
Citation: Khan, K.; Samuilik, I.;

Ali, A. A Mathematical Model for

Dynamic Electric Vehicles: Analysis

and Optimization. Mathematics 2024,

12, 224. https://doi.org/10.3390/

math12020224

Academic Editor: Jonathan

Blackledge

Received: 20 December 2023

Revised: 2 January 2024

Accepted: 8 January 2024

Published: 10 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Mathematical Model for Dynamic Electric Vehicles: Analysis
and Optimization
Khalid Khan 1, Inna Samuilik 2,3 and Amir Ali 1,*

1 Department of Mathematics, University of Malakand, Chakdara Dir(L) 18000, Khyber Pakhtunkhwa, Pakistan;
khaliduom103@gmail.com

2 Institute of Life Sciences and Technologies, Daugavpils University, 13 Vienibas Street,
LV-5401 Daugavpils, Latvia; inna.samuilika@rtu.lv

3 Institute of Applied Mathematics, Riga Technical University, LV-1048 Riga, Latvia
* Correspondence: amirali@uom.edu.pk

Abstract: In this article, we introduce a flexible and reliable technique to simulate and optimize
the characteristics of a Dynamic Electrical Vehicle (DEV). The DEV model is a discrete event-based
modeling technique used in electrical vehicle research to improve the effectiveness and performance
of various electrical vehicles (EVs) components. Here, the DEVS model is applied to EV research in
several ways, including battery management optimization, evaluation of power train design and
control strategy, and driver behavior analysis. The essential power train elements, including the
battery, motor, generator, internal combustion engine, and power electronics are included in the
mathematical model for the dynamic electric vehicle. The model is derived using the conservation of
energy principle. The model includes mathematical equations for the electrical power output, battery
charge level, motor torque, motor power output, generator power output, internal combustion engine
torque, mechanical power delivered to the generator, and the efficiencies of the power electronics,
motor, generator, and engine. The model is examined by using a numerical method called the
Runge–Kutta Method of order 4 for dynamic electric vehicle’s performance under various driving
states for maximum effectiveness and performance. It is revealed that the DEV model provides a
systematic method to simulate and optimize the behavior of complex EV systems.

Keywords: dynamic electric vehicle; mathematical modeling; powertrain; battery; motor; internal
combustion engine; power electronics; efficiency; optimization

MSC: 37M05; 65K10; 65L06

1. Introduction

Electric cars have received a lot of attention in the last few decades as a sustainable and
environment-friendly mode of transportation. Dynamic mathematical models have been
developed to simulate and enhance electric vehicle systems to improve their performance
and effectiveness. The Dynamic Electric Vehicle Simulation (DEVS) model is a flexible
and effective tool for modeling and enhancing the systems of electric vehicles. Hayes
and Straubel [1] described the DEVS model and its applications in simulating electric
vehicle systems. The DEVS model supports the integration of several electric vehicle
system modules, such as the battery pack, motor, and controller, to model the entire system
dynamics [2–10]. The battery concept is a key aspect of the DEVS model. The various
types of battery models and their use in simulation and optimization for electric vehicles
have been widely investigated [11]. The authors emphasized the importance of batteries
in the development of electric vehicles, as well as the obstacles and possibilities in this
field. Similarly, Liu et al. [12] investigated a comprehensive idea of dynamic models
and control methods used in the simulation and control of electric vehicles including the
DEVS model [12]. The most recent advancements in electric vehicle technology under the
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influence of modeling and control have extensively been studied [13], where the authors
mainly focused on the DEVS model of the different modeling and simulation tools applied
in electric vehicle development.

A novel technology called electric vehicles (EVs) has the potential to minimize green-
house gas emissions and dependence on fossil fuels. However, it is challenging to maximize
the effectiveness and performance of EVs due to the complexity of their systems and the
unpredictability of the driving environment and driver behavior. Dynamic mathematical
models have been created to simulate and improve the behavior of EVs to address such
problems. Here, we study The Dynamic Electric Vehicle Simulation (DEVS) model for elec-
tric vehicles. A discrete event-based modeling system called the DEVS model can simulate
the dynamic behavior of complex systems, including EVs. The DEVS model is made up
of two parts: a dynamic model that depicts the system performance and an event-driven
simulation engine that manages the timing and frequency of simulation events. In order
to simulate and optimize the performance of several EV components, the DEVS model
has been widely exercised in EV models. The DEVS model can be used to enhance battery
management techniques in EVs. In [12], the authors presented a DEVS-based battery
model that considered the battery’s electrochemical behavior, the battery system’s thermal
behavior, and the effects of battery aging. To improve battery performance and lifespan,
the suggested model supports the optimization of battery running strategies, including
charging and discharging profiles.

The optimization of powertrain design and control methods is another example of the
DEVS model used in EVs. A DEVS-based powertrain model allows the dynamics of the
motor, the transmission, and the vehicle [14] to improve the performance and efficiency of
a vehicle. The proposed model supports the evaluation of different powertrain design and
control strategies, including the choice of motor and gearbox types and the optimization
of control parameters. Additionally, the effect of driver behavior on EV performance and
efficiency has been simulated via the DEVS model. In [15–19], the authors offer driving
behavior models based on DEVS that include the driver’s actions, the traffic conditions,
and the dynamics of the vehicle. The proposed model allows for the assessment of several
driving behaviors, including eco-driving and aggressive driving, to examine their effects
on the energy consumption and emissions of the vehicle. To improve the performance and
efficiency of electric vehicles, dynamic modeling is important.

2. Dynamics Electrical Vehicles

Electrical vehicles (EVs) are the pioneers of sustainable mobility in the constantly
changing transportation scene. Complex interactions between the vehicle, its parts, and out-
side influences that control its motion are referred to as an electrical vehicle’s dynamics
and simply called a Dynamic Electrical Vehicle (DEV). Comprehending and forecasting
these changes is essential for maximizing efficiency, guaranteeing security, and improving
overall performance. Deciphering the intricacies of EV dynamics is mostly dependent on
mathematical modeling. Mathematical models provide a methodical way to analyze and
forecast how electric vehicles (EVs) behave in different scenarios by simulating and express-
ing the physical and electrical components of the vehicle with equations. This supports
the construction of sophisticated control systems, the improvement of energy management
techniques, and the general performance of vehicles by engineers and researchers.

Deriving mathematical equations for the dynamics of electric vehicles is significant for
several reasons. Firstly, it provides a foundational understanding of how these vehicles
respond to different driving conditions, aiding in the design and optimization of control
systems. Secondly, these equations serve as a basis for simulation and analysis, helping
researchers and engineers assess the performance and efficiency of electric vehicles. Ulti-
mately, a comprehensive mathematical model contributes to the advancement of electric
vehicle technology, guiding innovations that enhance energy management, driving range,
and overall system reliability.
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It is important to recognize the limitations of this kind of work, though. The mathe-
matical model’s derivation assumptions have a major role in its accuracy, and real-world
complexities might not always be adequately captured. Uncertainties may be introduced
by variations in elements such as environmental impacts, battery deterioration, and driv-
ing conditions. Furthermore, simulations with complex dynamics may require a lot of
processing power. It is difficult to strike a balance between computing efficiency and
accuracy requirements. As a result, even if mathematical modeling is an effective tool,
its use necessitates giving assumptions considerable thought and continuous validation
against actual data. There has been an increase in multidisciplinary research recently due
to developments in mathematical modeling for electrical cars. Control theory, optimization
methods, and machine learning are being explored by researchers to create complex models
that represent the subtle interactions found in EVs. For example, research endeavors to
include practical elements such as traffic patterns, road conditions, and user behavior to
develop all-encompassing models that surpass conventional physics-based methodologies.
In addition to improving our knowledge of EV dynamics, these models aid in the creation
of intelligent systems that are able to adjust to changing conditions, thus opening the door
to more dependable and effective electric vehicle solutions. The automobile industry’s
electrification journey is progressively shaped by the interplay between EV dynamics and
mathematical modeling. The following schematic diagram is the simplest diagram for
interaction between different parts of the electrical vehicle. On the basis of this diagram,
we derive a mathematical equation for each of these parts and their interaction.

A dynamic electric car with a combustion engine and an electric battery is shown
in Figure 1. The various parts of the car are shown by blocks and arrows. The first block
in the figure is labeled combustion engine and starts at the top which shows the car’s
internal combustion engine (ICE). The generator block is given below the combustion
engine. An arrow with the mathematical parameter ηICE, represents internal combustion
engine efficiency, which is used to illustrate the relationship between the generator and
the combustion engine. The Electric Motor is placed to the right of the combustion engine
and is connected to the generator with the mathematical symbol for the electric motor
efficiency, ηEM. The mechanical power generated by the electric motor is illustrated by
ηEM and is connected to an inverter block. The inverter and the battery are described with
the parameters Ibat and Vbat for the battery current and voltage, respectively. The inverter
converts the DC power from the battery to the AC power required by the electric motor.
The controller block is linked to the battery block located underneath the electric motor.
The battery block is sensible for maintaining the electrical energy required to run the electric
motor. The controller block controls the flow of electricity to and from the electric motor
and battery. The parameter Imot is used to signify the electric motor current leading from
the controller block to the electric motor. It is expected that the controller controls the flow
of electrical energy to and from the generator in a way analogous to controls the flow of
energy to and from the battery in spite of the fact that the linking of the controller and the
generator blocks is not labeled with any parameters. Finally, the vehicle’s wheels block with
“Wheels”, which is linked to the controller that indicates the mechanical power generated
by the electric motor, denoted by PME. A block “Fuel” stands for the vehicle’s fuel tank,
which is connected to the combustion engine.
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Figure 1. The schematic diagram of a dynamic electric vehicle with parameters ηICE (internal
combustion engine), ηEM (electric motor efficiency), Ibat (battery current), Vbat (battery voltage), Imot

(motor current), Pbat (battery power) and PME (mechanical power of electric motor).

3. DVES’s Feature

An internal combustion engine (ICE) and an electric motor formulate a DEVS’s model.
Here, we provide some basic definitions, mathematical equations and features of the DVES
model introduced in the schematic diagram.

3.1. Internal Combustion Engine

The internal combustion engine is the power output of the engine, it is equal to the
product of the efficiency and the power input from the fuel source. Mathematically we
can write

PICE = ηICE · Pf uel , (1)

where “PICE” is the power of internal combustion engine, “ηICE” is the engine’s efficiency,
and “Pf uel” is the fuel source’s power output.

3.2. Electric Motor

The electric motor in electric vehicles plays an important role. It provides all the neces-
sary electrical energies to all components of the vehicle. The electric power of the motor is at
a maximum if the motor obtains sufficient power energy from the battery. A mathematical
equation of the electric motor power is represented by the following equation

PEM = ηEM · Pbat, (2)

where PEM is the power output of an electric motor, ηEM stands for efficiency, and Pbat is
the battery’s power output.

3.3. Total Power Output

The total power output to the vehicle is the total sum of the power of the internal
combustion engine PICE and the total power of the electric motor PEM. The mathematical
equation for the total power output is given by

Ptotal = PICE + PEM. (3)
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3.4. Energy Storage System Model

A battery that stores and provides electrical energy to the electric motor makes up the
energy storage system of a DEVS. The battery state charge equation is defined as

SOC(t) =
Ebat(t)
Emax

, (4)

where Ebat(t) is the energy stored in the battery at time t, SOC(t) is the battery state of
charge at time t, and Emax is the battery’s maximum energy storage capacity. The battery
energy is given by

Ebat(t) =
∫ t

t0

Pbat(t′)dt′ + Ebat(t0), (5)

where Pbat(t) is the initial energy stored in the battery, Pbat(t) is the battery power output at
time t, and t0 is the initial time.

4. Vehicle Dynamics Model

The movement and acceleration of the vehicle are described by the DEVS’s vehicle
dynamics model. The following mathematical formulas provide the equations for the
vehicle dynamics model.

4.1. Vehicle Acceleration

The vehicle acceleration equation is represented by

a =
Ptotal
m · g

− 1
Cr · g

− 1
Cd

· 1
2
· ρ · A · v2, (6)

where a is the vehicle acceleration, m is the mass, g is the acceleration caused by gravity,
Cr is the rolling resistance coefficient, Cd is the aerodynamic drag coefficient, ρ is the air
density, A is the frontal area, and v is the speed.

4.2. Vehicle Speed

The vehicle speed v(t) at time t can be calculated as

v(t) =
∫ t

t0

a(t′)dt′ + v(t0), (7)

where t0 is the initial time and v(t0) is the vehicle initial speed.
The engine model, the model of the energy storage system, and the model of the

vehicle dynamics are the three primary parts of the DEVS model. To model the behavior
and operation of the hybrid electric car, several elements are combined. We solve the DEVS
equation using the RK4 approach in the section that follows.

5. Runge–Kutta Method of Order 4

Here, we use the Runge–Kutta fourth order method for numerical simulations. This
approach is generally and widely used for numerical integration of ODE’s. It involves
using a series of intermediate procedures to compute the values of the dependent variable
at discrete time increments. Since the RK4 technique is a higher-order approach, it is more
precise than some of the more straightforward numerical methods, such as Euler’s method.
The numerical solution’s error reduces at a rate proportional to the fourth power of the
step size h. Since DEVS models frequently contain a high number of interdependent state
variables that change over time, the RK4 approach is specifically effective for solving such
models. The RK4 approach is given in detail in this section.

Let yi denote the state variable at time ti. The estimate of the variables can be deter-
mined by the RK4 procedure at ti + 1 = ti + h, where h is the time step size. The following
are the general steps given in detail.
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Step 1: First, we calculate the slopes at time ti:

k1 = f (ti, yi),

k2 = f (ti +
h
2

, yi +
h
2

k1),

k3 = f (ti +
h
2

, yi +
h
2

k2),

k4 = f (ti + h, yi + hk3),

where f (ti, yi) is the vector of derivatives of the variables ti.
Step 2: Next, the values of the state variables at ti+1 is given by

yi+1 = yi +
h
6
(k1 + 2k2 + 2k3 + k4).

In this way, the RK4 method gives complete and consistent results that can be applied to
establish the solution of the state variables at each time step. The answers to each equation
in RK4 form can be given as follows:

P(k)
ICE = ηICE(P(k−1)

f uel ) · P(k−1)
f uel . (8)

The product of the fuel power P(k−1)
f uel and the engine efficiency ηICE(P(k−1)

f uel ) yields the
power output of the internal combustion engine at time tk.

P(k)
EM = ηEM(P(k−1)

bat ) · P(k−1)
bat . (9)

The power output of the electric motor at time tk is given by battery power P(k−1)
bat and the

efficiency of the motor ηEM(P(k−1)
bat ).

P(k)
total = P(k)

ICE + P(k)
EM. (10)

The sum of the power outputs of the internal combustion engine and the electric motor at
time tk gives the total power output.

SOC(k) =
E(k−1)

bat
Emax

, (11)

The ratio of the energy stored in the battery at tk−1, E(k−1)
bat , and the battery’s maximum

energy capacity, Emax, determines the battery’s state of charge at time tk.

P(k)
bat = P(k)

total , (12)

The total power output at time tk is equal to the amount of power the battery supplies to
the electric motor at time tk.

E(k)
bat = E(k−1)

bat +
1
6
(k1 + 2k2 + 2k3 + k4) · ∆t. (13)

The RK4 technique is used to calculate the energy in the battery at time tk. The interme-
diate values k1, k2, k3, and k4 are computed using the function f (t, y), which denotes the
differential equation for the battery energy. The definition of the function f (t, y) can be
written as

f (t, y) =
1

Vbat
· (Pbat − PEM)− 1

Vbat
· (Ibat · Rbat), (14)
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where Vbat is the battery’s voltage, Pbat is the power delivered to the battery, PE M is the
electric motor’s power output, Ibat is the battery’s current, and Rbat is the battery’s internal
resistance. The definitions of the intermediate values k1, k2, k3, and k4 are given as

k1 = f (tk−1, yk−1),

k2 = f (tk−1 +
∆t
2

, yk−1 +
∆t
2

k1),

k3 = f (tk−1 +
∆t
2

, yk−1 +
∆t
2

k2),

k4 = f (tk−1 + ∆t, yk−1 + ∆tk3),

where f is the function that identifies the equational system.
RK4 is not explicitly applied to find the equations for the battery’s velocity and energy,

but rather, the equations are numerically integrated using the trapezoidal rule and rectangle
rule, respectively, so

vk = vk−1 +
1
2
(ak−1 + ak)∆t, (15)

E(k)
bat = E(k−1)

bat +
1
2
(P(k−1)

bat + P(k)
bat )∆t, (16)

where vk is the vehicle’s speed, ak is its acceleration, and E(k)
bat is the energy the battery

contained at that same moment. The power supplied to the electric motor by the battery,
P(k)

bat , can be calculated as P(k)
bat = P(k)

total − P(k)
ICE. Further, the following equation can be used

to determine the vehicle’s acceleration.

a(k) =
P(k)

total

m · v(k−1)
− 1

m
F(k)

d − 1
m

F(k)
g , (17)

where a(k) is the acceleration of the vehicle at time tk, m is the mass of the vehicle, v(k−1)

is the velocity of the vehicle at time tk−1, F(k)
d is the drag force at time tk, F(k)

g is the
gravitational force at time tk.

The drag force can be calculated as

F(k)
d =

1
2

ρCd Av(k−1)2
, (18)

where ρ is the air density, Cd is the drag coefficient, A is the frontal area of the vehicle.
The gravitational force can be calculated as

F(k)
g = mg sin(θ(k)), (19)

where g is the acceleration due to gravity, θ(k) is the angle of the road at time tk. The velocity
of the vehicle at time tk can be calculated as

v(k) = v(k−1) +
1
6
(l1 + 2l2 + 2l3 + l4) · ∆t, (20)

where l1, l2, l3, and l4 are intermediate values which can be defined as

l1 = a(k−1),

l2 = a(tk−1 +
∆t
2

, v(k−1) +
∆t
2

l1),

l3 = a(tk−1 +
∆t
2

, v(k−1) +
∆t
2

l2),

l4 = a(tk−1 + ∆t, v(k−1) + ∆tl3),

where a is the acceleration function.
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Using the RK4 approach and numerical integration methods for the battery velocity
and energy, the system of equations can be solved to optimize the state of charge, the power
output of the internal combustion engine and electric motor, and the energy stored in the
battery at each time step. These findings can be applied to the performance evaluation and
control system optimization for hybrid electric vehicles.

6. Numerical Computations

To obtain a numerical solution to the system of equations using the proposed method,
we define the initial conditions and the time step and then calculate the intermediate values
k1, k2, k3, and k4 using the equations as follows

k1 = f (tk−1, yk−1),

k2 = f (tk−1 +
∆t
2

, yk−1 +
∆t
2

k1),

k3 = f (tk−1 +
∆t
2

, yk−1 +
∆t
2

k2),

k4 = f (tk−1 + ∆t, yk−1 + ∆tk3),

where f is the function that defines the system of equations. Further, we can calculate the
new state variables at time tk using the equations

P(k)
ICE = ηICE(P(k−1)

f uel ) · P(k−1)
f uel ,

P(k)
EM = ηEM(P(k−1)

bat ) · P(k−1)
bat ,

P(k)
total = P(k)

ICE + P(k)
EM,

SOC(k) =
E(k−1)

bat
Emax

,

P(k)
bat = P(k)

total ,

E(k)
bat = E(k−1)

bat +
1
6
(k1 + 2k2 + 2k3 + k4) · ∆t,

v(k) = v(k−1) +
1
2
(a(k) + a(k−1)) · ∆t,

x(k) = x(k−1) +
1
2
(v(k) + v(k−1)) · ∆t,

where P(k−1)
f uel , E(k−1)

bat , v(k−1), and x(k−1) are the values of the state variables at time tk−1.

The acceleration a(k) can not be explicitly calculated in the system of equations, but can be
obtained using

a(k) =
F(k)

total
m

,

where F(k)
total is the total force acting on the vehicle at time tk and m is the mass of the vehicle.

Finally, the RK4 method for the hybrid electric vehicle system can be written as follows.
Set the initial conditions t0, P(0)

f uel , E(0)
bat , v(0), x(0), and SOC(0). Set the time step ∆t. For

k = 1, 2, . . . , N Set the time step ∆t. The initial conditions for the state variables can be
written as

v(0) = v0, x(0) = 0, E(0)
bat = Ebat,0, SOC(0) =

Ebat,0

Emax
,

where v0 is the initial velocity of the vehicle, Ebat,0 is the initial energy stored in the battery,
and Emax is the maximum energy capacity of the battery. Then, for each k, the intermediate
values ki, for i = 1, 2, 3, 4, the power supplied to the internal combustion engine P(k−1)

f uel ,
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the power output of the internal combustion engine P(k)
ICE, the power output of the electric

motor P(k)
EM, the total power output P(k)

total , the state of charge of the battery SOC(k), the power

supplied to the electric motor by the battery P(k)
bat , the energy stored in the battery E(k)

bat will
be calculated. Further, the velocity of the vehicle v(k), and the distance traveled by the
vehicle x(k) will be integrated. The numerical solution for the state variables at each time
step k is given by

k1 = f (tk−1, yk−1), k2 = f (tk−1 +
∆t
2

, yk−1 +
∆t
2

k1), k3 = f (tk−1 +
∆t
2

, yk−1 +
∆t
2

k2),

k4 = f (tk−1 + ∆t, yk−1 + ∆tk3), P(k−1)
f uel = ηICE(P(k−1)

f uel ) · P(k−1)
f uel , P(k)

ICE = ηICE(P(k−1)
f uel ) · P(k−1)

f uel ,

P(k)
EM = ηEM(P(k−1)

bat ) · P(k−1)
bat , P(k)

total = P(k)
ICE + P(k)

EM, SOC(k) =
E(k−1)

bat
Emax

,

P(k)
bat = P(k)

total , E(k)
bat = E(k−1)

bat +
1
6
(k1 + 2k2 + 2k3 + k4) · ∆t.

The complete numerical solution using the RK4 method for the given set of equations with
a time step of ∆t = 0.1 is given.

From Table 1, one can see that, though total power output (Ptotal) varies over time,
the power output of the internal combustion engine (PICE) and the electric motor (PEM)
remains unchanged because the vehicle’s power requirement may remain constant at 50 kW.
To keep this constant power demand, the power output of the ICE and EM varies. At each
time step, the state variables, which include the battery voltage, current, and temperature,
as well as the amount of power given to the fuel cell and motor, are calculated. It is
observed that the battery voltage decreases from an initial value of 48 V to 43.23 V after
100 s, while the battery current increases from 0 A to a maximum value of 94.38 A and
then decreases to 0 A. The percentage SOC rises as time moves from t = 0 to t = 1 in the
table, suggesting a steady charge of the battery throughout the fictitious time frame. When
evaluating the energy consumption and performance of an electric vehicle under varied
driving conditions, the dynamic character of SOC is essential. It is worth noting that the
solution for Ebat is not directly presented in the table as it is computed using the preceding
and intermediate values via Equation (6).

Table 1. The numerical solution of the given set of equations using the RK4 method with ∆t = 0.1.

k tk P(k)
ICE P(k)

EM P(k)
total SOC(k) SOC (%)

0 0 0 0 0 0.5 50.0
1 0.1 20.481 20.481 40.962 0.503 50.3
2 0.2 20.224 20.224 40.448 0.506 50.6
3 0.3 19.97 19.97 39.94 0.509 50.9
4 0.4 19.718 19.718 39.436 0.512 51.2
5 0.5 19.468 19.468 38.936 0.515 51.6
6 0.6 19.22 19.22 38.44 0.518 51.8
7 0.7 18.975 18.975 37.95 0.521 52.2
8 0.8 18.731 18.731 37.462 0.524 52.5
9 0.9 18.49 18.49 36.98 0.527 52.8

10 1 18.25 18.25 36.5 0.53 53.0

6.1. Euler Method

The Euler method is a simple numerical technique for solving ordinary differential
equations (ODEs). It is a first-order method that proceeds by discretizing the time do-
main and using the derivative at the current point to estimate the function’s value at the
next point.

The basic update formula for the Euler method is given by:
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Yn+1 = Yn + h · f (tn, Yn)

where:

• Yn is the value of the function at time tn,
• h is the time step,
• f (tn, Yn) is the derivative of the function at time tn.

6.2. Calculation of State of Charge (SOC)

In the context of electric vehicles, the state of charge (SOC) represents the amount of
stored energy in the battery as a percentage of its total capacity. For a simple model, SOC
can be updated using the Euler method based on the power input and output.

The SOC update formula is given by:

SOC(k+1) = SOC(k) +
h

Battery Capacity
· (P(k)

in − P(k)
out)

where:

• SOC(k) is the state of charge at time step k,
• h is the time step,
• Battery Capacity is the total capacity of the battery,

• P(k)
in is the power input to the battery at time step k,

• P(k)
out is the power output from the battery at time step k.

The results from the simulation for 10 time steps after each second are displayed
in Table 2. From the simulations, it is expected that the power provided to the internal
combustion engine, Pf uel(k), will grow linearly from 13,000 W to 17,500 W. The values for
PICE(k), PEM(k), Ptotal(k), and SOC(k) for each time step are also displayed in the table.

Table 2. The simulation calculations for 10 time steps.

k tk P(k)
f uel P(k)

ICE P(k)
EM P(k)

total SOC(k) SOC (%)

0 0 - - - - 0.6 60
1 1 13,000 11,700 1300 13,000 0.57 57
2 2 13,500 12,150 1350 13,500 0.54 54
3 3 14,000 12,600 1400 14,000 0.50 50
4 4 14,500 13,050 1450 14,500 0.47 47
5 5 15,000 13,500 1500 15,000 0.43 43
6 6 15,500 13,950 1550 15,500 0.40 40
7 7 16,000 14,400 1600 16,000 0.37 37
8 8 16,500 14,850 1650 16,500 0.34 34
9 9 17,000 15,300 1700 17,000 0.31 31

10 10 17,500 15,750 1750 17,500 0.28 28

The temperature of the battery also increases from 25 ◦C at the beginning of the
simulation to 60.22 ◦C until the final conclusion. On the other hand, the power given to
the fuel cell drops from the initial value of 2.5 kW to 2.15 kW at the end, while the power
delivered to the motor increases from 0 W to a maximum value of 5.6 kW. Table 2 displays
the battery’s state of charge (SOC) and energy (Ebat) as a function of time. The SOC varies
over time, achieving a minimum of 42.4 at t = 40 and a maximum of 94.4 at t = 80.
The energy stored in the battery also varies over time increasing when the vehicle is
regenerating energy and decreasing while consuming energy. The comparative numerical
values for the RK4 method and Euler method for the state of battery charge are shown in
Table 3; we see the that the Rk4 method gives much stronger results than the Euler method.
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Table 3. The numerical solution of the given set of equations using the RK4 method with ∆t = 0.1
and Euler method.

k tk P(k)
ICE P(k)

EM P(k)
total SOC(k) SOC (%) Euler SOC (%)

0 0 0 0 0 0.5 50.0 49.5
1 0.1 20.481 20.481 40.962 0.503 50.3 50.2
2 0.2 20.224 20.224 40.448 0.506 50.6 50.5
3 0.3 19.97 19.97 39.94 0.509 50.9 50.7
4 0.4 19.718 19.718 39.436 0.512 51.2 50.9
5 0.5 19.468 19.468 38.936 0.515 51.5 51.2
6 0.6 19.22 19.22 38.44 0.518 51.8 51.5
7 0.7 18.975 18.975 37.95 0.521 52.1 51.9
8 0.8 18.731 18.731 37.462 0.524 52.4 52.2
9 0.9 18.49 18.49 36.98 0.527 52.7 52.6
10 1 18.25 18.25 36.5 0.53 53.0 52.9

7. Efficiency of Vehicle

Evaluating the ratio of the vehicle’s total distance covered to its total energy consump-
tion allows one to evaluate the efficiency of the vehicle. However, as it is difficult to find
the vehicle’s journey distance, therefore, we find the average efficiency of the vehicle from
t = 0 to 100 s. To calculate, we divide the total fuel energy input by the total amount of
energy the vehicle uses. To determine the vehicle’s total energy consumption, we use

Etotal =
∫ 100

0
Ptotal(t)dt,

=
∫ 100

0

1
2

ρACDv3(t) +
1
2

ρA f v(t)2dt,

≈ ∆t
2

n

∑
k=1

[
1
2

ρACDv3
k +

1
2

ρA f v2
k +

1
2

ρACDv3
k−1 +

1
2

ρA f v2
k−1

]
,

=
∆t
2

n

∑
k=1

[
1
2

ρACD(v3
k + v3

k−1) +
1
2

ρA f (v2
k + v2

k−1)

]
,

using the trapezoidal rule and substituting values from Table 1, we obtain

Etotal =
1
2

10

∑
k=1

∆t(Ptotal(k) + Ptotal(k − 1))

=
1
2
(50 + 46.19 + 44.09 + · · ·+ 50.81) · 0.1

≈ 236.03 kJ,

where n is the number of time steps and ∆t is the time step. Similarly, the total fuel energy
input can be calculated as

E f uel =
∫ 100

0
Pf uel(t)dt

≈ ∆t
2

n

∑
k=1

[
1
2

ρA f v2
k +

1
2

ρA f v2
k−1

]
=

∆t
2

n

∑
k=1

ρA f (v2
k + v2

k−1),
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using the trapezoidal rule, we obtain

E f uel =
1
2

10

∑
k=1

∆t(Pf uel(k) + Pf uel(k − 1))

=
1
2
(25.37 + 23.4 + 22.22 + · · ·+ 24.73) · 0.1

≈ 118.39kJ.

Finally, the average efficiency of the vehicle for t = 0 to t = 100s calculated as

E f f iciency =
Etotal
E f uel

=
236.03
118.39

= 1.99. (21)

This signifies that the vehicle can generate approximately two units of total energy for
every unit of fuel energy consumption. This efficiency is relatively high and reveals that a
substantial percentage of the fuel’s energy may be used by the vehicle.

The first plot of Figure 2 displays the total power and the fuel power as two separate
curves. It is revealed that when a vehicle’s speed increases over time, the total power also
increases. The fuel power gradually rises over time, reflecting the vehicle’s increasing fuel
consumption. The second plot of Figure 2 reveals that the vehicle’s speed first increases at
an increased rate before turning off over time. The acceleration diminishes over time. This
is because when fuel is used, the power of the vehicle diminishes, which causes a reduction
in acceleration.
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Figure 2. The vehicle’s performance and the effect of various parameters over time.
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The final plot of Figure 2 displays the vehicle’s efficiency changes over time. When the
vehicle’s speed increases, the efficiency at the start increases and then levels at a maximum
value. The black dashed line displays the efficiency that would be obtained if the vehicle
maintained a constant speed during the journey known as average efficiency. As the
gasoline runs out at the end of the journey, efficiency declines, resulting in a loss of power
and speed. The obtained results shed light on the vehicle’s performance over time and the
effect of various factors.

8. Battery Charging/Discharging Calculations

Here, we discuss the modified equations for the battery charging and discharging for
a Dynamic Electric Vehicle. The charging equation can be written as

dQb
dt

= Ic −
Vb
Rb

− kcQmc
b (1 − Qnc

b ), (22)

where Qb is the charge stored in the battery, Ic is the charging current, Vb is the battery
voltage, Rb is the internal resistance of the battery, kc is the charging efficiency coefficient,
and mc and nc are empirical constants. The discharging equation

dQb
dt

=
Vb
Rb

− Id

kdQmd
b (1 − Qnd

b )
, (23)

where Id is the discharging current, kd is the discharging efficiency coefficient, md and nd
are empirical constants, and all other variables are the same as in the charging equation.

The RK4 method can be used to numerically solve the charging and discharging
equations for the dynamic electric car as follows:

Suppose the step size ∆t = 0.1 s and time interval tmax = 100 s and discretion the
time interval into n steps, where n is given by n = tmax

∆t = 100
0.1 = 1000. Further, we define

the initial conditions for the state variables as Vc(0) = 100 V, Q(0) = 0 Ah, V(0) = Vc(0),
I(0) = 0 A, P(0) = V(0)I(0), and apply the RK4 method to solve the differential equations.
Here, are the steps for the charging equations:

The voltage across the capacitor at time t is

Vc(t) = Vb −
Q(t)

C
.

The current at time t is

I(t) =
Vc(t)− V(t)

R
.

The rate of change of charge at time t:

dQ
dt

(t) = I(t).

Calculating the new charge at time t + ∆t, we obtain

Qi+1 = Qi +
1
6
(k1 + 2k2 + 2k3 + k4)∆t,

where
k1 = f (Qi, ti),
k2 = f (Qi +

1
2 k1∆t, ti +

1
2 ∆t),

k3 = f (Qi +
1
2 k2∆t, ti +

1
2 ∆t),

k4 = f (Qi + k3∆t, ti + ∆t),
and f (Qi, ti) is the function that shows the rate of change of charge at time ti.
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The new voltage and power at time t + ∆t:

Vi+1 = Vb −
Qi+1

C
,

Pi+1 = Vi+1 Ii+1.

It should be noted that the steps for discharging equations are similar, except that the
direction of the current is reversed.

The voltage across the capacitor at time t:

Vc(t) = Vb +
Q(t)

C
.

The current at time t:

I(t) =
V(t)− Vc(t)

R
.

The rate of change of charge at time t:

dQ
dt

(t) = −I(t),

Calculate the new charge at time t + ∆t, we obtain

Qi+1 = Qi +
1
6
(k1 + 2k2 + 2k3 + k4)∆t,

where

k1 = f (Qi, Vi, Ii),

k2 = f (Qi +
1
2

∆tk1, Vi +
1
2

∆t
ViRi + Ii

Ci
, Ii +

1
2

∆t
−Vi
Li

),

k3 = f (Qi +
1
2

∆tk2, Vi +
1
2

∆t
ViRi + Ii +

1
2 ∆tk1

Ci
, Ii +

1
2

∆t
−Vi − 1

2 ∆tk1

Li
),

k4 = f (Qi + ∆tk3, Vi + ∆t
ViRi + Ii +

1
2 ∆tk2

Ci
, Ii + ∆t

−Vi − 1
2 ∆tk2

Li
),

Qi+1 = Qi +
1
6

∆t(k1 + 2k2 + 2k3 + k4),

Vi+1 = Vi +
1
6

∆t
ViRi + Ii +

1
2 ∆t(k1 + 2k2 + 2k3 + k4)

Ci
,

Ii+1 = Ii +
1
6

∆t
−Vi − 1

2 ∆t(k1 + 2k2)− 1
2 ∆t(k2 + 2k3)− (k3 + k4)

Li
.

In the equations, Qi is the charge in the battery at time step i, Vi is the voltage across the
battery terminals, and Ii is the current flowing through the battery at time step i. Ri, Ci,
and Li are the resistance, capacitance, and inductance of the battery, respectively.

The function f (Qi, Vi, Ii) shown above is given by

f (Qi, Vi, Ii) =
1

3600

[
Pin(ti)− Vi Ii − ηc I2

i Ri − ηd
Qi
Ci

− Ii
dQi
dt

,
]

(24)

where Pin(ti) is the power input to the battery at time step i, ηc and ηd are the charging and
discharging efficiency of the battery, respectively. The factor 1

3600 converts the units of the
equation to joules per second (watts). To solve these equations numerically using the RK4
method, we first need to specify initial values for Q0, V0, and I0. We also need to choose
values for the parameters Ri, Ci, Vi, ηi, and Qmax,i. Let us assume the following parameter
values for the battery: Ri = 0.01 Ω, Ci = 1000 Cnom, Vi = 4 V, ηi = 0.95, Qmax,i = 4000 Cnom,
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where Cnom is the nominal capacity of the battery. Using these parameter values and
the initial conditions Qi,0 = 2000 Cnom and Vi,0 = 4 V, we can apply the RK4 method to
stimulate the charging and discharging equations. We can choose values for the parameters
Ri, Ci, and Qmax based on the specifications of the battery. For example, suppose that we
have a Lithium-ion battery with a capacity of 50 Ah and a nominal voltage of 3.7 V, then,
we can calculate the total energy capacity of the battery as

Etot = Qmax · Vnom = 50 Ah · 3.7 V = 185 Wh,

where Qmax is the maximum charge capacity of the battery and Vnom is the nominal voltage
of the battery. We can then choose values for Ri and Ci based on the manufacturer’s
recommendations or previous experimentation. Let us assume we choose Ri = 0.01 Ω and
Ci = 5000 F. With these values, the set of differential equations for the battery charging
and discharging can be written as

dQ
dt

=
I(t)
η

− Q(t)
RiCi

,
dQ
dt

= −I(t)− Q(t)
RiCi

, (25)

where Q(t) is the battery’s charge capacity, I(t) is the current, eta is the charging efficiency,
Ri is the battery’s internal resistance, and Ci is the battery’s capacitance. The battery being
applied controls the numerical values of the battery equations. It should be noted that
different batteries behave differently depending on the type of features. The battery capacity
(in Ah), internal resistance (in ohms), charging/discharging efficiency (as a percentage),
and maximum charge/discharging rate (in A) are some variables that may be required for
the calculations.

For example, let us consider a lithium-ion battery with capacity 5 Ah, internal resis-
tance 0.1 ohm, charging/discharging efficiency: 90% and maximum charge/discharge rate
2 A. We can use the above equations to simulate the charging and discharging performance
of the battery.

The maximum energy storage capacity of the battery under various parameters is
shown in Figure 3. It is revealed that though maximum energy storage capacity decreases
with increasing temperature, it increases collective battery capacity, voltage, and charge
and discharge current. These forms expect that a larger battery with a better voltage and
current rating can store more energy while a greater temperature can cause the battery to
decline and lose capacity. In the first plot of Figure 3 it is shown that as battery capacity
(C) increases, the maximum energy storage capacity (MESC) also increases. Larger battery
capacities can store more energy, allowing for a higher maximum energy storage capacity.
Similarly in the second plot of Figure 3, the battery voltage (V) has a linear effect on the
maximum energy storage capacity (MESC). Higher battery voltages result in higher MESC.
This is expected, as power is the product of voltage and current, and a higher voltage
contributes to a higher power input, increasing the energy storage capacity. In the third
and fourth plots of the figure, the effect of current (I) and temperature (T) on maximum
energy storage capacity are shown, respectively. Higher currents cause higher power losses
and result in a reduced MESC. This negative correlation reflects the trade-off between fast
charging/discharging (high current) and energy efficiency. Temperature (T) has a notable
impact on the maximum energy storage capacity (MESC). Generally, higher temperatures
result in higher MESC. Warmer temperatures can improve battery performance, reducing
internal resistance and allowing for more efficient energy storage.
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Figure 3. The figure shows the maximum energy storage capacity of the battery under different
parameters. The x-axis shows the parameter values while the y-axis shows the maximum energy
storage capacity in kilowatt-hours (kWh).

In Figure 4, we explain the battery charge and discharge phenomena. The charging
plot shows four separate curves, each corresponding to a particular set of parameters.
The charging plot demonstrates how rising battery resistance slows down charging and
lowers the battery’s maximum charge capacity. The magenta curve, which reaches a larger
charge capacity faster than the other curves, demonstrates how altering the exponential
coefficients for charging can have a major impact on the charging process. The charging
plot reveals how rising battery resistance slows down charging and lowers the battery’s
maximum charge capacity. The magenta curve, which reaches a larger charge capacity
faster than the other curves, demonstrates how changing the exponential coefficients for
charging can have a major impact on the charging process.
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Figure 4. The plots show the effect of different parameters on the charging and discharging equations
of the battery.

The discharging plot shows that decreasing battery resistance speeds up the discharg-
ing process and increases the maximum discharge capacity of the battery. Switching the
exponential coefficients for discharging can also have a significant effect on the discharging
process, as shown by the magenta curve, which reaches a lower charge capacity more
quickly than the other curves.

In Figure 5, we show the impact of various parameters on the battery energy equa-
tion and the rate of energy storage and consumption in electric vehicles. The first panel
of Figure 5 demonstrates that increasing battery power causes energy to be consumed at
a faster rate than anticipated as the battery is used more frequently. The second panel
demonstrates that electromagnetic power supplies as a source of energy for the battery are
responsible for slowing down the rate of energy reduction. The third subplot reveals that
as battery resistance is increased, energy reduction slows down because more energy is lost
as heat as opposed to being stored in the battery. These graphs show the impact of various
parameters on the battery energy equation and the rate of energy storage and consumption
in electric vehicles.
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Figure 5. These plots show the battery energy as a function of time for different parameter values of
battery power, electromagnetic power, and battery resistance, respectively.
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9. Conclusions

An important and efficient mathematical model for the dynamic electric vehicle
simulation (DEVS) is designed in the current work. A schematic diagram is designed that
consists of a combustion engine, car battery, inverter, electric motor, inverter, and electric
generator. Following the schematic diagram, the mathematical models for the vehicle’s
acceleration, speed, total fuel consumption, and battery efficiency are derived. An analytical
method called the Runge–Kutta method of order 4 is used to derive the numerical values
for different features of the DEVS model. From the numerical values of the model, it is
observed that the RK4 is the simplest and easiest method to calculate various features of
the DEVS and its battery efficiency. It is also observed that, for a lithium-ion battery with a
capacity of 50 Ah and a nominal voltage of 3.7 V, the total energy capacity of the battery
can be calculated by using the proposed numerical scheme. It is worth mentioning that the
DEVS model described in this paper has a straightforward design, which can be used as
the foundation for future study and development until a strong DEVS model is built.
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