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Abstract: This is a continuation of our previous study on the shape parameter contained in the shifted
surface spline. We insist that the data points be purely scattered without meshes and the domain can
be of any shape when conducting function interpolation by shifted surface splines. We also endeavor
to make our approach easily accessible for scientists, not only mathematicians. However, the space of
interpolated functions is smaller than that used before, leading to sharper function approximation.
This function space has particular significance in numerical partial differential equations, especially
for equations whose solutions lie in Sobolev space. Although the Fourier transform is deeply involved,
scientists without a background in Fourier analysis can easily understand and use our approach.
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1. Introduction
Shifted surface splines are a kind of radial basis function (RBF) defined by

h(x) :=

{
(−1)⌈m⌉(|x|2 + c2)

λ
2 , λ ∈ Z+, λ odd, m = λ

2 if n is odd,
(−1)m(|x|2 + c2)

λ
2 log (|x|2 + c2)

1
2 , λ ∈ Z+, λ even, m = 1 + λ

2 if n is even,
(1)

where x ∈ Rn, c > 0; |x| stands for the Euclidean norm of x; log denotes the natural
logarithm; ⌈m⌉ denotes the smallest integer not less than m; and λ, c are constants deter-
mined by the user. The primary concern of this paper is the optimal choice of c, called the
shape parameter.

The origin and significance of shifted surface splines were discussed in Luh [1], and
we omit them here. The generalized Fourier transform of h(x) will be needed and is of
the form

ĥ(ξ) = l(λ, n)|ξ|−λ−nK̃ n+λ
2
(c|ξ|), (2)

where l(λ, n) is a constant depending on λ and n (see Luh [1]), and K̃ν(t) := tνKν(t), Kν

is the modified Bessel function of the second kind (Abramowitz et al. [2]).
Note that the odd-dimensional and even-dimensional parts of (1) share the same

Fourier transform, and the former is just the multiquadrics. This means that, in some sense,
multiquadrics are just a kind of shifted surface spline.

Based on an established theory of radial basis functions (Wendland et al. [3–6]), for
any set of data points (x1, y1), . . . , (xN , yN), where x1, . . . , xN are arbitrary points in Rn

and y1 . . . , yN are arbitrary real numbers, one can always construct a unique interpolating
function passing through these data points, with a mild requirement that x1, . . . , xN be
polynomially nondegenerate. The interpolator is of the form
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s(x) :=
N

∑
j=1

cjh(x − xj) + p(x) (3)

where c1, . . . , cN are constants to be determined, and p is a polynomial of degree ≤ m − 1.
The coefficients of p(x) are simultaneously determined by solving the system of linear
equations required by the interpolation. In this paper, we will let n = 2 and λ = 2. Hence,
m = 2, and p(x) is a polynomial of degree one.

Computationally, the most time-consuming step of the interpolation is solving the
system of linear equations. As for the quality of the interpolation, it greatly depends on the
choice of the shape parameter c. For odd dimensions, the choice of the shape parameter
has been deeply studied in Luh [7]. For even dimensions, we already have two papers
Luh [1,8], where [8] establishes a theoretically rigorous and practically useful approach for
evenly spaced data points distributed in simplices, and [1] deals with scattered data points
from functions belonging to a function space denoted by Eσ. In this paper we will focus on
another space defined as follows.

Definition 1. For any σ > 0, define

Bσ := { f ∈ L2(Rn) : | f̂ (ξ)| = 0 i f |ξ| > σ},

where f̂ denotes the Fourier transform of f .

This space plays an important role in the RBF collocation method of solving PDEs.
As pointed out in Luh [7], each function in a Sobolev space can be approximated by a Bσ

function, and each Bσ function can be approximated by a function of the form (3). Since
many important PDEs have solutions lying in a Sobolev space, one can use the RBF to
handle PDEs well, as long as the solution lies in a Sobolev space. Consequently, the choice
of the shape parameter c contained in h(x) will be very influential not only for function
interpolation, but also for numerical PDEs.

As for the choice of the shape parameter, we totally discard the trial-and-error methods
widely used by experts in this field. Instead, we predict its optimal value directly by theory.
No search is needed. Hence, no algorithm is involved. This means that finding a suitable
shape parameter in practical applications will become computationally very efficient. Of
course, the reliability of our final results will be strictly investigated by experiments.

2. Materials and Methods

Our theory is based on function interpolation. The basic idea is that if the shape
parameter c is chosen well, the interpolation error bound should be very small. The c value
minimizing the error bound is supposed to be the optimal choice. In fact, we have already
successfully established such a theory for function interpolation with a simplex domain
and interpolation points evenly spaced in the domain, as can be seen in Luh [8].

We are reluctant to refer too much to the complicated theory of [8]. However, in
order to make this paper self-contained, some necessary ingredients still have to be intro-
duced here.

Our strict theory asks that the interpolation domain is a simplex. Each n-dimensional
simplex in Rn has n + 1 vertices. Each point in the simplex can be expressed as a linear
combination of the vertices, with non-negative coefficients, called its barycentric coordi-
nates. The sum of the barycentric coordinates is equal to 1. Simplices are the fundamental
geometric objects used in [8], where the distribution of the interpolation points in a simplex
is described according to a rule so that they are evenly spaced. In the rule, there is a param-
eter k, called the degree. The number k is proportional to the number of points. All these
details can be seen in Fleming [9]. As mentioned in [8], the number of interpolation points
of degree k in a simplex is equal to the dimension of Pn

k , the space of n-variate polynomials
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of a degree less than or equal to k. In this subsection, we use N to denote this number, that
is, N := dimPn

k .
Besides simplices and the distribution of data points, two constants ρ and ∆0 should

also be mentioned. They are defined in a very complicated way and are completely
determined by n and λ in Equation (1). In order to save space, we refer the reader directly
to [8].

The interpolated functions belong to the native space Ch,m. In order to avoid a di-
gression, we refer the reader to Madych et al. [5,6] and Wendland [3] for its complicated
definition. The interpolation error of the native space functions from shifted surface splines
is governed by the following theorem.

Theorem 1. Let h be as in Equation (1). For any positive number b0, there exist positive constants
δ0, d1, C, ω, 0 < ω < 1, completely determined by h and b0, such that for any n-dimensional
simplex Q0 of diameter b0, any f ∈ Ch,m, and any 0 < δ ≤ δ0, there exists a number r satisfying
the property that 1/(3C) ≤ r ≤ b0, and for any n-dimensional simplex Q of diameter r, Q ⊆ Q0,
there is an interpolating function s(·) as defined in Equation (3), such that

| f (x)− s(x)| ≤ d1
√

δ(ω)1/δ∥ f ∥h (4)

for all x in Q, where C is defined by

C := max
{

8ρ′, 2/(3b0)
}

, ρ′ := ρ/c,

and c was defined in Equation (1). The function s(·) interpolates f at centers that are evenly spaced
points of degree k − 1 in Q, with k = ⌈ r

δ ⌉. Here, ∥ f ∥h is the h-norm of f in the native space.
The numbers δ0, d1, and ω are given by δ0 := 1/[3C(m + 1)], where m was defined in

Equation (1),

d1 := 2−7/431/2
√

l(λ, n)π−1/4√nαncλ/2
√

∆0
√

C

where λ is as in Equation (1), l(λ, n) was defined in Equation (2), αn is the volume of the unit ball
in Rn, and ω := (2/3)1/(3C).

Remark 1. In the preceding theorem, the most noteworthy parameter is δ, which appears in
Formula (4). This parameter indicates the number of data points used. The smaller δ is, the more
data points will be used. As δ → 0, the upper bound in (4) will converge to zero. Hence, δ functions
as the well-known fill distance. We cannot say they are the same, although they are quite alike.
Hence, one should be careful when using this theorem.

The error bound (4) cannot be used to choose the shape parameter c directly before its
relation with c is made transparent. For this, we will adopt the function space Bσ defined
in Definition 1, which is a subset of Ch,m.

By Corollary 2.5 of Luh [8], if f ∈ Bσ, the inequality (4) can be transformed into

| f (x)− s(x)| ≤ CBc(1+λ−n)/4
√

Cecσ/2
(

2
3

)1/(3Cδ)√
δ∥ f ∥L2 , (5)

where CB := σ(1+n+λ)/4(2π)−n
√

6nαn∆0(16π)−1m!. It can be clearly seen that the upper
bound in (5) contains a function of c. Let us denote it by MN(c). Then,

MN(c) = c(1+λ−n)/4
√

Cecσ/2
(

2
3

)1/(3Cδ)

. (6)
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For a fixed b0,

C =


8ρ
c if c0 ≤ c ≤ c1,

2
3b0

if c1 ≤ c < ∞,

where c0 := 24ρ(m + 1)δ and c1 := 12ρb0 (here, c1 is different from the c1 in (3)). Hence,

MN(c) :=


√

8ρc
λ−n−1

4 ec[σ/2+ln(2/3)/(24ρδ)] if c0 ≤ c ≤ c1,

√
2

3b0
c

1+λ−n
4 ecσ/2( 2

3
) b0

2δ if c1 ≤ c < ∞.

(7)

In fact, Formulae (5), (6) and (7) can be found in [8]. We restated them just to make
this paper easier to understand.

The graph of the MN function can be easily and efficiently sketched using Mathematica
or Matlab. A typical example is shown in Figure 1.

116 118 120 122 124
c

2.×10-61

4.×10-61

6.×10-61

MN(c)
MN curve for �=0.01

Figure 1. Here, n = 2, λ = 2, σ = 1, and b0 = 10.

We assert that for f ∈ Bσ, the optimal value of c is the value minimizing MN(c).
Although in (7) it is required that c ≥ c0, a large number of experiments have shown that
the true optimal values never lie in the interval (0, c0). Hence, we have essentially dealt
with the entire interval (0, ∞).

The main purpose of this paper is to extend our theory to arbitrary domain shapes and
scattered data points. This means that two severe requirements in Luh [8] will be relaxed.
Firstly, the interpolation domain need not be a simplex. Secondly, the centers (interpolation
points) need not be evenly spaced. The reason for this is that the crucial functions defined
in (1) and (3) are continuous, and the relaxation will greatly relieve the pain of using the
MN function to choose the c value optimally. For this, we still use the MN function defined
in (7) to choose c but interpret b0 just as the diameter of the domain and consider δ to be
just a parameter inversely proportional to the number of data points used. The remaining
task is to test this by experiments.

Another key point is that, here, the function space Bσ is just a subset of another space
Eσ adopted by Luh [1]. Hence, the error bound presented in this paper is sharper than that
of [1]. This means that the interpolation here should be more accurate than that in [1].
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3. Results
3.1. 2D Experiment

Here, we totally discard the severe restriction that the domain should be a simplex
and let it be a square in R2 with vertices (0, 0), (10, 0), (10, 10), and (0, 10). The space of the
interpolated functions is Bσ, defined in Definition 1, with σ = 0.1. The domain square is
denoted by Ω and has a diameter of 10

√
2. Hence, the parameter b0 in the MN function (7)

is equal to 10
√

2. We let λ = 2 in the shifted surface spline h(x) defined in (1). Hence, the
parameter ρ in the MN function is equal to 1 according to Definition 2.1 (b) in Luh [8]. The
interpolated function is defined by

f (x, y) :=

[
sin(σx/

√
2)

σx/
√

2

]
·
[

sin(σy/
√

2)
σy/

√
2

]

which can be easily shown to be a member of Bσ. Here, we let sin z
z := 1 if z = 0. The

interpolating function s(x) defined in (3) is now of the form

s(x, y) :=
N

∑
j=1

cjh(x − xj, y − yj) + cN+1x + cN+2y + cN+3

since the polynomial p(x) in (3) should be of degree m − 1 = 1 + λ
2 − 1 = 1 in R2.

In order to choose the shape parameter c optimally in the shifted surface spline h(x, y),
we must analyze the MN curves first. In this experimental setting, the corresponding MN
curves are presented in Figures 2–6.

In these figures, it is clearly seen that the optimal values of c tend to move to 170
and are fixed there as the δ, which is inversely proportional to the number of data points,
decreases. This strongly suggests that one should choose c = 170 as the optimal value. The
remaining task is to test this by experiments.

The test points are a 21 × 21 grid in the domain square Ω. In order to measure the
quality of the approximation, we define the root-mean-square error at the 441 points as

RMS :=

√√√√ Nt

∑
j=1

|s(xj, yj)− f (xj, yj)|2/Nt

where Nt = 441.

165 170 175 180
c

12

14

16

18

20

MN(c)
MN curve for �=0.5

Figure 2. Here, n = 2, λ = 2, σ = 0.1, and b0 = 10
√

2.
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165 170 175 180
c

3.0

3.5

4.0

4.5

5.0

MN(c)
MN curve for �=0.4

Figure 3. Here, n = 2, λ = 2, σ = 0.1, and b0 = 10
√

2.

165 170 175 180
c

0.30

0.35

0.40

0.45

MN(c)
MN curve for �=0.3

Figure 4. Here, n = 2, λ = 2, σ = 0.1, and b0 = 10
√

2.

165 170 175 180
c

0.0025

0.0030

0.0035

MN(c)
MN curve for �=0.2

Figure 5. Here, n = 2, λ = 2, σ = 0.1, and b0 = 10
√

2.
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165 170 175 180
c

1.5×10-9

2.×10-9

2.5×10-9

3.×10-9

3.5×10-9

4.×10-9

MN(c)
MN curve for �=0.1

Figure 6. Here, n = 2, λ = 2, σ = 0.1, and b0 = 10
√

2.

We use N to denote the number of interpolation points, as in (3), which are scattered
in the domain without meshes. In the process of building the interpolating function,
solving a system of linear equations is necessary. The condition number corresponding
to the linear system is denoted by COND. As will be seen, the COND is very sensitive
to the number N of data points used and the value of c. Also, as is well known, the
condition numbers in the RBF approach may be very large. The ill-conditioning in our
experiments was overcome by the arbitrarily precise computer software Mathematica
(https://www.wolfram.com/mathematica/). We always adopted enough effective digits
in the process of the computation. For example, if the condition number was 3.6 × 1081,
we adopted 120 effective digits to the right of the decimal point for each step of the
calculation. Hence, the results obtained are reliable. The time efficiency was not a problem.
In the experiments, solving a linear system always took less than one second, even if
ill-conditioning was controlled in this way.

We tried N = 40, 50, 60, 70, and 80 first. The results are presented in Tables 1–5,
where the optimal values of c are marked by the symbol *.

Table 1. N = 40, Nt = 441.

c 100 170 * 200 300 400

RMS 1.4 × 10−10 1.1 × 10−10 1.65 × 10−10 2.8 × 10−10 3.2 × 10−10

COND 1.3 × 1028 6.9 × 1031 9.5 × 1032 6.6 × 1035 6.9 × 1037

c 500 600 700 800 1000

RMS 3.5 × 10−10 3.6 × 10−10 3.67 × 10−10 3.72 × 10−10 3.8 × 10−10

COND 2.9 × 1039 4.9 × 1040 5.9 × 1041 5.1 × 1042 1.9 × 1044

c 3000 6000

RMS 3.9 × 10−10 3.9 × 10−10

COND 9.3 × 1051 6.6 × 1056

https://www.wolfram.com/mathematica/
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Table 2. N = 50, Nt = 441.

c 100 150 160 * 165 170

RMS 1.3 × 10−11 2.4 × 10−12 2.35 × 10−12 2.44 × 10−12 2.6 × 10−12

COND 4.2 × 1031 7.1 × 1034 2.3 × 1035 4.0 × 1035 6.9 × 1035

c 200 300 400 500 600

RMS 4.3 × 10−12 1.0 × 10−11 1.3 × 10−11 1.5 × 10−11 1.6 × 10−11

COND 1.3 × 1037 2.1 × 1040 4.0 × 1042 2.3 × 1044 6.3 × 1045

c 700 800 1000 3000 5000

RMS 1.67 × 10−11 1.71 × 10−11 1.76 × 10−11 1.84 × 10−11 1.85 × 10−11

COND 1.0 × 1047 1.2 × 1048 6.7 × 1049 3.0 × 1058 3.1 × 1062

Table 3. N = 60, Nt = 441.

c 100 150 160 168 170

RMS 4.7 × 10−13 1.23 × 10−13 6.56 × 10−14 2.985 × 10−14 2.259 × 10−14

COND 8.7 × 1035 3.3 × 1039 1.2 × 1040 3.2 × 1040 4.1 × 1040

c 172 175 * 180 190 200

RMS 1.652 × 10−14 1.2 × 10−14 2.0 × 10−14 4.5 × 10−14 6.57 × 10−14

COND 5.2 × 1040 7.4 × 1040 1.3 × 1041 3.9 × 1041 1.1 × 1042

c 300 500 1000 3000 6000

RMS 1.4 × 10−13 1.54 × 10−13 1.62 × 10−13 1.65 × 10−13 1.65 × 10−13

COND 4.0 × 1045 1.2 × 1050 1.4 × 1056 5.7 × 1065 6.5 × 1071

Table 4. N = 70, Nt = 441.

c 100 170 175 180 185

RMS 3.1 × 10−14 4.76 × 10−15 4.12 × 10−15 3.75 × 10−15 3.56 × 10−15

COND 4.4 × 1036 5.5 × 1041 1.0 × 1042 1.9 × 1042 3.6 × 1042

c 190 195 200 * 300 400

RMS 3.47 × 10−15 3.4 × 10−15 3.3 × 10−15 7.7 × 10−15 1.6 × 10−14

COND 6.4 × 1042 1.1 × 1043 2.0 × 1043 1.6 × 1047 9.4 × 1049

c 500 600 1000 3000 6000

RMS 2.1 × 10−14 2.4 × 10−14 2.9 × 10−14 3.2 × 10−14 3.2 × 10−14

COND 1.3 × 1052 7.5 × 1053 6.1 × 1058 2.2 × 1069 1.0 × 1076

Table 5. N = 80, Nt = 441.

c 100 150 170 * 200 300

RMS 4.4 × 10−15 1.5 × 10−15 1.0 × 10−16 2.4 × 10−16 4.2 × 10−16

COND 1.8 × 1040 6.2 × 1044 7.1 × 1045 1.0 × 1047 1.1 × 1052

c 400 500 600 700 800

RMS 1.9 × 10−15 3.0 × 10−15 3.7 × 10−15 4.2 × 10−15 4.5 × 10−15

COND 1.2 × 1055 2.6 × 1057 2.1 × 1059 8.9 × 1060 2.2 × 1062

c 900 1000 2000 3000 5000

RMS 4.7 × 10−15 4.9 × 10−15 5.4 × 10−15 5.5 × 10−15 5.6 × 10−15

COND 3.8 × 1063 4.9 × 1064 9.0 × 1071 1.6 × 1076 3.6 × 1081
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In these tables, it is clearly seen that the optimal values of c are always around 170, as
predicted by the theory. We were not surprised that the predictions were not as accurate
as those in Luh [8]. The main reason is that some strict requirements in [8] were relaxed
in this paper. However, the RMS values obtained by letting c = 170 were all very good
and very close to the smallest values. From the viewpoint of practical applications, our
approach should be quite reliable and useful.

Unfortunately, the MN curves may be misleading when δ, which indicates the number
of data points used, is too large or too small. If δ is too large, the number of data points
used is not sufficient to support the reliability of the prediction. In general, the MN curves
are reliable only when enough data points are used. However, too many data points
may also weaken the reliability, although this does not happen often, as explained in the
next subsection.

3.2. The Limitation of the MN Curve Approach

If we further decrease δ, i.e., increase the number of data points, in Figure 6, the MN
curves will tend to be flat to the right of c = 170. We show this in Figures 7–12.

165 170 175 180
c

1.×10-21

2.×10-21

3.×10-21

4.×10-21

5.×10-21

MN(c)
MN curve with �=0.05

Figure 7. Here, n = 2, λ = 2, σ = 0.1, and b0 = 10
√

2.

165 170 175 180
c

1.×10-27

2.×10-27

3.×10-27

4.×10-27

5.×10-27

MN(c)
MN curve with �=0.04

Figure 8. Here, n = 2, λ = 2, σ = 0.1, and b0 = 10
√

2.
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165 170 175 180
c

1.×10-37

2.×10-37

3.×10-37

4.×10-37

5.×10-37

MN(c)
MN curve with �=0.03

Figure 9. Here, n = 2, λ = 2, σ = 0.1, and b0 = 10
√

2.

165 170 175 180
c

1.×10-57

2.×10-57

3.×10-57

4.×10-57

MN(c)
MN curve with �=0.02

Figure 10. Here, n = 2, λ = 2, σ = 0.1, and b0 = 10
√

2.

An immediate result of this phenomenon is that the experimentally optimal values of c
may fall to the right of 170, especially when the curve is nearly horizontal there. The wider
the nearly horizontal zone is, the farther the optimal value may fall to the right of 170.

This drawback will appear if we further increase the number N = 80 of data points in
Table 5, as shown in Tables 6–9.

This limitation does cause some trouble. Hence, one should carefully analyze the MN
curves in advance when using this approach to find the optimal value of the shape parameter.
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165 170 175 180 185 190
c

2.×10-119

4.×10-119

6.×10-119

8.×10-119

1.×10-118

1.2×10-118

MN(c)
MN curve with �=0.01

Figure 11. Here, n = 2, λ = 2, σ = 0.1, and b0 = 10
√

2.

170 180 190 200
c

1.×10-120

2.×10-120

3.×10-120

4.×10-120

MN(c)

MN curve with �=0.01 but larger domain

Figure 12. Here, n = 2, λ = 2, σ = 0.1, and b0 = 10
√

2.

Table 6. N = 160, Nt = 441.

c 170 300 400 * 500 1000

RMS 6.0 × 10−24 1.2 × 10−24 5.2 × 10−25 1.9 × 10−24 8.8 × 10−24

COND 1.9 × 1062 1.8 × 1072 3.4 × 1076 7.0 × 1076 1.4 × 1090

c 2000 3000 5000

RMS 1.7 × 10−23 1.8 × 10−23 1.9 × 10−23

COND 2.6 × 10100 2.7 × 10106 9.9 × 10113
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Table 7. N = 320, Nt = 441.

c 100 170 300 400 500

RMS 1.3 × 10−30 7.9 × 10−34 1.1 × 10−37 2.9 × 10−38 2.7 × 10−38

COND 1.2 × 1081 1.9 × 1092 1.8 × 10104 2.1 × 10110 1.0 × 10115

c 600 * 700 800 900 1000

RMS 2.4 × 10−38 8.6 × 10−38 2.4 × 10−37 5.1 × 10−37 8.7 × 10−37

COND 7.2 × 10118 1.3 × 10122 8.3 × 10124 2.5 × 10127 4.1 × 10129

c 2000 3000 5000

RMS 5.1 × 10−36 7.6 × 10−36 9.6 × 10−36

COND 1.5 × 10144 5.0 × 10152 2.5 × 10163

Table 8. N = 640, Nt = 441.

c 100 170 300 400 500

RMS 8.9 × 10−42 9.2 × 10−48 1.2 × 10−53 7.8 × 10−56 1.9 × 10−57

COND 3.2 × 10109 2.9 × 10125 5.1 × 10142 3.0 × 10151 1.9 × 10158

c 600 700 * 800 900 1000

RMS 1.6 × 10−58 8.7 × 10−59 3.7 × 10−58 1.0 × 10−57 1.5 × 10−57

COND 6.8 × 10163 3.4 × 10168 4.0 × 10172 1.5 × 10176 4.1 × 10177

c 2000 3000 5000

RMS 1.9 × 10−55 3.3 × 10−55 6.6 × 10−43

COND 4.8 × 10198 1.0 × 10211 1.6 × 10224

Table 9. N = 1280, Nt = 441.

c 100 170 300 400 500

RMS 2.4 × 10−59 2.4 × 10−69 2.5 × 10−78 1.5 × 10−82 3.2 × 10−85

COND 6.5 × 10152 6.1 × 10175 2.2 × 10200 6.3 × 10212 2.8 × 10222

c 600 700 800 900 1000 *

RMS 7.7 × 10−88 4.6 × 10−88 6.6 × 10−89 2.2 × 10−89 2.0 × 10−89

COND 2.2 × 10230 9.8 × 10236 5.7 × 10242 7.0 × 10247 2.5 × 10252

c 1100 1200 2000 3000 5000

RMS 2.4 × 10−89 2.6 × 10−89 4.7 × 10−86 1.9 × 10−84 8.6 × 10−82

COND 3.2 × 10256 1.8 × 10260 1.9 × 10282 4.1 × 10298 8.1 × 10320

4. Discussion

Although we briefly mentioned the origin and significance of shifted surface splines
in the Introduction, readers interested in this kind of radial basis function should refer to
Dyn et al. [10–12] for a more detailed understanding.

In fact, each smooth (infinitely differentiable) radial basis function contains a shape
parameter whose choice is always a substantial problem. The first theoretical work dealing
with this question can be seen in Madych [13]. Although Madych could not effectively
solve this question, his effort and intelligence are worthy of respect. In 1999 [14], Rippa
introduced a trial-and-error algorithm to handle this problem. Then, Fasshauer, in his
famous book [15], pointed out that only trial-and-error methods were available. Hence,
how to theoretically predict the optimal value has been an open question in the field of
RBFs (radial basis functions).
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The function space Bσ adopted in this paper is smaller than the space Eσ adopted in
Luh [1]. Hence, the error bound is sharper and leads to more accurate function interpolation.
Another important property of Bσ is that it serves as a bridge between Sobolev-space
functions and radial basis functions (RBFs), as explained in the paragraph following
Definition 1. Hence, we are now in the position to handle PDEs whose solutions lie in a
Sobolev space.

5. Conclusions

In this paper, we successfully handled the problem of choosing the shape parameter
optimally and totally discarded the traditional time-consuming trial-and-error methods.
The optimal value of c can be directly predicted without a search. Hence, no algorithm is
involved, and the time-consuming work of solving a linear system for each trial of the c
value is completely avoided. The future challenge will probably be determining how to
apply this approach to solve partial differential equations.
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