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Abstract: Non-consensus phenomena are widely observed in human society, but more attention
is paid to consensus phenomena. One famous consensus model is the DeGroot model, and there
are a series of outstanding works derived from it. By introducing the cognition bias, resulting in
over-confidence and under-confidence in the DeGroot model, we propose a non-consensus model,
namely the DeGroot-Non-Consensus model. It bridges consensus phenomena and non-consensus
phenomena. While different in meaning, the new opinion model can reproduce the DeGroot model’s
behaviors and supply a series of interesting non-consensus states. We find frozen fragment states
for the over-confident population and time-dependent states for strong interaction strength. In
frozen fragment states, the population is polarized into opinion clusters formed by extremists. In
time-dependent states, agents jump between two opinions that only differ in the sign, which provides
a possible explanation for the swing in opinions in elections and the fluctuations in open questions in
the absence of external information. All of these states are summarized in the phase diagrams of the
self-confidence and the interaction strength plane. Moreover, the transition scenarios along different
parameter paths are studied. Meanwhile, the influence of the nodes’ degree is illustrated in the phase
diagrams and the relationship is given. The finite size effect is found in the not quite over-confident
population. An interesting phenomenon for small population sizes is that neutral populations with
large opinion variance are robust to the fluctuations induced by a finite population size.

Keywords: non-consensus state; over-confidence; under-confidence; the DeGroot model; the attraction
basin; phase diagram

MSC: 91D30; 91D15

1. Introduction

The evolution of information is one of the most important mechanisms behind various
phenomena in nature and human society. To investigate the evolution of information, opinion
dynamics provides a useful platform. The earliest model of opinion dynamics was formulated
by French scientists and was based on social power [1]. Along this line, various social influence
models have been proposed [2–4]. In the past few years, the formation of consensus has been
a major topic. The DeGroot model is an important social influence model that focuses on how
to reach a consensus [2]. In addition, conformity is regarded as an influential mechanism and
has been introduced to different opinion models, such as the Sznajd model [5], the majority
rule model [6] and so on. Another concern in opinion dynamics is the non-consensus state, in
which multiple opinions coexist with each other [7–12]. Researchers believe that it corresponds
to some settled patterns of disagreement. Friedkin and Johnsen introduced the insistence
of the initial opinion to the social influence model [7,8]. It is known as the Friedkin
and Johnsen model. In the bounded confidence model, the settled disagreement is the
bounded confidence [9,10]. Despite the coexistence of multiple opinions, opinion dynamics
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in human society also display rich time-varying phenomena, such as the conception of
opinion reversal in social media [13,14], opinion swings in elections [15,16], jump behavior
in the financial markets [17] and so on. However, there are not enough investigations
focusing on the time-varying phenomena based on the opinion model. In this paper, we
propose a non-consensus model to investigate the non-consensus states.

We consider the social influence model, a classic continuous opinion model in which
the opinions of agents are represented by real numbers x. Suppose that there are N
agents whose opinions are represented by xi; the evolution of opinions is described as
xi(t + 1) = ∑N

j=1 wijxj(t) with the weights wij ∈ [0, 1]. When ∑N
j=1 wij = 1 is required, it is

a classic consensus model [2–4]. If the value of x takes x ∈ [0, 1], it is the DeGroot model [2].
However, x represents the subjective probability distribution in the original DeGroot model
and then it directly denotes the value of the opinion [3,4]. The weight wii (also denoted
by wi) is regarded as the self-confidence of agent i. A series of recent works have named
it ’stubbornness’, to emphasize that it measures his/her stubbornness regarding his/her
opinions [18–21]. It has been shown that the stubbornness of agents can greatly affect the
evolution of opinions in the population. In particular, the zealots (or immune nodes), the
agents with w = 1, play critical roles in the evolution of opinions since they never change
their own opinions.

According to the analysis above, researchers focusing on the opinion model seem to
have reached a consensus that self-confidence plays an important role—this is supported by
social psychologists [22]. Koehler’s research shows that greater confidence allows decision-
makers to be more certain about their choices [23]. When facing a risk, individuals with high
self-confidence are more likely to make risky choices rather than be swayed by risks [24,25].
Along this line, in this paper, we wish to expand the investigation domain of the DeGroot
model to the non-consensus states by focusing on self-confidence. However, there are two
problems. The first problem is whether the constraint ∑N

j=1 wij = 1 is necessary. Our theory

is that it is not necessary. The constraint ∑N
j=1 wij = 1 is equivalent to the assumption that

∑N
i=1 xi (or the mean opinion ⟨x⟩ in the population) is a conserved quantity in the evolution.

For non-consensus states, a conserved mean opinion cannot always be held. Consequently,
the constraint wi ≤ 1 is also unnecessary. The second problem is the value of the self-
confidence wi. We find aspects of confidence, e.g., under-confidence, self confidence and
over-confidence, in psychology. They are different in their degree of self-confidence. One
measure of confidence uses the deviation of the trust p% on the judgement and the correctness
P% of the judgement [26]. Over-confidence and under-confidence are represented by P < p
and P > p, respectively. When p = P, it is self-confidence and is regarded as an ideal situation.
Thus, over-confidence and under-confidence represent a cognition bias. Inspired by this,
here, we define the agents with self-confidence wi = 1 as agents without cognition bias.
Meanwhile, the agents with wi > 1 are over-confident and those with wi < 1 are under-
confident. Thus, the value of the self-confidence wi takes [0,+∞) in this paper. A survey of the
influence of self-confidence shows that strongly positive or negative attitudes relate to strong
self-confidence [27]. In other words, it means that the over-confident agents with wi > 1
tend to become extremists and will take extreme opinions. Moreover, over-confidence is
summarized in terms of one of four psychological features of extreme political ideologies [28].
On the other hand, under-confident agents tend to have no stances of their own and will
eventually take the neutral opinion [29]. Thus, the opinion x here takes x ∈ [−1, 1], with
x = ±1, respectively, denoting the extreme opinion and x = 0 denoting the neutral opinion
(no stance). Compared to the DeGroot model with x ∈ [0, 1] and wi ∈ [0, 1], the new model
supplies a larger parameter space and opinion space to study.

This paper is organized as follows. In Section 2, the new opinion model is introduced
and its general analytical framework is given. In Section 3, numerical simulations are
performed on the nearest neighbor networks. The phase diagrams on the networks with
different mean degrees are presented. A time-dependent non-consensus region in which
the system evolves to a jump state is found. The theoretical results are well supported by
the numerical results. In the Section 4, a summary is given.
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2. Model and Some Theoretical Analysis
2.1. Dynamics Description: From Intra-Personal Information Process to the Inter-Personal
Information Process

Defining the set of agents as V = {1, 2, . . . , N} and the edges among them as E = {eij},
the population is represented by the graph G = G(V, E). The opinion of each agent i ∈ V
at time t is denoted by xi(t) and xi(t) ∈ [−1, 1]. The negative xi(t) denotes the extent
of disagreement (uncertainty), while the positive xi(t) denotes the extent of agreement
(certainty). The opinion updating rule includes two components: one is the intra-personal
information process, namely dealing with their own opinions, and the other is the inter-
personal information process, namely dealing with others’ opinions. The opinion xi(t + 1)
is the sum of these two components. Thus, the opinion dynamics are as follows:

xi(t + 1) = f (xi) + g(x1, x2, · · · , xN) (1)

in which f (xi) denotes the intra-personal information process. Here, we consider uniform
self-confidence and take f (xi) = wxi(t). The intra-personal process has one trivial equilib-
rium x∗ = 0, which is stable when |w| < 1. When w = 1, x∗ = 0 becomes a neutral one and
agents always remain at their initial opinions. When w > 1, x∗ = 0 becomes unstable and
the system will evolve to ±∞. For xi(t) ∈ [−1, 1] to be obeyed, we introduce a nonlinear
rule: if |xi(t + 1)| > 1, then xi(t + 1) = xi(t + 1)/|xi(t + 1)|. Note that this rule introduces
two new equilibria, x∗ = 1 and x∗ = −1, representing two types of extremist opinions.
Combining these together, the intra-personal information process follows a nonlinear rule.
The system will evolve to the states consisting of the extremist opinions for w > 1 and to the
state consisting of the neutral opinion x = 0 for w ∈ [0, 1). When w = 1, the system freezes
at its initial conditions. These three types of behaviors correspond to social–psychological
observations in situations with different degrees of self-confidence.

The inter-personal information process is governed by the function g(x1, x2, · · · , xN). Con-
sidering that the goal of communication is to reach an extent of consensus, we take a popular
compromise strategy [11]. Thus, the evolution of the system is described by the equation

xi(t + 1) = wxi(t) + ϵ
N

∑
j=1

aij[xj(t)− xi(t)], (2)

which is subjected to a nonlinear rule xi(t + 1) = xi(t + 1)/|xi(t + 1)| to ensure that
xi(t + 1) ∈ [−1, 1]. ϵ ∈ [0, 1] is the interaction strength between agents (or the convergence
parameter). Mediated by the inter-personal information process, interacting agents move
their opinions closer to each other by ϵ in each time step. The adjacent matrix A = [aij]
denotes the topology of the graph G(V, E) (also named the learning network). aij = 1
denotes an edge between agents i and j, while aij = 0 indicates no edge between agents i
and j. For simplicity, Equation (2) is rewritten in the matrix form

X(t + 1) = PX(t) (3)

in which P = wI − ϵL, with I the unit matrix and L the Laplacian matrix of the graph G.
The matrix P can be written as

P =


w − ϵk1 ϵa12 . . . ϵa1N

ϵa21 w − ϵk2 . . . ϵa2N
...

. . . . . .
...

ϵaN1 . . . ϵaNN−1 w − ϵkN

 (4)

where ki = ∑N
j=1 aij is the out-degree of the agent i. A consensus state is defined as

lim
t→∞

xi(t) = c, i = 1, · · · , N (5)
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in which c is a scalar number. In the matrix form, the consensus state is denoted by c1 with
the column vector 1 = [1, · · · , 1]T . Since ∑N

j=1 aij = ki, the consensus state is the eigenvector
of P with the eigenvalue w. Let N eigenvalues of P be λ1 ≥ λ2 ≥ · · · ≥ λN . The stable
consensus state requires |λi| ≤ 1, i = 1, 2, · · · , N.

The topology of the population has a key role in the evolution of opinions. In order
to guarantee the existence of a consensus in the DeGroot-Non-Consensus model taking the
DeGroot parameter, we take undirected connected graphs [3]. This means that the region w = 1
and 0 ≤ w− kiϵ ≤ 1 is the consensus region, and the consensus state c is the arithmetic average
of the initial opinions. Since the value of wij in the DeGroot model is confined to [0, 1], only two
topology characteristics can affect the consensus state. They are the connectivity determining
the existence of the consensus and the balance determining the convergence speed. Another
important topology, the degree, is paid little attention. Recently, we noted an investigation on
the role of the degree in the DeGroot model [4]. Due to the limitation wij ∈ [0, 1] in the DeGroot
model, the article eventually reduces to the discussion of the convergence speed. However, for
the non-consensus states, the situation will be entirely different. Considering the important
role of the degree in other dynamics, we focus on it here. For simplicity, we choose regular
rings with k = 2m in the following section. Alhough simple in structure, it supplies a series of
degrees to investigate and a theoretical analysis is possible. Moreover, complex structures such
as small-world networks can be derived from it.

2.2. A Detailed Analysis: Dynamics on the Nearest Neighbor Network

On a regular ring with k = 2m nearest neighbors, we have

P =



w − kϵ

m︷ ︸︸ ︷
ϵ . . . ϵ 0 · · · 0 0 · · · 0

m︷ ︸︸ ︷
ϵ . . . ϵ

ϵ w − kϵ

m︷ ︸︸ ︷
ϵ . . . ϵ · · ·

m−1︷ ︸︸ ︷
ϵ . . . ϵ

...
. . . . . . . . .

...
m−1︷ ︸︸ ︷

ϵ . . . ϵ 0 · · · 0
m︷ ︸︸ ︷

ϵ . . . ϵ w − kϵ ϵ
m︷ ︸︸ ︷

ϵ . . . ϵ 0 0 · · · 0
m︷ ︸︸ ︷

ϵ . . . ϵ w − kϵ


. (6)

N eigenvalues of the matrix P are formulated in a concise way

λ = w − 4ϵ
m

∑
j=1

sin2(
jπ
N

i), i = 0, 1, · · · , N − 1. (7)

From Equation (7), we obtain λ1 = w, which represents the homogeneous spatial mode
(the consensus state) and λN = w − maxi∈V{4ϵ ∑m

j=1 sin2( jπ
N i)}. The eigenvector related to

λN represents a spatial mode with a certain wavelength; for example, the wavelength is 2
for m = 1 and around 6 for m = 4. The stability of the consensus state requires λ1 ≤ 1 and
λN ≥ −1, i.e.,

w ≤ 1,

max
i∈V

{4ϵ
m

∑
j=1

sin2(
jπ
N

i)} ≤ w + 1. (8)

Therefore, the stability regime of the consensus state on the parameter plane of ϵ and w is
enclosed by w = 1 and w = maxi∈V{4ϵ ∑m

j=1 sin2( jπ
N i)} − 1, which are presented as the red

line and the black line in Figure 1(a1–c1), respectively. The two lines divide the parameter
plane into two parts, the consensus state region and the non-consensus state region. Here,
we take ϵc1, denoting the critical convergence when the consensus state becomes unstable
due to λN < −1, which is given by
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ϵc1(w) = w+1
maxi∈V{4 ∑m

j=1 sin2(
jπ
N i)}

. (9)

It is important to note that the consensus state becomes unstable through long-wavelength
instabilities when λ1 < 1 is first violated and through short-wavelength instabilities when
λN > −1 is first broken. Correspondingly, the dynamics in the non-consensus state region
are strongly affected by the competition of network modes related to λ1 and λN . When
λ1 > |λN |, the system evolves to a frozen state with the long-wavelength characteristic.
On the other hand, when λ1 < |λN |, the system evolves to a time-dependent state with
short-wavelength characteristics. The boundary between frozen states and time-dependent
states is determined by λ1 = |λN |, which gives the critical convergence ϵc2

ϵc2(w) = w
2 maxi∈V{∑m

j=1 sin2(
jπ
N i)}

. (10)

Finally, the parameter plane of ϵ and w is divided into three regions, the consensus state
region, the frozen state region and the time-dependent state region. The phase diagrams
on the plane of ϵ and w at k = 2, 4, 8 are presented in Figure 1(a1–c1), respectively. When
w = 1, ϵc1 merges with ϵc2, which gives

ϵc(k, N) = 1
2 maxi∈V{∑k/2

j=1 sin2(
jπ
N i)}

. (11)

The consensus state region is a trapezoid with the area S = 0.75ϵc. Thus, the size of the
consensus state region is only determined by ϵc. According to Equation (11), ϵc is a function
of N and k. The effect of degree k on ϵc is plotted in the inset of Figure 1(c1), which shows
the decrease in ϵc with the increase in k. Consequently, the area supporting the consensus
state is reduced with k too. In the next section, we will present the simulation results on the
regular ring with k nearest neighbors. Unless specified, N = 100. Every datum is taken
after 1000 transient time steps.
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Figure 1. The phase diagrams on the plane of the self-confidence w and the convergence ϵ. (a1–c1) The
theoretical results for k = 2, k = 4 and k = 8. Frozen fragment states in region I, time−dependent states
in region II and consensus states in region III. w = 1 in red, ϵc1 in black and ϵc2 in blue. The inset in (c1)
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shows ϵc against k at w = 1. (a2–c2) The numerical results with initial opinions randomly distributed
in [−1, 1] for k = 2, k = 4 and k = 8. (a3–c3) The numerical results with initial opinions randomly
distributed in [0, 1] for k = 2, k = 4 and k = 8. Different colors indicate different opinion dynamical
regions; the consensus region in blue, the frozen region in green, the region of jump states with other
opinions besides 1 and −1 in red and the region of jump states consisting of only opinions 1 and −1
in black.

3. Results and Analysis
3.1. Phase Diagrams and Opinion Dynamical States

In this section, we numerically investigate the phase diagrams of the model (2) on the
plane of ϵ and w in the range of 0 ≤ ϵ ≤ 1 and 0 ≤ w ≤ 2. The results are presented in
Figure 1(a2–c2) for the initial opinions randomly chosen from [−1, 1] and in Figure 1(a3–c3)
for the initial opinion randomly chosen from [0, 1], respectively. In these figures, the
consensus state region is marked in blue, the frozen state region is marked in green, and
the time-dependent state region is marked in red or black. The boundaries w = 1, ϵc1(w)
and ϵc2(w) are denoted by the red line, the white line and the black line, respectively. In
comparison with Figure 1(a1–c1), the simulation results in Figure 1(a2–c2) are in good
agreement with the theoretical results. However, Figure 1(a3–c3) show that there is a
minor discrepancy between the numerical and the theoretical results. Firstly, the theoretical
boundary between the frozen state region and the time-dependent state region is different
from the numerical results, which is reflected by the larger frozen state region acquired
in the simulations. Secondly, the numerical simulations show that the frozen states in
Figure 1(a3–c3) are actually the consensus state, where all agents take the opinion x = 1
(ALL 1 state). For initial opinions xi ∈ [0, 1], the discrepancy between the numerical and
theoretical results can be explained as follows. Consider the evolution of the mean opinion,
which is defined as ⟨x⟩ = ∑N

i=1 xi/N. The mean opinion is always regarded as the public
opinion. When ⟨x(t)⟩ is small, the nonlinear effect induced by the requirement x ∈ [−1, 1]
may be ignored. Consequently, Equation (2) suggests that the evolution of the mean opinion
follows ⟨x(t + 1)⟩ = w⟨x(t)⟩, which gives rise to ⟨x(t)⟩ = ⟨x(0)⟩wt. Therefore, for initial
conditions xi ∈ [0, 1], ⟨x(0)⟩ > 0 and the consensus state xi = 1 has to be reached. On the
other hand, when |λN | > λ1, the nonlinear effect on the evolution of ⟨x(t)⟩ has to be taken
into consideration, which prevents ⟨x(t)⟩ from ⟨x(t)⟩ = 1. The competition between the
linear effects and the nonlinear effects on the evolution of ⟨x⟩ leads to the expansion of the
frozen state region.

Figure 2 shows the evolution of the agents’ opinions in different parameter regions. In
the frozen state region, three typical states may be realized for arbitrary initial conditions,
the frozen fragment state with several clusters composed of opinion 1 and clusters of
opinion −1 in Figure 2a, the ALL −1 state in Figure 2b and the ALL 1 state in Figure 2c. The
transient spatial–temporal patterns in Figure 2b display a long-wavelength characteristic
due to the parameters being close to the λ1-induced instability. In contrast, the transient
pattern in Figure 2c displays a short-wavelength nature since its parameters are close
to the λN-induced instability. Figure 2d shows the evolution to a consensus state in the
consensus region where the final opinion in the state is determined by initial conditions.
In the time-dependent state region, two typical time-dependent states are presented in
Figure 2e,f. In them, the system evolves to period-2 jump states, in which there exist many
tiny opinion clusters and each agent jumps between two opinions, i.e., xi(t + 1) = −xi(t).
The two states can be distinguished by the fact that there exist other opinions besides
opinions 1 and −1 in Figure 2e, while the state in Figure 2f only includes opinions −1 and
1. The former period-2 jump state (Figure 2e exists in the time-dependent region in red in
Figure 1, while the latter period-2 jump state (Figure 2f) exists in the time-dependent region
in black. The boundary between these two period-2 jump states is given by w − ϵk = −1,
which can be obtained heuristically as follows. We reformulate Equation (2) to be

xi(t + 1) = (w − ϵk)xi(t) + ϵk⟨x(t)⟩ī (12)
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where ⟨x(t)⟩ī denotes the local mean opinion at agent i excluding xi. The first term
on the right-hand side accounts for the contribution to xi(t + 1) from agent i himself.
When w − ϵk < −1, it drives xi(t) towards ±1. The second term accounts for the joint
contributions to xi(t + 1) from the neighbors of agent i, which may balance the first term
and help agent i to reach other opinions except for 1 and −1 when w − ϵk < −1 is not held.
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Figure 2. The evolution of different opinion dynamical states at k = 8. (a) The frozen fragment state
at ϵ = 0.2 and w = 1.5. (b) ALL −1 state at ϵ = 0.13 and w = 1.13. (c) ALL 1 state at ϵ = 0.2 and
w = 1.15. (d) Consensus state at ϵ = 0.36 and w = 0.6. (e) The jump states with other opinions
besides 1 and −1 at ϵ = 0.19 and w = 0.87. (f) The jump state with only 1 and −1 at ϵ = 0.7 and
w = 1.5.

To further reveal how the model parameters impact the opinion dynamical states, we
consider the final opinions held by agents after transients. We also monitor two quantities,
σx and σT , which are defined as

σx = lim
T→+∞

1
T

∫ T

0

√√√√ 1
N

N

∑
i=1

(xi(t)− ⟨x(t)⟩)2dt

σT =
1
N

N

∑
i=1

√
1
T

∫ T

0
(xi(t)− x̄i)2 (13)

with x̄i = lim
T→+∞

1/T
∫ T

0 xi(t)dt. σx(t) measures the opinion fluctuation in space, while σT

measures the opinion fluctuation in time. The consensus state is reached when σx = σT = 0.
The frozen states require σx > 0 and σT = 0, while σx > 0 and σT > 0 are held for the
time-dependent states. The results against ϵ for the situations with different k and w are
presented in Figure 3. Generally, with the increase in ϵ from zero to 1, σT stays at zero till ϵc2
(or ϵc1) is reached for w > 1 (or w < 1), which signals the frozen states (or consensus states).
In the frozen states, nonzero σx suggests the fragment states that consist of different opinion
clusters (x = 1 or x = −1). Beyond ϵc2 (or ϵc1), σT becomes nonzero, which indicates the
time-dependent states.
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Figure 3. The transition scenarios against the convergence ϵ. (a1–c1) The transition scenarios with
w = 1.5 for k = 2, k = 4 and k = 8. (a2–c2) The transition scenarios with w = 1 for k = 2, k = 4 and
k = 8. (a3–c3) The transition scenarios with w = 0.5 for k = 2, k = 4, and k = 8. The opinions in the
final states in black, σT in blue and σx in red.

The final opinions usually fall within a small range, except for the transition between
different types of states. The number of final opinions displays non-monotonic behavior
against ϵ and, during the process, the final opinions are always symmetrical about x = 0.
Let us take over-confident agents (w > 1) as examples. As illustrated in Figure 3(a1–c1),
the number of final opinions first gradually increases from 2 with ϵ and, then, decreases
with ϵ gradually to 2 after ϵc2. The number of final opinions in the frozen states and the
range of ϵ supporting these states can be acquired based on Equation (12). As discussed
above, in the frozen states, the population is composed of opinion 1 clusters and opinion
−1 clusters. The opinions different from 1 and −1 only occur at the boundaries of these
different opinion clusters. Therefore, the opinion configurations such as (1,−1), (1, 0,−1),
(1, x,−x,−1), (1, x, 0,−x,−1), etc., are the typical ones at the boundaries between different
clusters. The appearance of the configuration (1, 0,−1) suggests the existence of a frozen
state with three opinions, while the appearance of the configuration (1, x,−x,−1) suggests
the existence of a frozen state with four opinions. Bearing these in mind, the number of
final opinions in frozen states and the range of ϵ supporting these states can be acquired
based on Equation (12). To be specific, we consider k = 2. For the configuration (1,−1),
the model (2) requires ϵ < (w − 1)/2, which signals the transition from a frozen state
with two opinions to a frozen state with three opinions. For the configuration (1, 0,−1),
the state transitions to a state with four final opinions at ϵ = w − 1. For (1, x,−x,−1),
we can obtain x = ϵ/(3ϵ + 1 − w) and the critical point at ϵ = (w − 1)/(1 − x). Since
(w − 1)/(1 − x) is higher than ϵc2 for k = 2, the transition to a frozen fragment state with
five opinions does not exist. In addition, the initial conditions play important roles in the
opinion distribution before ϵc2. Firstly, although the number of final opinions is determined
by given parameters, the distribution of agents on these opinions depends on the initial
conditions. Secondly, if the initial opinions are distributed in the range [0, 1] or [−1, 0], the
final states become the ALL 1 (ALL −1) consensus state and the frozen fragment states
with more than one opinion disappear.

3.2. Finite Size Effects

Finite size effects are a research subject in opinion dynamics when the population
size is small. In model (2), the ALL 1 and ALL −1 states are the absorbing states. Once
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these absorbing states are built, the population cannot escape from them in the absence of
external stimuli. For a small population size, the system can be trapped by these absorbing
states due to fluctuations in the evolution. To investigate the finite size effects in the
model (2), we consider the influence of the population size N on the opinion dynamics at
parameters close to the long-wavelength-induced instability of consensus states. Besides
frozen fragment states as the steady state, the absorbing states, the ALL 1 state and ALL −1
state, may be realized for uniform random initial conditions in [−1, 1] due to the finite size
effects. We measure the probability p by counting the realizations trapped in the absorbing
states for a large number of initial conditions. The results are presented in Figure 4, where
p is plotted against N. From this, we can see that increasing N decreases p. p drops to zero
when N > 80, which suggests that the finite size effects may be ignored for N = 100 used
in this work. Figure 4 also shows that there exists a critical population size Nc below which
the absorbing states are always reached. The critical population size Nc may be determined
by the second largest eigenvalue λ2 of the matrix P. According to Equation (7), Nc has to
obey the following equation:

w − 1
4ϵ

=
k/2

∑
j=1

sin2(
jπ
Nc

). (14)

25 50 75 100
0.00

0.25

0.50

0.75

1.00

1

 

 

p

N 
Figure 4. The probability p of finding the absorbing states is plotted against the population size N for
ϵ = 0.1 (black), ϵ = 0.2 (green) and ϵ = 0.3 (green). Other parameters w = 1.1 and k = 2.

It is interesting to investigate the attraction basins of the absorbing states and frozen
states for a small N where finite size effects are prominent. To explore the attraction basins
of different opinion dynamical states, we introduce the mean variance space. The mean

opinion ⟨x⟩ is defined as < x >= 1/N
N
∑

i=1
xi, which represents the public opinion. The

opinion variance σ is defined as σ =

√
1/N

N
∑

i=1
(xi− < x >)2, which represents the opinion

fluctuation in the population. The mean variance space is a low-dimensional projection of
the high-dimensional phase space of opinion dynamics. We consider the over-confident
population with w = 1.1, N = 20, ϵ = 0.2 and k = 2. The evolutions in Figure 5a display
three frozen states with five final opinions. As mentioned above, the five opinions are
symmetrical about x = 0. Since N = 20, it is easy to see that, in these frozen states,
there are six agents holding opinions other than 1 and −1 and located at the boundaries
between one opinion 1 cluster and one opinion −1 cluster. There are 11 different frozen
states distinguished by the number of agents falling into the opinion 1 cluster. Figure 5b
presents all possible states in the mean variance space, which shows that frozen states
possess large variance and a low mean. The attraction basins of the absorbing states are
presented in Figure 5c. As shown, the attraction basins of the ALL 1 state and ALL −1 state
are symmetrical about ⟨x⟩ = 0 and ⟨x⟩ = 0 may serve as the boundary between them. At
low variance, positive (or negative) initial public opinions always lead to the ALL 1 state
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(or ALL −1 state). Treating the sign of ⟨x⟩ as the inclination of the public opinion, Figure 5c
implies that the initial inclination of the public opinion determines the inclination of the
final states. Figure 5d presents the attraction basin of the frozen fragment states. As shown,
the population with ⟨x⟩ = 0 always evolves towards these frozen fragment states. For a
nonzero public opinion, the population is more likely to evolve towards fragment states if
the opinion variance is large. In particular, when σ > 0.73, all of the initial conditions will
lead to these frozen fragment states. In sum, we find that the initial conditions are highly
related to the final states for the over-confident population. It is more likely for a neutral
population with large variance to evolve into a heterogeneous population.
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Figure 5. (a) The evolution towards different final opinion dynamical states in over−confident
population with small population size. (b) The final opinion dynamical states, ALL 1 state in red,
ALL −1 state in blue and frozen fragment states in black, are presented in the mean variance space.
(c) The attraction basins of ALL 1 state (red) and ALL −1 state (blue). (d) The attraction basins of
frozen fragment states. w = 1.1, ϵ = 0.2, k = 2, and N = 20.

4. Conclusions and Discussion

In this paper, we construct a non-consensus model, namely the DeGroot-Non-Consensus
model, from a consensus model. Based on the social influence model, the new opinion model
is proposed by releasing the requirement ∑N

j=1 wij = 1 and wij ≤ 1. In the DeGroot-Non-
Consensus model, the self-confidence w is never a weight in the social influence model
but a parameter characterizing the intra-person information process. Its value is related
to the stability of the equilibrium of the intra-person information process and expanded
from [0, 1] to [0,+∞). Moreover, w can also be regarded as the stubbornness of the agent.
The most stubborn agents taking ∑N

j=1 wij = 1 in the social influence model correspond to
the agents taking w = 1 and ϵ = 0 in the new opinion model. However, the zealots in the
new opinion model are different. They are agents who tend to become extremists, denoted
by w > 1. Moreover, a nonlinear operation is introduced to describe the phenomenon in
which the opinion is limited by the human cognitive limitations around the boundaries.

The opinion dynamics on the regular rings with a series of degrees were studied
theoretically and numerically. The linear stability of the consensus state was analyzed
and the phase diagrams on the plane of self-confidence w and the convergence ϵ were
presented. The parameter plane is divided into three regimes, the consensus states, the
frozen fragment states and the time-dependent states. The consensus region is located in
the w ≤ 1 region with 0 < ϵ < ϵc1. There are two types of consensus, c = ∑N

i=1 xi(0)/N
and c = 0. The frozen region is located in the w > 1 region with 0 < ϵ < ϵc2. The rest is
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the time-dependent non-consensus region. In this region, the system evolves to a jump
state. The result shows that the non-consensus states occupy the largest parameter space
and a limited area is occupied by the consensus states. This supports the widely observed
non-consensus states in reality. The area of the non-consensus states increases with the
degree k and the convergence ϵ. Once ϵ is large enough, the population eventually evolves
to the jump state regardless of its self-confidence. This implies that the under-confident
population (w < 1) with the equilibrium of the intra-person information process x∗ = 0 can
become jumping extremists once the convergence ϵ is large enough. We also investigated
the finite size effects on opinion dynamics. We found that, for a small population size, a
neutral population with large opinion variance is robust to the fluctuations induced by the
finite population size.

In sum, the proposed opinion model is a non-equilibrium system. The origin of the
non-consensus states is not a settled disagreement pattern, such as the insistence of the
initial opinion in the Friedkin and Johnsen model, but an inner nonlinear mechanism. It
is the influence of the human cognitive limitations on opinions at the boundaries. Let
opinions represent the paradigms; the frozen fragment state can be comprehended as a
confrontation of different new paradigms. These new paradigms are caused by two factors.
One is the original stable equilibrium losing its stability, and the other is the boundary,
which can absorb the opinions x > 1 and x < −1. The research here shows that such a
phenomenon only happens in the population with w > 1. It is the population organized by
the person who has the ability to expand the opinion interval. However, without an initial
neutral public opinion, it is also difficult for it to approach the frozen fragment state. The
result is consistent with the observations in reality. We hope that the opinion model will
be helpful to understand the dynamics of scientific progress and technological evolution,
which involve a sequence of periods of stagnation, transitions and paradigm shifts.

Lastly, we focus on the assumptions and limitations of the model. There are two
main assumptions. The first assumption is that the opinion space is limited. A nonlinear
operation is introduced to ensure the assumption. The joint effect of the nonlinear operation
and wi is the origin of the non-consensus states. The nonlinear operation is regarded as
a description of the limitation of the cognition. The second assumption is the linear
relationship between wi and xi in the intra-personal information process. Actually, the
intra-information process is neither a simple process nor a single parameter process. The
operation is a simplification. Then, let us discuss the limitations and some related following
works. The first limitation is in the model itself. The DeGroot-Non-Consensus model is a
deterministic model, while the original DeGroot model is not. P in the original DeGroot
model is a stochastic matrix, while P in the DeGroot-Non-Consensus model is a Laplacian
matrix. In the following work, we will develop a corresponding probability model. The
second limitation is in the investigation of the influence of the topology. The influence of
the topology on non-consensus states is an interesting and important problem. Here, we
only consider the influence of the degree. The following work will focus on much more
complex structures such as scale-free networks and small-world networks, in which there
is a distribution of the degree. We hope that the results presented here can support related
further investigations.
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