 150 , 18 instances with n = 200 , 14 instances with n = 250 , and 12 instances with n = 300 are solved to optimality.

Let us further investigate the impact of the number of labels on the computational times required by CPLEX to solve Formulation (14)–(21) by looking at the histograms shown in Figure 3. Figure 3a, Figure 3b, and Figure 3c report, for n equal to 200, 250, and 300, respectively, the average run times of CPLEX computed over the instances of each scenario with the same number of labels. As we may notice, considering more labels often results in a relevant increase in the computational times, it is particularly observable when moving from | L | = 10 to | L | = 20 . The only exception is n = 300 in Scenario 1, where more instances reach the time limit with | L | ∈ { 5 , 10 } , thus increasing the average computational times. Tighter budgets also have some impact on the run times, which is generally more detectable for | L | = 20 .

Finally, let us analyze how the costs of the solutions identified by Formulation (14)–(21) change with respect to the characteristics of the instances. To this aim, we produced three groups of charts, restricting the analysis only to the instances for which at least one feasible solution has been identified by CPLEX. Figure 4 reports costs for instances with five labels. Figure 4a, Figure 4b, and Figure 4c refer to instances with density values equal to 20 % , 30 % , and 40 % , respectively. For the first density class, the cost of the identified spanning tree ranges from 338 associated with n = 100 in Scenario 1 to 603 associated with n = 300 in Scenario 3. More in detail, costs in [338 , 470] were recorded in Scenario 1, costs in [386 , 508] were recorded in Scenario 2, while costs in [401 , 603] were recorded in Scenario 3, highlighting higher spanning tree costs associated with tighter budgets. The remaining two density classes exhibit the same trends, with costs ranging from 207 associated with n = 50 and Scenario 1 to 476 associated with n = 300 and Scenario 3, in the former case, and from 137 associated with n = 50 and Scenario 1 to 393 associated with n = 300 and Scenario 3, in the latter case. From these results, we can further observe a decrease in the spanning tree cost as the density of the network increases, motivated by the availability of a larger number of edges. The charts in Figure 5 and Figure 6 show similar and even more recognizable trends. For | L | = 10 , costs in [269 , 439] , [435 , 387] , and [573 , 762] are recorded for Scenarios 1, 2, and 3, respectively, when d = 0.2 ; costs in [214 , 372] , [224 , 405] , and [392 , 536] are recorded for Scenarios 1, 2, and 3, respectively, when d = 0.3 ; while costs in [192 , 340] , [208 , 345] , and [313 , 458] are recorded for Scenarios 1, 2, and 3, respectively, when d = 0.3 . From these charts, we see that the cost difference among the solutions provided for Scenarios 2 and 3 is larger for d = 0.3 than for d = 0.2 . Finally, for | L | = 20 , costs in [322 , 405] , [436 , 521] , and [785 , 972] are recorded for Scenarios 1, 2, and 3, respectively, when d = 0.2 ; costs in [200 , 268] , [360 , 422] , and [627 , 681] are recorded for Scenarios 1, 2, and 3, respectively, when d = 0.3 ; while costs in [192 , 214] , [259 , 289] , and [406 , 720] are recorded for Scenarios 1, 2, and 3, respectively, when d = 0.3 . As we may notice, the cost ranges associated with the three scenarios do not even overlap with each other, making the cost difference observed also for | L | ∈ { 5 , 10 } even more relevant.

8.2.2. Subgradient Algorithm

In our computational experiments, we set the parameters of the Subgradient Algorithm for BLMST as follows: α = 4 , controlling the rate of change in the Lagrangian multipliers; Δ = 50 , the iteration threshold for modifying the step size; Ω = 300 , specifying the maximum number of iterations; and ε = 0.05 , the convergence tolerance which serves as the algorithm’s stopping criterion based on proximity to the previous computed lower bound.

Table 4 reports the results obtained by the Subgradient algorithm for the BLMST problem on the same instances, described in Section 8.1, used to test the mathematical models. As for Table 1, Table 2 and Table 3, the first columns (|L|, n, and d) report the characteristics of the instances. The remaining columns are divided into the three previously described scenarios, reporting for each of them the following columns: LB, UB, Time, and UB time. LB and UB represent the lower and upper bounds computed by the algorithm, respectively. A match between the LB and UB indicates that the solution associated with the identified upper bound is optimal for that instance. Furthermore, when the upper bound value is associated with the solution obtained by running the greedy algorithm (Algorithm 1), (g) appears close to the UB value. Finally, the Time column denotes the total computational time required by the Subgradient algorithm, while UB time refers exclusively to the time taken to compute the upper bound.

In Scenario 1, associated with the least restrictive budget (⌈ | V | / 2 ⌉), the algorithm performed exceptionally well, finding optimal solutions in 52 out of 54 instances. This scenario also exhibited the smallest average computational time, indicating a lower complexity in solving these instances with respect to the ones of Scenarios 2 and 3, which require increasingly larger computational times. In particular, for | L | = 5 , the Subgradient algorithm required an average computational time of 0.28, 1.29, and 6.45 s to compute bounds for an instance of Scenarios 1, 2, and 3, respectively; for | L | = 10 , the same average computational times are 0.39, 16.37, and 40.85, while for | L | = 20 , they reach 0.60, 24.10, and 47.45 s. In general, a relevant increase in the run time is recorded as the imposed budget becomes tighter, while a gentler increase is observable when the number of labels increases. This trend is consistent with the increase in the average computational times required by the mathematical models to solve an instance, as observed in Section 8.2.1.

On the other side, the Subgradient algorithm did not identify any optimal solution among the instances of Scenarios 2 and 3, highlighting the increasing challenge posed by tighter budget constraints. However, it consistently provides robust lower bounds, demonstrating its efficacy in approximating solutions for the BLMST problem under varying conditions. As the budget constraint becomes tighter, the BLMST problem becomes more complex, affecting the effectiveness of the algorithm. The subgradient approach, despite these challenges, demonstrates a fast and effective method for finding upper and lower bounds, especially in scenarios with less restrictive budgets.

9. Conclusions

In this study, we introduced the BLMST problem, a new variant of the minimum spanning tree problem. We formally proved the NP-hardness of the BLMST problem and we generated a set of computational instances to evaluate its complexity and practical implications. We developed and compared three distinct mathematical programming formulations: a single commodity flow formulation, a packing formulation, and a penalization-based formulation. These models were tested under several scenarios, characterized by varying budget restrictions, network sizes, and the number of labels. Relevant trends in the performances of the three formulations have been analyzed via a computational test phase, carried out on 162 randomly created instances. The single commodity flow formulation emerged as generally superior in all the scenarios, consistently achieving optimal solutions with competitive computational times. Its performance, however, diminished as the number of labels increased (| L | = 20), where it struggled to identify feasible solutions within the time limit. Furthermore, we introduced a Lagrangian approach based on a Subgradient algorithm to derive tighter lower bounds for the optimal solution of the problem, incorporating a greedy strategy to eventually derive upper bounds. Future research might focus on enhancing these formulations or developing hybrid approaches to improve solution quality and computational efficiency, particularly for high-label and tight-budget scenarios. The exploration of heuristic and metaheuristic methods could also provide valuable insights for solving large-scale instances of the BLMST problem.

Author Contributions

All authors contributed to the design and implementation of the research, to the analysis of the results and to the writing of the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

The data used in this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare no conflicts of interest.

References

	

Graham, R.; Hell, P. On the History of the Minimum Spanning Tree Problem. Ann. Hist. Comput. 1985, 7, 43–57. [Google Scholar] [CrossRef]

	

da Silva, T.G. The Minimum Labeling Spanning Tree and Related Problems. Ph.D. Thesis, Université d’Avignon, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brasil, 2018. [Google Scholar]

	

Naji-Azimi, Z.; Salari, M.; Golden, B.; Raghavan, S.; Toth, P. Variable neighborhood search for the cost constrained minimum label spanning tree and label constrained minimum spanning tree problems. Comput. Oper. Res. 2010, 37, 1952–1964. [Google Scholar] [CrossRef]

	

Cerrone, C.; D’Ambrosio, C.; Raiconi, A. Heuristics for the strong generalized minimum label spanning tree problem. Networks 2019, 74, 148–160. [Google Scholar] [CrossRef]

	

Ismkhan, H. Effective three-phase evolutionary algorithm to handle the large-scale colorful traveling salesman problem. Expert Syst. Appl. 2017, 67, 148–162. [Google Scholar] [CrossRef]

	

Jozefowiez, N.; Laporte, G.; Semet, F. A branch-and-cut algorithm for the minimum labeling Hamiltonian cycle problem and two variants. Comput. Oper. Res. 2011, 38, 1534–1542. [Google Scholar] [CrossRef]

	

Monnot, J. The labeled perfect matching in bipartite graphs. Inf. Process. Lett. 2005, 96, 81–88. [Google Scholar] [CrossRef]

	

Chang, R.S.; Shing-Jiuan, L. The minimum labeling spanning trees. Inf. Process. Lett. 1997, 63, 277–282. [Google Scholar] [CrossRef]

	

Captivo, M.; Clímaco, J.C.; Pascoal, M.M. A mixed integer linear formulation for the minimum label spanning tree problem. Comput. Oper. Res. 2009, 36, 3082–3085. [Google Scholar] [CrossRef]

	

Xiong, Y.; Golden, B.; Wasil, E. Worst-case behavior of the MVCA heuristic for the minimum labeling spanning tree problem. Oper. Res. Lett. 2005, 33, 77–80. [Google Scholar] [CrossRef]

	

Consoli, S.; Darby-Dowman, K.; Mladenović, N.; Moreno Pérez, J. Greedy Randomized Adaptive Search and Variable Neighbourhood Search for the minimum labelling spanning tree problem. Eur. J. Oper. Res. 2009, 196, 440–449. [Google Scholar] [CrossRef]

	

Cerrone, C.; Cerulli, R.; Gaudioso, M. OMEGA one multi ethnic genetic approach. Optim. Lett. 2016, 10, 309–324. [Google Scholar] [CrossRef]

	

Consoli, S.; Moreno Pérez, J. Solving the minimum labelling spanning tree problem using hybrid local search. Electron. Notes Discret. Math. 2012, 39, 75–82. [Google Scholar] [CrossRef]

	

Consoli, S.; Mladenović, N.; Moreno Pérez, J. Solving the minimum labelling spanning tree problem by intelligent optimization. Appl. Soft Comput. 2015, 28, 440–452. [Google Scholar] [CrossRef]

	

Chen, Y.; Cornick, N.; Hall, A.O.; Shajpal, R.; Silberholz, J.; Yahav, I.; Golden, B.L. Comparison of Heuristics for Solving the Gmlst Problem. In Telecommunications Modeling, Policy, and Technology; Raghavan, S., Golden, B., Wasil, E., Eds.; Springer: Boston, MA, USA, 2008; pp. 191–217. [Google Scholar] [CrossRef]

	

Silva, T.; Gueye, S.; Michelon, P.; Ochi, L.; Cabral, L. A polyhedral approach to the generalized minimum labeling spanning tree problem. EURO J. Comput. Optim. 2019, 7, 47–77. [Google Scholar] [CrossRef]

	

Chwatal, A.M.; Raidl, G.R. Solving the Minimum Label Spanning Tree Problem by Mathematical Programming Techniques. Adv. Oper. Res. 2011, 2011, 143732. [Google Scholar] [CrossRef]

	

Voßs, S.; Fink, A.; Duin, C. Looking ahead with the pilot method. Ann. Oper. Res. 2005, 136, 285–302. [Google Scholar] [CrossRef]

	

Xiongm, Y.; Golden, B.; Wasil, E.; Chen, S. The Label-Constrained Minimum Spanning Tree Problem. In Telecommunications Modeling, Policy, and Technology; Raghavan, S., Golden, B., Wasil, E., Eds.; Springer: Boston, MA, USA, 2008; pp. 39–58. [Google Scholar] [CrossRef]

	

Cerulli, R.; Fink, A.; Gentili, M.; Voss, S. Extensions of the minimum labelling spanning tree problem. J. Telecommun. Inf. Technol. 2006, 39–45. [Google Scholar]

	

Darmann, A.; Pferschy, U.; Schauer, J. Determining a Minimum Spanning Tree with Disjunctive Constraints. In Proceedings of the International Conference on Algorithmic Decision Theory, Venice, Italy, 20–23 October 2009; Rossi, F., Tsoukias, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 414–423. [Google Scholar] [CrossRef]

	

Darmann, A.; Pferschy, U.; Schauer, J.; Woeginger, G.J. Paths, trees and matchings under disjunctive constraints. Discret. Appl. Math. 2011, 159, 1726–1735. [Google Scholar] [CrossRef]

	

Zhang, R.; Kabadi, S.N.; Punnen, A.P. The minimum spanning tree problem with conflict constraints and its variations. Discret. Optim. 2011, 8, 191–205. [Google Scholar] [CrossRef]

	

Carrabs, F.; Cerrone, C.; Pentangelo, R. A multiethnic genetic approach for the minimum conflict weighted spanning tree problem. Networks 2019, 74, 134–147. [Google Scholar] [CrossRef]

	

Samer, P.; Urrutia, S. A branch and cut algorithm for minimum spanning trees under conflict constraints. Optim. Lett. 2015, 9, 41–55. [Google Scholar] [CrossRef]

	

Carrabs, F.; Cerulli, R.; Pentangelo, R.; Raiconi, A. Minimum spanning tree with conflicting edge pairs: A branch-and-cut approach. Ann. Oper. Res. 2021, 298, 65–78. [Google Scholar] [CrossRef]

	

Carrabs, F.; Gaudioso, M. A Lagrangian approach for the minimum spanning tree problem with conflicting edge pairs. Networks 2021, 78, 32–45. [Google Scholar] [CrossRef]

	

Garey, M.; Johnson, D. Computers and Intractability: A Guide to the Theory of NP-Completeness; W. H. Freeman and Co.: San Francisco, CA, USA, 1979; p. 206. [Google Scholar]

	

Dantzig, G.; Fulkerson, R.; Johnson, S. Solution of a Large-Scale Traveling-Salesman Problem. J. Oper. Res. Soc. Am. 1954, 2, 393–410. [Google Scholar] [CrossRef]

	

Pemmaraju, S.; Skiena, S. Computational Discrete Mathematics: Combinatorics and Graph Theory with Mathematica; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]

	

Carrabs, F.; Cerulli, R.; Gaudioso, M.; Gentili, M. Lower and upper bounds for the spanning tree with minimum branch vertices. Comput. Optim. Appl. 2013, 56, 405–438. [Google Scholar] [CrossRef]

	

Gaudioso, M. A View of Lagrangian Relaxation and Its Applications. In Numerical Nonsmooth Optimization: State of the Art Algorithms; Bagirov, A.M., Gaudioso, M., Karmitsa, N., Mäkelä, M.M., Taheri, S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 579–617. [Google Scholar] [CrossRef]

	

Urruty, J.B.H.; Lemaréchal, C. Convex Analysis and Minimization Algorithms; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar]

[image: Mathematics 12 00230 g001]

Figure 1. Example illustrating the reduction from a DCMST problem instance to a BLMST problem, with a maximum degree constraint of k = 2 . (a) Graph associated with an instance of the DCMST problem where w e = 1 ∀ e ∈ E and k = 2 . (b) Assignment of labels a , b , c , d and e to nodes 1 , 2 , 3 , 4 and 5, respectively, according to the first step of the described polynomial reduction. (c) Assignment of a label set containing the labels of both its endpoints to each edge of the graph shown in (b). The budget for each label in the BLMST problem instance is set as equal to k. (d) Optimal spanning tree for both the BLMST graph shown in (c) and the DCMST graph shown in (b).

Figure 1. Example illustrating the reduction from a DCMST problem instance to a BLMST problem, with a maximum degree constraint of k = 2 . (a) Graph associated with an instance of the DCMST problem where w e = 1 ∀ e ∈ E and k = 2 . (b) Assignment of labels a , b , c , d and e to nodes 1 , 2 , 3 , 4 and 5, respectively, according to the first step of the described polynomial reduction. (c) Assignment of a label set containing the labels of both its endpoints to each edge of the graph shown in (b). The budget for each label in the BLMST problem instance is set as equal to k. (d) Optimal spanning tree for both the BLMST graph shown in (c) and the DCMST graph shown in (b).

[image: Mathematics 12 00230 g001]

[image: Mathematics 12 00230 g002]

Figure 2. Number of instances solved to optimality via the single commodity flow formulation with respect to the available computational time and the number of nodes.

Figure 2. Number of instances solved to optimality via the single commodity flow formulation with respect to the available computational time and the number of nodes.

[image: Mathematics 12 00230 g002]

[image: Mathematics 12 00230 g003]

Figure 3. Average computational times of the single commodity formulation on the instances with 200, 250, and 300 nodes w.r.t. different number of labels and different budget values. More specifically, (a) n = 200 . (b) n = 250 . (c) n = 300 .

Figure 3. Average computational times of the single commodity formulation on the instances with 200, 250, and 300 nodes w.r.t. different number of labels and different budget values. More specifically, (a) n = 200 . (b) n = 250 . (c) n = 300 .

[image: Mathematics 12 00230 g003]

[image: Mathematics 12 00230 g004]

Figure 4. Impact of the available budget (scenarios 1, 2, and 3) on the cost of the spanning tree identified by Formulation (14)–(21) on networks with five different labels. Specifically, (a) | L | = 5 ; d = 0.2 . (b) | L | = 5 ; d = 0.3 . (c) | L | = 5 ; d = 0.4 .

Figure 4. Impact of the available budget (scenarios 1, 2, and 3) on the cost of the spanning tree identified by Formulation (14)–(21) on networks with five different labels. Specifically, (a) | L | = 5 ; d = 0.2 . (b) | L | = 5 ; d = 0.3 . (c) | L | = 5 ; d = 0.4 .

[image: Mathematics 12 00230 g004]

[image: Mathematics 12 00230 g005]

Figure 5. Impact of the available budget (scenarios 1, 2, and 3) on the cost of the spanning tree identified by Formulation (14)–(21) on networks with 10 different labels. Specifically, (a) | L | = 10 ; d = 0.2 . (b) | L | = 10 ; d = 0.3 . (c) | L | = 10 ; d = 0.4 .

Figure 5. Impact of the available budget (scenarios 1, 2, and 3) on the cost of the spanning tree identified by Formulation (14)–(21) on networks with 10 different labels. Specifically, (a) | L | = 10 ; d = 0.2 . (b) | L | = 10 ; d = 0.3 . (c) | L | = 10 ; d = 0.4 .

[image: Mathematics 12 00230 g005]

[image: Mathematics 12 00230 g006]

Figure 6. Impact of the available budget (scenarios 1, 2, and 3) on the cost of the spanning tree identified by Formulation (14)–(21) on networks with 20 different labels. Specifically, (a) | L | = 20 ; d = 0.2 . (b) | L | = 20 ; d = 0.3 . (c) | L | = 20 ; d = 0.4 .

Figure 6. Impact of the available budget (scenarios 1, 2, and 3) on the cost of the spanning tree identified by Formulation (14)–(21) on networks with 20 different labels. Specifically, (a) | L | = 20 ; d = 0.2 . (b) | L | = 20 ; d = 0.3 . (c) | L | = 20 ; d = 0.4 .

[image: Mathematics 12 00230 g006]

Table 1. Comparison of the three mathematical formulations on the set of instances with budget fixed to ⌈ | V | / 2 ⌉ (Scenario 1), in terms of optimal solutions, computational time, and nodes of the B&B tree.

Table 1. Comparison of the three mathematical formulations on the set of instances with budget fixed to ⌈ | V | / 2 ⌉ (Scenario 1), in terms of optimal solutions, computational time, and nodes of the B&B tree.

	

	

	

	
Packing Formulation

	
Penalization-Based Formulation

	
Single-Commodity Flow Formulation

	
L

	
n

	
d

	
Obj

	
Nodes

	
Time

	
Obj

	
Nodes

	
Time

	
Obj

	
Nodes

	
Time

	
5

	
50

	
0.2

	
384

	
6782

	
1.66

	
384

	
6868

	
2.01

	
384

	
0

	
0.11

	

	

	
0.3

	
207

	
3

	
0.18

	
207

	
3

	
0.19

	
207

	
548

	
0.12

	

	

	
0.4

	
137

	
3

	
0.17

	
137

	
3

	
0.17

	
137

	
220

	
0.08

	

	
100

	
0.2

	
338

	
170,424

	
50.84

	
338

	
143,693

	
43.92

	
338

	
16,392

	
2.84

	

	

	
0.3

	
247

	
5044

	
3.20

	
247

	
4624

	
3.63

	
247

	
18,141

	
4.69

	

	

	
0.4

	
223

	
45,068

	
24.33

	
223

	
136,486

	
79.59

	
223

	
196,435

	
36.04

	

	
150

	
0.2

	
372(u)

	
966,652

	
1802.89

	
372(u)

	
1,193,242

	
1800.89

	
372

	
1,092,872

	
43.13

	

	

	
0.3

	
278

	
9496

	
8.71

	
278

	
21,913

	
17.00

	
278

	
1244

	
0.74

	

	

	
0.4

	
218(u)

	
879,093

	
1803.81

	
218(u)

	
933,306

	
1804.57

	
218

	
3,797,326

	
1531.55

	

	
200

	
0.2

	
398(u)

	
963,689

	
1804.88

	
398(u)

	
1,057,325

	
1804.26

	
398

	
4820

	
3.12

	

	

	
0.3

	
283(u)

	
1,219,447

	
1800.80

	
283(u)

	
1,276,533

	
1800.75

	
283

	
678,958

	
63.50

	

	

	
0.4

	
241(u)

	
792,379

	
1800.97

	
241(u)

	
910,489

	
1800.82

	
241

	
1074

	
13.16

	

	
250

	
0.2

	
445(u)

	
735,126

	
1802.51

	
445(u)

	
546,438

	
1803.44

	
445

	
4980

	
29.21

	

	

	
0.3

	
353(u)

	
331,215

	
1803.87

	
349(u)

	
220,756

	
1805.90

	
348

	
802,163

	
364.94

	

	

	
0.4

	
307(u)

	
424,095

	
1801.18

	
307(u)

	
355,613

	
1802.86

	
307

	
2,434,929

	
1084.20

	

	
300

	
0.2

	
470(u)

	
541,077

	
1803.19

	
471(u)

	
443,603

	
1803.94

	
470(u)

	
1,293,501

	
1801.22

	

	

	
0.3

	
365(u)

	
155,207

	
1806.46

	
365(u)

	
197,361

	
1805.92

	
364(u)

	
221,665

	
1800.01

	

	

	
0.4

	
331(u)

	
312,917

	
1801.73

	
331(u)

	
310,421

	
1801.46

	
331

	
2783

	
5.45

	

	

	
Avg

	
310.94

	
419,873.17

	
1106.74

	
310.61

	
431,037.61

	
1110.07

	
310.61

	
587,113.94

	
376.89

	

	

	
#Opt

	
7

	

	

	
7

	

	

	
16

	

	

	
10

	
50

	
0.2

	
269

	
41

	
0.22

	
269

	
42

	
0.20

	
269

	
88

	
0.06

	

	

	
0.3

	
214

	
46

	
0.20

	
214

	
124

	
0.30

	
214

	
66

	
0.05

	

	

	
0.4

	
199

	
0

	
0.13

	
199

	
0

	
0.06

	
199

	
0

	
0.08

	

	
100

	
0.2

	
368

	
284

	
1.13

	
368

	
518

	
1.32

	
368

	
1838

	
0.59

	

	

	
0.3

	
233

	
18,749

	
8.84

	
233

	
12,504

	
6.75

	
233

	
2294

	
1.96

	

	

	
0.4

	
192

	
154

	
0.96

	
192

	
108

	
0.99

	
192

	
1,983,767

	
155.06

	

	
150

	
0.2

	
368(u)

	
708,360

	
1804.84

	
368(u)

	
744,156

	
1805.48

	
368(u)

	
2,981,555

	
1800.00

	

	

	
0.3

	
278(u)

	
1,013,942

	
1801.29

	
278(u)

	
1,946,679

	
1801.66

	
278

	
24

	
0.67

	

	

	
0.4

	
239(u)

	
1,149,943

	
1802.87

	
239(u)

	
1,056,962

	
1803.49

	
239

	
2246

	
1.33

	

	
200

	
0.2

	
413(u)

	
2,079,434

	
1800.00

	
413(u)

	
2,093,693

	
1800.01

	
413

	
674,995

	
104.59

	

	

	
0.3

	
333(u)

	
388,022

	
1805.55

	
333(u)

	
831,062

	
1803.80

	
333

	
2134

	
1.77

	

	

	
0.4

	
271(u)

	
240,934

	
1806.18

	
271(u)

	
346,307

	
1805.58

	
271

	
1,099,752

	
388.40

	

	
250

	
0.2

	
434(u)

	
314,789

	
1805.58

	
434(u)

	
432,382

	
1805.70

	
434(u)

	
5,105,688

	
1800.01

	

	

	
0.3

	
368(u)

	
363,941

	
1804.82

	
368(u)

	
346,884

	
1806.18

	
368(u)

	
1,627,238

	
1801.54

	

	

	
0.4

	
301(u)

	
400,755

	
1802.14

	
301(u)

	
431,307

	
1801.48

	
301

	
7071

	
107.48

	

	
300

	
0.2

	
439(u)

	
902,884

	
1801.19

	
439(u)

	
347,996

	
1803.33

	
439(u)

	
728,677

	
1800.62

	

	

	
0.3

	
372(u)

	
370,704

	
1802.33

	
372(u)

	
324,579

	
1801.83

	
372(u)

	
565,164

	
1800.88

	

	

	
0.4

	
340(u)

	
307,286

	
1801.38

	
341(u)

	
283,720

	
1802.40

	
340

	
13

	
4.51

	

	

	
Avg

	
312.83

	
458,903.78

	
1202.76

	
312.89

	
511,056.83

	
1202.81

	
312.83

	
821,256.11

	
542.76

	

	

	
#Opt

	
6

	

	

	
6

	

	

	
13

	

	

	
20

	
50

	
0.2

	
322

	
2098

	
0.71

	
322

	
2316

	
0.95

	
322

	
3269

	
0.27

	

	

	
0.3

	
200

	
4131

	
1.08

	
200

	
3115

	
0.81

	
200

	
541

	
0.13

	

	

	
0.4

	
145

	
60

	
0.24

	
145

	
74

	
0.24

	
145

	
883

	
0.34

	

	
100

	
0.2

	
327

	
1401

	
1.71

	
327

	
1305

	
1.77

	
327

	
42,280

	
8.21

	

	

	
0.3

	
219(u)

	
952,555

	
1803.03

	
219(u)

	
845,953

	
1802.63

	
219

	
1563

	
2.02

	

	

	
0.4

	
192(u)

	
2,739,262

	
1800.00

	
192(u)

	
3,288,212

	
1800.00

	
192

	
6

	
0.30

	

	
150

	
0.2

	
405

	
1,762,851

	
1075.32

	
405

	
2,079,591

	
1365.48

	
405

	
0

	
0.62

	

	

	
0.3

	
268

	
1,260,067

	
923.22

	
268

	
1,295,691

	
943.48

	
268(u)

	
15,031,433

	
1800.01

	

	

	
0.4

	
214(u)

	
1,257,318

	
1801.46

	
214(u)

	
998,077

	
1804.00

	
214(u)

	
6,895,492

	
1800.01

	

	
200

	
0.2

	
411(u)

	
1,314,070

	
1803.33

	
411(u)

	
960,992

	
1803.75

	
411(u)

	
1,913,636

	
1800.01

	

	

	
0.3

	
302(u)

	
1,101,446

	
1801.22

	
302(u)

	
977,988

	
1801.71

	
302(u)

	
1,341,987

	
1801.07

	

	

	
0.4

	
266(u)

	
642,759

	
1802.37

	
266(u)

	
656,149

	
1802.80

	
266

	
12,797

	
57.58

	

	
250

	
0.2

	
408(u)

	
713,336

	
1803.55

	
408(u)

	
627,621

	
1804.91

	
408(u)

	
805,348

	
1801.46

	

	

	
0.3

	
333

	
420

	
7.88

	
333

	
1902

	
12.52

	
333(u)

	
374,960

	
1801.52

	

	

	
0.4

	
286(u)

	
467,169

	
1801.14

	
286(u)

	
457,607

	
1801.27

	
286

	
10,162

	
83.79

	

	
300

	
0.2

	
442(u)

	
310,257

	
1802.56

	
442(u)

	
279,823

	
1803.88

	
441(u)

	
481,375

	
1800.85

	

	

	
0.3

	
351(u)

	
344,467

	
1801.79

	
351(u)

	
385,789

	
1801.30

	
351

	
54,333

	
29.49

	

	

	
0.4

	
321(u)

	
280,710

	
1802.75

	
321(u)

	
277,663

	
1803.19

	
321

	
22,376

	
294.25

	

	

	
Avg

	
300.67

	
730,798.72

	
1212.97

	
300.67

	
729,992.67

	
1230.82

	
300.61

	
1,499,580.06

	
726.77

	

	

	
#Opt

	
7

	

	

	
7

	

	

	
11

	

	

Table 2. Comparison of the three mathematical formulations on the set of instances with budget fixed to ⌈ | V | / 3 ⌉ (Scenario 2), in terms of optimal solutions, computational time, and nodes of the B&B tree.

Table 2. Comparison of the three mathematical formulations on the set of instances with budget fixed to ⌈ | V | / 3 ⌉ (Scenario 2), in terms of optimal solutions, computational time, and nodes of the B&B tree.

	

	

	

	
Packing Formulation

	
Penalization-Based Formulation

	
Single-Commodity Flow Formulation

	
L

	
n

	
d

	
Obj

	
Nodes

	
Time

	
Obj

	
Nodes

	
Time

	
Obj

	
Nodes

	
Time

	
5

	
50

	
0.2

	
386

	
386

	
0.31

	
386

	
420

	
0.39

	
386

	
1438

	
0.25

	

	

	
0.3

	
280

	
284

	
0.25

	
280

	
218

	
0.27

	
280

	
2969

	
0.51

	

	

	
0.4

	
199

	
8356

	
1.86

	
199

	
19,979

	
4.21

	
199

	
184

	
0.18

	

	
100

	
0.2

	
403(u)

	
1,542,399

	
1800.47

	
403(u)

	
1,836,446

	
1800.02

	
402

	
4543

	
2.18

	

	

	
0.3

	
300

	
617,286

	
285.06

	
300

	
612,969

	
324.27

	
300

	
9049

	
8.58

	

	

	
0.4

	
209

	
224

	
1.01

	
209

	
107

	
1.04

	
209

	
787

	
1.96

	

	
150

	
0.2

	
439(u)

	
1,332,880

	
1801.59

	
439(u)

	
1,574,331

	
1800.95

	
438

	
45,539

	
24.32

	

	

	
0.3

	
299(u)

	
2,003,733

	
1800.98

	
299(u)

	
1,926,242

	
1800.01

	
299(u)

	
3,791,744

	
1800.01

	

	

	
0.4

	
249(u)

	
822,090

	
1802.28

	
249(u)

	
915,049

	
1801.69

	
249

	
3966

	
17.59

	

	
200

	
0.2

	
444(u)

	
892,403

	
1801.70

	
444(u)

	
859,623

	
1801.52

	
442

	
23,864

	
44.95

	

	

	
0.3

	
344(u)

	
425,359

	
1803.16

	
341(u)

	
638,421

	
1801.35

	
339

	
723,895

	
563.11

	

	

	
0.4

	
275(u)

	
621,466

	
1801.22

	
271(u)

	
619,923

	
1800.90

	
269

	
302,171

	
275.51

	

	
250

	
0.2

	
476(u)

	
564,203

	
1802.37

	
476(u)

	
433,577

	
1802.12

	
473

	
397,170

	
185.26

	

	

	
0.3

	
346(u)

	
585,841

	
1800.88

	
343(u)

	
554,115

	
1801.48

	
343

	
17,252

	
112.88

	

	

	
0.4

	
305(u)

	
366,937

	
1801.10

	
305(u)

	
408,721

	
1800.87

	
303

	
12,448

	
249.95

	

	
300

	
0.2

	
512(u)

	
430,704

	
1802.51

	
513(u)

	
479,703

	
1801.36

	
508

	
11,792

	
149.76

	

	

	
0.3

	
387(u)

	
411,333

	
1801.03

	
383(u)

	
449,827

	
1800.72

	
381

	
685,217

	
534.54

	

	

	
0.4

	
347(u)

	
230,884

	
1801.53

	
342(u)

	
252,950

	
1801.57

	
342

	
6387

	
186.97

	

	

	
Avg

	
344.44

	
603,153.78

	
1317.18

	
310.61

	
643,478.94

	
1319.15

	
342.33

	
335,578.61

	
231.03

	

	

	
#Opt

	
5

	

	

	
5

	

	

	
17

	

	

	
10

	
50

	
0.2

	
443

	
1452

	
0.40

	
443

	
2102

	
0.55

	
443

	
1435

	
0.28

	

	

	
0.3

	
224

	
15

	
0.21

	
224

	
13

	
0.27

	
224

	
381

	
0.14

	

	

	
0.4

	
214

	
1948

	
0.71

	
214

	
2742

	
0.74

	
214

	
8402

	
2.00

	

	
100

	
0.2

	
444

	
39,280

	
16.13

	
444

	
50,051

	
15.27

	
444

	
6364

	
2.17

	

	

	
0.3

	
287

	
21,886

	
8.84

	
287

	
11,409

	
5.99

	
287

	
33,229

	
14.82

	

	

	
0.4

	
208

	
103,006

	
61.86

	
208

	
294,845

	
204.59

	
208

	
2737

	
4.15

	

	
150

	
0.2

	
487(u)

	
660,232

	
2158.41

	
484(u)

	
791,291

	
2126.62

	
476

	
31,726

	
33.58

	

	

	
0.3

	
339(u)

	
931,630

	
1800.99

	
334(u)

	
1,401,348

	
1800.88

	
332

	
3749

	
6.83

	

	

	
0.4

	
238(u)

	
699,323

	
1801.22

	
238(u)

	
623,122

	
1801.58

	
233

	
5176

	
42.35

	

	
200

	
0.2

	
438(u)

	
1,129,062

	
1801.01

	
435

	
1,056,214

	
1384.73

	
435

	
182,707

	
106.78

	

	

	
0.3

	
326(u)

	
806,011

	
1800.68

	
323(u)

	
817,200

	
1800.87

	
322

	
9207

	
72.55

	

	

	
0.4

	
276(u)

	
662,800

	
1800.71

	
276(u)

	
661,045

	
1800.79

	
274

	
42,928

	
450.91

	

	
250

	
0.2

	
477(u)

	
566,240

	
1801.37

	
479(u)

	
388,271

	
1801.30

	
471(u)

	
245,438

	
1800.01

	

	

	
0.3

	
386(u)

	
570,496

	
1800.55

	
392(u)

	
416,965

	
1801.22

	
383

	
97,664

	
102.45

	

	

	
0.4

	
308(u)

	
408,740

	
1800.76

	
311(u)

	
352,942

	
1801.15

	
304

	
251,202

	
483.13

	

	
300

	
0.2

	
492(u)

	
477,226

	
1800.96

	
491(u)

	
397,172

	
1801.37

	
487

	
95,139

	
257.33

	

	

	
0.3

	
410(u)

	
346,901

	
1800.80

	
413(u)

	
315,959

	
1800.02

	
405

	
42,303

	
266.19

	

	

	
0.4

	
355(u)

	
244,217

	
1800.94

	
349(u)

	
274,325

	
1800.64

	
345

	
15,707

	
590.32

	

	

	
Avg

	
352.89

	
426,136.94

	
1225.36

	
352.50

	
436,500.89

	
1208.26

	
349.28

	
59,749.67

	
235.33

	

	

	
#Opt

	
6

	

	

	
7

	

	

	
17

	

	

	
20

	
50

	
0.2

	
521

	
4745

	
0.72

	
521

	
5333

	
0.85

	
521

	
8961

	
1.87

	

	

	
0.3

	
422

	
193,353

	
30.83

	
422

	
135,239

	
21.36

	
422

	
235,328

	
87.73

	

	

	
0.4

	
289

	
33,520

	
6.58

	
289

	
39,737

	
7.48

	
289

	
2985

	
1.56

	

	
100

	
0.2

	
450(u)

	
1,482,149

	
1800.56

	
452(u)

	
1,735,218

	
1800.31

	
436(u)

	
1,806,597

	
1800.03

	

	

	
0.3

	
370(u)

	
2,053,794

	
1800.66

	
375(u)

	
1,586,947

	
1800.83

	
372(u)

	
1,140,036

	
1800.93

	

	

	
0.4

	
259

	
175,896

	
109.85

	
259

	
322,529

	
182.48

	
259

	
39,805

	
23.34

	

	
150

	
0.2

	
473(u)

	
1,274,220

	
1800.95

	
468(u)

	
1,411,355

	
1800.67

	
465(u)

	
562,841

	
1800.52

	

	

	
0.3

	
374(u)

	
718,963

	
1801.45

	
374(u)

	
872,929

	
1801.20

	
360

	
509,112

	
519.49

	

	

	
0.4

	
293(u)

	
947,147

	
1800.68

	
291(u)

	
1,111,344

	
1800.64

	
286(u)

	
283,493

	
1800.01

	

	
200

	
0.2

	
547(u)

	
269,533

	
1801.91

	
534(u)

	
360,040

	
2082.81

	
516(u)

	
223,098

	
1800.00

	

	

	
0.3

	
428(u)

	
390,888

	
2090.58

	
443(u)

	
332,352

	
2070.14

	
411(u)

	
129,086

	
1800.32

	

	

	
0.4

	
331(u)

	
393,927

	
1800.96

	
322(u)

	
568,058

	
1800.58

	
316(u)

	
132,820

	
1800.01

	

	
250

	
0.2

	
639(u)

	
218,842

	
1801.61

	
563(l)

	
218,550

	
1801.24

	
583(u)

	
82,590

	
1800.57

	

	

	
0.3

	
435(u)

	
284,770

	
1801.05

	
425(u)

	
343,136

	
1800.85

	
406(l)

	
54,569

	
1800.23

	

	

	
0.4

	
357(u)

	
303,947

	
1800.88

	
343(l)

	
194,942

	
1801.34

	
342(l)

	
54,360

	
1800.01

	

	
300

	
0.2

	
550(u)

	
258,326

	
1800.97

	
519(l)

	
179,232

	
1801.44

	
528(u)

	
108,351

	
1800.01

	

	

	
0.3

	
453(l)

	
167,726

	
1800.85

	
454(l)

	
168,103

	
1801.02

	
455(l)

	
49,537

	
1800.01

	

	

	
0.4

	
360(u)

	
159,818

	
1800.77

	
333(l)

	
150,825

	
1800.76

	
335(l)

	
32,657

	
1800.02

	

	

	
Avg

	
396.42

	
661,511.25

	
1237.14

	
395.83

	
706,756.75

	
1264.11

	
387.75

	
422,846.83

	
1102.99

	

	

	
#Opt

	
5

	

	

	
9

	

	

	
9

	

	

Table 3. Comparison of the three mathematical formulations on the set of instances with budget fixed to ⌈ | V | / 4 ⌉ (Scenario 3), in terms of optimal solutions, computational time, and nodes of the B&B tree.

Table 3. Comparison of the three mathematical formulations on the set of instances with budget fixed to ⌈ | V | / 4 ⌉ (Scenario 3), in terms of optimal solutions, computational time, and nodes of the B&B tree.

	

	

	

	
Packing Formulation

	
Penalization-Based Formulation

	
Single-Commodity Flow Formulation

	
L

	
n

	
d

	
Obj

	
Nodes

	
Time

	
Obj

	
Nodes

	
Time

	
Obj

	
Nodes

	
Time

	
5

	
50

	
0.2

	
454

	
0

	
0.11

	
454

	
0

	
0.06

	
454

	
0

	
0.05

	

	

	
0.3

	
261

	
0

	
0.12

	
261

	
5

	
0.06

	
261

	
448

	
0.20

	

	

	
0.4

	
250

	
0

	
0.06

	
250

	
0

	
0.06

	
250

	
0

	
0.07

	

	
100

	
0.2

	
401

	
191,501

	
81.85

	
401

	
248,154

	
98.99

	
401

	
1696

	
1.25

	

	

	
0.3

	
333

	
2957

	
2.49

	
333

	
6357

	
4.81

	
333

	
2052

	
2.53

	

	

	
0.4

	
245(u)

	
2,059,414

	
1800.00

	
245(u)

	
1,823,294

	
1800.91

	
245

	
2790

	
4.16

	

	
150

	
0.2

	
509(u)

	
1,360,526

	
1801.92

	
507(u)

	
1,487,666

	
1801.23

	
505

	
4653

	
6.52

	

	

	
0.3

	
342

	
980,506

	
929.03

	
343(u)

	
1,667,107

	
1800.89

	
342

	
3253

	
11.80

	

	

	
0.4

	
286(u)

	
1,092,273

	
1801.61

	
286(u)

	
1,250,047

	
1801.08

	
286

	
3450

	
16.74

	

	
200

	
0.2

	
460

	
305,216

	
377.34

	
460

	
430,473

	
429.30

	
460

	
6097

	
20.92

	

	

	
0.3

	
365(u)

	
826,199

	
1801.41

	
363

	
426,213

	
824.94

	
363

	
5450

	
34.37

	

	

	
0.4

	
307(u)

	
604,130

	
1801.78

	
311(u)

	
493,245

	
1801.52

	
307

	
1397

	
18.61

	

	
250

	
0.2

	
577(u)

	
476,599

	
1802.55

	
584(u)

	
398,520

	
1801.78

	
570

	
81,652

	
112.37

	

	

	
0.3

	
398(u)

	
555,892

	
1801.04

	
398(u)

	
534,605

	
1800.91

	
398

	
2,591,989

	
1343.45

	

	

	
0.4

	
347(u)

	
254,453

	
1801.33

	
346(u)

	
311,367

	
1800.02

	
342

	
16,484

	
236.83

	

	
300

	
0.2

	
611(u)

	
4,32,514

	
1801.81

	
608(u)

	
511,274

	
1801.26

	
603

	
88,904

	
132.43

	

	

	
0.3

	
483(u)

	
336,811

	
1801.17

	
479(u)

	
365,249

	
1800.95

	
476(u)

	
536,136

	
1800.02

	

	

	
0.4

	
399(u)

	
186,216

	
1802.00

	
399(u)

	
268,255

	
1800.80

	
393

	
16,441

	
566.36

	

	

	
Avg

	
390.44

	
536,955.94

	
1178.20

	
310.61

	
567,879.50

	
1176.09

	
388.28

	
186,827.33

	
239.37

	

	

	
#Opt

	
7

	

	

	
7

	

	

	
17

	

	

	
10

	
50

	
0.2

	
577

	
1303

	
0.43

	
577

	
817

	
0.31

	
577

	
609

	
0.20

	

	

	
0.3

	
392

	
6487

	
1.40

	
392

	
5872

	
1.68

	
392

	
3116

	
1.16

	

	

	
0.4

	
313

	
46,141

	
11.27

	
313

	
23,774

	
5.48

	
313

	
1301

	
0.71

	

	
100

	
0.2

	
573

	
110,883

	
46.85

	
573

	
67,719

	
22.66

	
573

	
2,023,550

	
1231.06

	

	

	
0.3

	
425

	
26,833

	
14.15

	
425

	
74,065

	
37.54

	
425

	
186,271

	
77.61

	

	

	
0.4

	
321

	
81,184

	
50.57

	
321

	
572,480

	
307.12

	
321

	
7514

	
9.04

	

	
150

	
0.2

	
681(u)

	
964,797

	
1801.54

	
680(u)

	
1,444,185

	
1800.91

	
678

	
15,435

	
48.90

	

	

	
0.3

	
433

	
645,205

	
1051.72

	
434(u)

	
981,298

	
1800.34

	
433

	
4191

	
21.59

	

	

	
0.4

	
328(u)

	
1,191,207

	
1800.01

	
327

	
998,393

	
1336.17

	
327

	
11,141

	
17.15

	

	
200

	
0.2

	
642(u)

	
700,386

	
1801.99

	
641(u)

	
570,778

	
1801.61

	
629(u)

	
209,609

	
1800.03

	

	

	
0.3

	
506(u)

	
346,800

	
1801.86

	
501(u)

	
463,195

	
1801.27

	
493

	
16,151

	
42.15

	

	

	
0.4

	
420(u)

	
523,715

	
1800.87

	
419(u)

	
585,661

	
1801.08

	
415

	
78,226

	
196.53

	

	
250

	
0.2

	
778(u)

	
575,043

	
1801.35

	
770(u)

	
595,381

	
1801.27

	
762(u)

	
187,731

	
1800.01

	

	

	
0.3

	
549(u)

	
456,530

	
1800.68

	
546(u)

	
435,876

	
1800.63

	
536

	
296,875

	
414.84

	

	

	
0.4

	
473(u)

	
235,167

	
1801.54

	
467(u)

	
221,101

	
1801.26

	
458(u)

	
318,739

	
1800.04

	

	
300

	
0.2

	
753(u)

	
214,394

	
1801.70

	
756(u)

	
188,903

	
1801.91

	
728(u)

	
115,937

	
1800.41

	

	

	
0.3

	
524(u)

	
297,710

	
1800.74

	
519(u)

	
351,196

	
1800.93

	
514(u)

	
163,162

	
1800.02

	

	

	
0.4

	
473(u)

	
109,761

	
1801.58

	
464(u)

	
215,895

	
1801.14

	
456(u)

	
294,166

	
1800.01

	

	

	
Avg

	
508.94

	
362,974.78

	
1166.13

	
506.94

	
433,143.83

	
1195.74

	
501.67

	
218,540.22

	
714.53

	

	

	
#Opt

	
7

	

	

	
7

	

	

	
12

	

	

	
20

	
50

	
0.2

	
785

	
378,694

	
62.50

	
785

	
356,543

	
56.29

	
785

	
68,050

	
19.92

	

	

	
0.3

	
633

	
24,110

	
3.52

	
633

	
11,997

	
2.09

	
633

	
3124

	
1.66

	

	

	
0.4

	
406

	
125,520

	
26.92

	
406

	
35,563

	
9.85

	
406

	
4559

	
2.68

	

	
100

	
0.2

	
814(u)

	
2,349,753

	
1800.00

	
802(u)

	
1,515,358

	
1800.00

	
794

	
1,505,384

	
1319.16

	

	

	
0.3

	
636(u)

	
1,733,329

	
1801.05

	
626(u)

	
1,565,379

	
1801.35

	
627(u)

	
757,130

	
1800.63

	

	

	
0.4

	
451(u)

	
1,262,717

	
1800.87

	
457(u)

	
1,447,232

	
1800.74

	
443

	
2,064,088

	
918.08

	

	
150

	
0.2

	
977(u)

	
479,199

	
1801.68

	
1033(u)

	
546,663

	
1801.87

	
972(u)

	
628,408

	
1800.01

	

	

	
0.3

	
702(u)

	
390,743

	
1801.29

	
701(u)

	
469,899

	
1801.69

	
681(u)

	
110,816

	
1800.01

	

	

	
0.4

	
723(u)

	
613,482

	
1801.02

	
733(u)

	
598,619

	
1801.23

	
720(u)

	
138,218

	
1800.01

	

	
200

	
0.2

	
1053(l)

	
234,790

	
1801.72

	
1053(l)

	
249,211

	
1801.12

	
1054(l)

	
135,933

	
1800.01

	

	

	
0.3

	
813(u)

	
340,702

	
1801.76

	
823(u)

	
418,977

	
1801.04

	
754(l)

	
72,420

	
1800.01

	

	

	
0.4

	
543(l)

	
210,307

	
1801.73

	
631(u)

	
322,844

	
1801.55

	
545(l)

	
65,868

	
1800.01

	

	
250

	
0.2

	
1063(l)

	
206,209

	
1833.14

	
1300(u)

	
355,789

	
1802.19

	
1071(l)

	
79,402

	
1800.01

	

	

	
0.3

	
804(u)

	
203,529

	
1801.10

	
978(u)

	
207,412

	
1801.59

	
729(l)

	
65,211

	
1800.03

	

	

	
0.4

	
656(l)

	
187,787

	
1801.20

	
810(u)

	
250,000

	
1801.32

	
658(l)

	
40,527

	
1800.03

	

	
300

	
0.2

	
1316(u)

	
205,389

	
1801.07

	
1242(u)

	
265,280

	
1801.10

	
1121(l)

	
60,951

	
1800.01

	

	

	
0.3

	
792(l)

	
169,973

	
1801.19

	
979(u)

	
233,243

	
1801.26

	
793(l)

	
32,974

	
1800.03

	

	

	
0.4

	
635(l)

	
150,274

	
1800.60

	
636(l)

	
158,053

	
1800.82

	
640(l)

	
27,899

	
1800.02

	

	

	
Avg

	
680.78

	
817,505.22

	
1210.98

	
686.22

	
727,472.56

	
1208.35

	
673.44

	
586,641.89

	
1051.35

	

	

	
#Opt

	
9

	

	

	
5

	

	

	
14

	

	

Table 4. Upper and lower bounds obtained by running the subgradient algorithm for BLMST (Algorithm 2) on the instances of Scenario 1 (budget fixed to ⌈ | V | / 2 ⌉), Scenario 2 (budget fixed to ⌈ | V | / 3 ⌉), and Scenario 3 (budget fixed to ⌈ | V | / 4 ⌉).

Table 4. Upper and lower bounds obtained by running the subgradient algorithm for BLMST (Algorithm 2) on the instances of Scenario 1 (budget fixed to ⌈ | V | / 2 ⌉), Scenario 2 (budget fixed to ⌈ | V | / 3 ⌉), and Scenario 3 (budget fixed to ⌈ | V | / 4 ⌉).

	

	
Scenario 1

	
Scenario 2

	
Scenario 3

	
L

	
n

	
d

	
LB

	
UB

	
Time

	
UB Time

	
LB

	
UB

	
Time

	
UB Time

	
LB

	
UB

	
Time

	
UB Time

	
5

	
50

	
0.2

	
384.00

	
384(g)

	
0.007

	
0.001

	
380.00

	
2144

	
0.007

	
0.001

	
408.00

	
2248

	
0.094

	
0

	

	

	
0.3

	
207.00

	
207(g)

	
0.006

	
0.001

	
264.98

	
2227

	
0.066

	
0.001

	
245.26

	
2288

	
0.076

	
0.001

	

	

	
0.4

	
137.00

	
137(g)

	
0.007

	
0.002

	
189.03

	
359(g)

	
0.320

	
0.002

	
235.59

	
2318

	
0.099

	
0.001

	

	
100

	
0.2

	
338.00

	
338(g)

	
0.024

	
0.005

	
394.48

	
4678

	
0.487

	
0.001

	
396.97

	
4653

	
0.523

	
0.001

	

	

	
0.3

	
247.00

	
247(g)

	
0.035

	
0.007

	
285.02

	
402(g)

	
0.072

	
0.009

	
329.00

	
4821

	
1.201

	
0.002

	

	

	
0.4

	
223.00

	
223(g)

	
0.046

	
0.009

	
202.01

	
270(g)

	
0.074

	
0.01

	
239.95

	
4849

	
1.343

	
0.002

	

	
150

	
0.2

	
372.00

	
372(g)

	
0.073

	
0.015

	
433.08

	
7172

	
2.724

	
0.003

	
421.16

	
922(g)

	
7.806

	
0.017

	

	

	
0.3

	
278.00

	
278(g)

	
0.129

	
0.021

	
281.01

	
402(g)

	
0.171

	
0.023

	
333.49

	
7304

	
6.007

	
0.004

	

	

	
0.4

	
218.00

	
218(g)

	
0.142

	
0.028

	
241.01

	
386(g)

	
0.231

	
0.032

	
228.90

	
520(g)

	
5.143

	
0.032

	

	
200

	
0.2

	
398.00

	
398(g)

	
0.185

	
0.033

	
421.02

	
616(g)

	
0.272

	
0.051

	
458.48

	
9754

	
14.573

	
0.004

	

	

	
0.3

	
283.00

	
283(g)

	
0.247

	
0.049

	
320.03

	
664(g)

	
0.392

	
0.055

	
297.61

	
776(g)

	
8.893

	
0.059

	

	

	
0.4

	
241.00

	
241(g)

	
0.365

	
0.064

	
263.01

	
442(g)

	
0.557

	
0.073

	
250.10

	
563(g)

	
0.760

	
0.073

	

	
250

	
0.2

	
445.00

	
445(g)

	
0.317

	
0.064

	
471.50

	
12,273

	
12.435

	
0.007

	
566.03

	
12,253

	
26.311

	
0.007

	

	

	
0.3

	
348.00

	
348(g)

	
0.490

	
0.094

	
337.00

	
463(g)

	
0.747

	
0.111

	
342.10

	
785(g)

	
1.103

	
0.108

	

	

	
0.4

	
307.00

	
307(g)

	
0.606

	
0.124

	
303.00

	
392(g)

	
0.991

	
0.132

	
296.04

	
636(g)

	
0.955

	
0.171

	

	
300

	
0.2

	
470.00

	
470(g)

	
0.550

	
0.108

	
490.01

	
877(g)

	
0.862

	
0.118

	
459.54

	
1341(g)

	
37.75

	
0.123

	

	

	
0.3

	
364.00

	
364(g)

	
0.814

	
0.157

	
369.00

	
597(g)

	
1.261

	
0.169

	
401.12

	
1082(g)

	
1.796

	
0.183

	

	

	
0.4

	
331.00

	
331(g)

	
1.062

	
0.223

	
342.00

	
422(g)

	
1.630

	
0.222

	
349.03

	
793(g)

	
1.636

	
0.236

	

	

	
Avg

	
310.61

	
310.61

	
0.28

	
0.06

	
332.62

	
1932.56

	
1.29

	
0.06

	
347.69

	
3217.00

	
6.45

	
0.06

	

	

	
#Opt

	
18

	

	

	

	
0

	

	

	

	
0

	

	

	

	
10

	
50

	
0.2

	
269.00

	
269(g)

	
0.005

	
0.002

	
405.99

	
2218

	
0.075

	
0.001

	
521.75

	
2205

	
0.201

	
0.001

	

	

	
0.3

	
214.00

	
214(g)

	
0.008

	
0.002

	
205.46

	
2277

	
0.077

	
0.001

	
356.97

	
2261

	
0.347

	
0.001

	

	

	
0.4

	
199.00

	
199(g)

	
0.009

	
0.002

	
192.00

	
2309

	
0.125

	
0.001

	
282.97

	
2294

	
0.337

	
0.001

	

	
100

	
0.2

	
368.00

	
368(g)

	
0.033

	
0.009

	
416.66

	
4707

	
1.244

	
0.001

	
557.04

	
4730

	
2.087

	
0.001

	

	

	
0.3

	
233.00

	
233(g)

	
0.046

	
0.013

	
273.74

	
4770

	
1.061

	
0.002

	
401.15

	
4812

	
4.939

	
0.002

	

	

	
0.4

	
192.00

	
192(g)

	
0.062

	
0.017

	
195.95

	
4847

	
0.828

	
0.002

	
292.99

	
4865

	
4.901

	
0.002

	

	
150

	
0.2

	
368.00

	
368(g)

	
0.100

	
0.028

	
465.99

	
7170

	
6.618

	
0.003

	
606.24

	
7224

	
12.996

	
0.003

	

	

	
0.3

	
278.00

	
278(g)

	
0.147

	
0.039

	
326.04

	
7319

	
7.959

	
0.004

	
401.01

	
7292

	
15.161

	
0.004

	

	

	
0.4

	
239.00

	
239(g)

	
0.195

	
0.054

	
227.66

	
7368

	
5.175

	
0.005

	
304.84

	
7348

	
15.940

	
0.005

	

	
200

	
0.2

	
413.00

	
413(g)

	
0.231

	
0.063

	
427.48

	
9687

	
10.346

	
0.004

	
555.81

	
9753

	
29.726

	
0.004

	

	

	
0.3

	
333.00

	
333(g)

	
0.336

	
0.092

	
315.76

	
9822

	
14.801

	
0.006

	
448.56

	
9853

	
34.584

	
0.006

	

	

	
0.4

	
271.00

	
271(g)

	
0.478

	
0.124

	
268.53

	
9905

	
19.898

	
0.008

	
349.81

	
9886

	
46.916

	
0.008

	

	
250

	
0.2

	
434.00

	
434(g)

	
0.441

	
0.122

	
458.96

	
12,259

	
32.850

	
0.007

	
642.11

	
12,264

	
53.922

	
0.007

	

	

	
0.3

	
368.00

	
368(g)

	
0.675

	
0.182

	
374.26

	
12,349

	
38.726

	
0.010

	
463.27

	
12,364

	
85.059

	
0.010

	

	

	
0.4

	
301.00

	
301(g)

	
0.860

	
0.242

	
291.94

	
12,402

	
21.403

	
0.013

	
377.78

	
12,403

	
81.280

	
0.013

	

	
300

	
0.2

	
439.00

	
439(g)

	
0.755

	
0.21

	
471.04

	
14,792

	
39.780

	
0.010

	
583.20

	
14,811

	
91.519

	
0.010

	

	

	
0.3

	
372.00

	
372(g)

	
1.118

	
0.307

	
390.80

	
14,866

	
56.137

	
0.015

	
449.08

	
14,892

	
111.569

	
0.029

	

	

	
0.4

	
340.00

	
340(g)

	
1.544

	
0.416

	
332.10

	
14,916

	
37.602

	
0.037

	
393.64

	
14,919

	
143.804

	
0.021

	

	

	
Avg

	
312.83

	
312.83

	
0.39

	
0.11

	
335.57

	
8554.61

	
16.37

	
0.01

	
443.79

	
8565.33

	
40.85

	
0.01

	

	

	
#Opt

	
18

	

	

	

	
0

	

	

	

	
0

	

	

	

	
20

	
50

	
0.2

	
322.00

	
322(g)

	
0.008

	
0.003

	
412.03

	
2167

	
0.238

	
0.001

	
685.04

	
2124

	
0.623

	
0.001

	

	

	
0.3

	
200.00

	
200(g)

	
0.011

	
0.004

	
335.36

	
2294

	
0.394

	
0.001

	
508.90

	
2254

	
0.857

	
0.001

	

	

	
0.4

	
145.00

	
145(g)

	
0.014

	
0.005

	
205.95

	
2332

	
0.224

	
0.001

	
343.17

	
2352

	
1.135

	
0.001

	

	
100

	
0.2

	
327.00

	
332(g)

	
0.076

	
0.017

	
369.27

	
4679

	
1.835

	
0.001

	
632.33

	
4716

	
4.369

	
0.001

	

	

	
0.3

	
219.00

	
219(g)

	
0.070

	
0.024

	
339.09

	
4804

	
3.875

	
0.016

	
435.21

	
4789

	
6.340

	
0.002

	

	

	
0.4

	
192.00

	
194(g)

	
0.123

	
0.031

	
223.88

	
4851

	
3.732

	
0.002

	
333.04

	
4867

	
8.595

	
0.002

	

	
150

	
0.2

	
405.00

	
405(g)

	
0.148

	
0.051

	
426.92

	
7218

	
8.140

	
0.003

	
606.58

	
7176

	
15.154

	
0.003

	

	

	
0.3

	
268.00

	
268(g)

	
0.224

	
0.078

	
325.41

	
7323

	
11.363

	
0.004

	
440.81

	
7343

	
19.361

	
0.004

	

	

	
0.4

	
214.00

	
214(g)

	
0.301

	
0.104

	
261.55

	
7367

	
10.763

	
0.005

	
405.78

	
7342

	
25.113

	
0.005

	

	
200

	
0.2

	
411.00

	
411(g)

	
0.354

	
0.124

	
483.75

	
9753

	
21.034

	
0.005

	
610.67

	
9786

	
29.232

	
0.005

	

	

	
0.3

	
302.00

	
302(g)

	
0.524

	
0.184

	
360.53

	
9825

	
34.685

	
0.007

	
461.50

	
9852

	
43.715

	
0.006

	

	

	
0.4

	
266.00

	
266(g)

	
0.705

	
0.245

	
281.10

	
9880

	
36.001

	
0.008

	
357.64

	
9893

	
59.799

	
0.009

	

	
250

	
0.2

	
408.00

	
408(g)

	
0.670

	
0.241

	
491.46

	
12,230

	
44.024

	
0.007

	
615.93

	
12,274

	
64.576

	
0.007

	

	

	
0.3

	
333.00

	
333(g)

	
1.039

	
0.353

	
368.08

	
12,361

	
51.527

	
0.010

	
440.01

	
12,349

	
86.206

	
0.010

	

	

	
0.4

	
286.00

	
286(g)

	
1.326

	
0.471

	
311.09

	
12,399

	
62.237

	
0.029

	
381.98

	
12,408

	
105.304

	
0.013

	

	
300

	
0.2

	
441.00

	
441(g)

	
1.163

	
0.409

	
490.17

	
14,783

	
56.597

	
0.010

	
625.83

	
14,780

	
97.131

	
0.010

	

	

	
0.3

	
351.00

	
351(g)

	
1.721

	
0.612

	
402.47

	
14,890

	
84.927

	
0.015

	
478.84

	
14,871

	
141.432

	
0.029

	

	

	
0.4

	
321.00

	
321(g)

	
2.291

	
0.826

	
321.13

	
14,913

	
2.203

	
0.038

	
389.70

	
14,920

	
145.153

	
0.037

	

	

	
Avg

	
300.61

	
301.00

	
0.60

	
0.21

	
356.07

	
8559.39

	
24.10

	
0.01

	
486.28

	
8560.89

	
47.45

	
0.01

	

	

	
#Opt

	
16

	

	

	

	
0

	

	

	

	
0

	

	

	

	
	
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Check ACS Ref Order

Check Foot Note Order

Check CrossRef

nav.xhtml

 mathematics-12-00230

 		
 mathematics-12-00230

media/file8.jpg
seseiiEiii
 m—]
—
|
]
I

EeseBEEEEE

media/file11.png
Cost

700

600

200

100

-
poigy
- es e SR

n=50 n=100

e Scenario 1

— M = = = = T

n=150

=39= Scenario 2

(a)

Cost

n=200

450

400

350

n=250 n=300

Scenario 3

Cost

350

300

250

200

150

__—-X————*’

w» =

n=50

n=100

== Scenario 1

n=50 n=100

e Scenario 1

n=150

== Scenario 2

(c)

n=200

n=250

Scenario 3

n=300

n=150

== Scenario 2

(b)

n=200

n=250

Scenario 3

n=300

media/file6.jpg
T e T % ey e e

media/file1.png
Data: Graph G and labeling function ¢.
Result: Spanning tree T.
T < empty tree;
set residual budget B, = B, for each label ¢ € L;
sort edges of G by non-decreasing order of cost;
foreach edge {i,j} € E in non-decreasing order of cost do
if i and j are not connected in T and By > 0,V £ € ¢({i,j}) then
ad edge {i,j}to T;
1L,V ee¢({ij});
en
end
10 return T

I T I NI

media/file16.png

media/file2.png
Input: G, ¢, a, A, Q)

Output: The bes tl ound found for the BLMST problem

Initialization
Initialize M
LB =
LB =

-
=
=
~

uB pperBoundImtlahzatlon(G ¢) # Initialize upper bound
i= 1 # Initialize iteration counter
1mpr1terut10 =1

Iteration

whilei < Q) do

RLP(A, x) < InitializeLRPInstance(G, ¢, A
x* ¢ solve RLP(A, x)
B then

—~
—
N

T
»
o
N
= D
=,
=
Vv
2

1 sp =By — El]} E, Xijr Vlel
_ a(UB— LB)
L o= ZéeLSg
17 /\[max(0,A; +0sy), V/L€L
18 if (LB # LB) and (LB — LB < ¢)) or LB = UB then
19 L break
20 LB=1LB
21 if (i — A) > imprlIteration then
22 |_ a=5
3 | i =i+ 1# Increment iteration counter

24 return LB

media/file13.png
Cost

N o e s e

n=50

n=100

el Scenario 1

n=150

== Scenario 2

(a)

Cost

-—-a o

n=200

500

450

400

350

300

250

200

150

100

4_--—*

n=250 n=300

Scenario 3

W == - -

n=50

n=100

e Scenario 1

Cost

n=150

== Scenario 2

(c)

600

500

400

300

200

100

n=200

n=50

n=100

== Scenario 1

n=250

Scenario 3

n=300

n=150

== Scenario 2

(b)

n=200

n=250

Scenario 3

n=300

media/file10.jpg
IREERE R

(b)

(c)

media/file7.png
30

25 e
|
]
|
20 [|
Jd
]
h |
r [L] T- -— -— -— -— -— -— -— -— -