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Abstract: Completing traffic data is a basic requirement for intelligent transportation systems.
However, completing spatiotemporal traffic data poses a significant challenge, especially for high-
dimensional data with complex missing mechanisms. Various completion methods targeting different
missing mechanisms have showcased the superiority of tensor learning by effectively characterizing
intricate spatiotemporal correlations. In this study, a novel tensor completion framework, known as
the multi-source tensor completion method for data fusion, is proposed. This framework incorporates
passenger transfer relationships between buses and subways into subway data completion, enhancing
the data completion accuracy. Moreover, by combining bus transfer passenger flow data with other
data dimensions, such as the different road sections, time intervals, and days, an innovative 4D
low-rank tensor completion data framework was obtained. In addition, to boost the completion accu-
racy, a truncated 𝓁2,p norm optimization model was derived. This model enhances the non-convex
performance of the objective function throughout the tensor completion process. The results highlight
the superiority of the proposed completion method, leveraging fused subway/bus data over other
completion methods that rely solely on subway data.

Keywords: low-rank tensor completion; missing data; intelligent transportation system; data fusion

MSC: 14N07

1. Introduction

In data-driven applications, robust and accurate data completion is of great impor-
tance [1]. Data fusion, achieved by combining data from multiple sources, can decrease
the uncertainty of results [2–5]. For instance, Roy et al. improved vehicle tracking and
detection performance under non-line-of-sight (NLOS) image and non-image modalities
by combining multiple state-of-the-art fusion strategies [6]. Moreover, Senel et al. fused
data on the object list level from distributed vehicle sensors using multiple sensors cooper-
atively [7]. In addition, Chen et al. fused traffic flow, occupancy, and recreational vehicle
speed data and dynamically trained the fused data using a dynamic backpropagation (PB)
fusion method [8]. Moreover, Lin et al. improved road traffic speed prediction by fusing
traditional speed sensor data with cross-domain novel “sensor” data [9]. As for Zißner et al.,
they introduced the data fusion on intelligent traffic system (DataFITS), which collected
four data types from seven sources over nine months and fused them in a spatiotemporal
domain, leading to significant improvements in road coverage [10]. The results showed
that DataFITS significantly increased the road coverage by 137% and improved the road
information quality by up to 40%. Moreover, these studies demonstrated that the multi-
source data could provide more information from different dimensions, thereby enhancing
the quality of the data analysis.

Considering that traffic data include various multi-source and heterogeneous data,
more data-fusion methods are required. Currently, classical data-fusion methods include
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Kalman filtering, Bayesian networks, Dempster–Shafer (D–S) evidence theory, neural net-
works (NNs), fuzzy theory, and voting methods. These techniques have already been
applied in vehicle positioning, traffic event recognition, traffic event prediction, and traf-
fic guidance in the transport sector. Referring to existing studies, Kalman filtering and
D–S evidence theory are more commonly used. In recent years, with the advancement
of artificial intelligence (AI), some machine learning methods, such as recurrent neural
networks, convolutional neural networks, and graph neural networks, have also been
widely applied in traffic analysis, achieving high success rates in predicting traffic flow [11].

For instance, Ji et al. encoded each feature in the spatial and temporal dimensions and
considered data directly related to flow as the inputs for a graph convolutional network
(GCN) [12]. Furthermore, Satish et al. proposed a multidimensional k-means++ data-
fusion method, merging attribute values into a single or very few dimensions [13]. In
addition, Zhang et al. introduced a data-fusion method based on Bayesian fusion rules [14].
Considering the relationships between multiple traffic factors from a system perspective,
this method fuses traffic speeds from different data sources, based on prior probabilities,
while using the high-order multivariate Markov model. Nevertheless, the long training time
of NNs, the model-building complexity, and the dimensionality issues are still difficulties
existing within fusion methods [15].

Moreover, a tensor serves as a natural mathematical representation of high-dimensional
data. Drawing inspiration from compressive sensing theory, which considers sparse struc-
tures in tensors, accurate recovery of unknown information can be achieved in a small
number of observations if the target tensor exhibits a low-rank structure or can be well
approximated by a low-rank tensor. Recently, the tensor completion theory has shown
promising applications in traffic data completion, serving as a theoretical foundation for
the accurate achievement of multidimensional, multimodal, and multi-structured traffic
data.

Recently, low-dimensional fusion of multimodal data has attracted great attention.
Tensor-based decomposition is able to map multimodal data into a unified low-dimensional
subspace, enabling clustering, classification, and other data-fusion analyses within that
subspace [16]. For instance, Pan et al. utilized the tensor nuclear norm, derived from tensor
singular value decomposition (t-SVD), to optimally leverage high-dimensional information,
thereby improving the precision of multi-view data processing [17]. Shen et al. introduced
a comprehensive method for analyzing and processing multi-source traffic data [18]. Their
method incorporated data-analysis techniques rooted in spatiotemporal regression models
and data-fusion methods based on confidence tensors and evidence theory. Moreover, Xing
et al. established a novel tensor decomposition data-fusion framework, demonstrating that
the method combining license-plate recognition (LPR) data and cellphone location (CL)
data yielded significantly better results compared with the interpolation methods using
only LPR data [19]. In addition, Respati et al. proposed an adaptive weight-based fusion
technique (ABAFT), deploying data space coverage and quality or confidence as factors
for building weights [20]. The completion methods for the different missing mechanisms
demonstrated the superiority of the tensor learning method by effectively characterizing
complicated spatiotemporal correlations [21]. Therefore, in this study, based on the tensor
representation of high-dimensional data, subway data and bus data were fused to achieve
efficient multi-source data completion.

In summary, the contributions of this study are as follows:

(1) Subway inbound passenger flow and bus transfer time-series data were constructed,
and the completion performance of single-source data containing only subway data
was compared to that of multi-source data containing subway and bus transfer data;

(2) A truncated 𝓁2,p norm optimization model was derived to enhance the non-convex
performance of the objective function during the tensor completion process;

(3) A multi-source data-fusion tensor completion framework was established, and ADMM
was applied to achieve an effective completion algorithm.
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2. Characteristics of Multi-Source Traffic Data

In practical transportation, complex traffic data from distinct sources and with dif-
ferent structures are present. For example, data gathered from road traffic speed, subway
passenger flow, bus passenger flow, shared bike-riding, and cellphones are combined to-
gether. The data structure varies significantly among the different types of transportation,.
Even for the same type of transportation, such as buses, the data structure differs due to
varying data sources and collection focuses (refer to Table 1). Given that the transportation
system is a complex and dynamically interactive network, additional data fusion is required
to effectively capture global interactions within the system.

Table 1. Structure of multi-source bus data [18].

Data Source Key Fields

Passenger card swiping data IC card no., card swiping time, license
plate no., and route no.

Vehicle station announcement data License plate no., route no., station name, station
inbound time, and station outbound time

Vehicle coordinates and route tables Route name, direction, station list, station
coordinates, and route trajectory

Vehicle dispatch records Vehicle dispatch record, departure schedule, license
plate no., departure time, and stops

3. Low-Rank Completion Model of Truncated 𝓁2,p

3.1. Truncated 𝓁2,p Norm (P2TN)

As an alternative approach to solving rank-minimization problems, the truncated
𝓁2,p norm incorporates the advantages of the truncated nuclear norm and the 𝓁2,p norm.
Moreover, it is more compact than a single norm during the approximation process of
rank-minimization problems. Therefore, the truncated 𝓁2,p norm preserves the complete
features of large singular values in a truncated manner and applies 𝓁2,p contraction only to
the singular values of min(n1, n2)− r after achieving the truncation. During the contraction,
smaller singular values incur larger threshold penalties, ensuring the retention of a sufficient
amount of internal strong correlation information to the maximum extent. Thus, the 𝓁2,p
norm is defined as follows [22]:

Given a matrix X ∈ Rm×n, for any p ∈ R,

∥X∥2
p =

1
2

(
min(m,n)

∑
i=1

|σi|
p−2

2

)
(1)

where ∥ . ∥2
p refers to the 𝓁2,p norm of the matrix. Assuming that the singular value

decomposition of matrix X is UΣVT , then one can write Σ = Diag(σi(X)), where σi
represents the singular value of the matrix, i.e., the nuclear norm of the matrix. Moreover,
the singular values are ranked in descending order as σ1 ⩾ σ2 ⩾ · · · ⩾ σmin{m, n} ⩾ 0, and
p indicates the contraction parameter.

Then, the 𝓁2,p norm is expanded to the tensor mode. For a given X ∈ Rn1×n2×n3 , 𝓁2,p
can be expressed as follows [23]:

∥X ∥2
p =

1
n3

n3

∑
k=1

∥ X(i) ∥2
p=

1
n3

n3

∑
k=1

min{n1,n2}

∑
i=1

|σi|
p−2

2 (2)

According to the tensor singular value decomposition principle, a Fourier transform

is performed for X along the third dimension, n3. In more detail, X(i) refers to the forward
slice after transformation in matrix form, while |σi| indicates the singular value obtained

by singular value decomposition for the forward slice X(i), e.g., the tensor nuclear norm.
The truncated nuclear norm of the tensor is defined as follows [24]:
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Given a third-order tensor X ∈ Rn1×n2×n3 and a positive integer t = min(n1, n2), the
truncated nuclear norm represents the sum of the minimum singular values of the tensor:

∥ X ∥r,∗=
1

n3
∥ X ∥r,∗

= 1
n3

n3
∑

j=1

t
∑

i=r+1
σi

(
X(j)

)
= 1

n3

n3
∑

j=1

t
∑

i=1
σi

(
X(j)

)
− 1

n3

n3
∑

j=1

r
∑

i=1
σi

(
X(j)

)
=

t
∑

i=1
σi(X )−

r
∑

i=1
σi(X )

(3)

where ∥ . ∥r,∗ refers to the truncated nuclear norm of the tensor, σi(X ) refers to the i-th
singular value of X , and the following constraint is to be respected: r < min(n1, n2).

Combining both tensor norm definitions, the truncated 𝓁2,p norm (P2TNN) of the
tensor is defined as follows:

∥ X ∥2
p,r=

1
n3

n3

∑
j=1

t

∑
i=r+1

|σi|
p−2

2 (4)

where ∥ . ∥2
p,r refers to the truncated 𝓁2,p norm, and in the tensor mode, for any given

X , Y ∈ Rn1×n2×n3 , µ > 0, p ∈ R, and r < min(n1, n2).
In the context of a given parameter τ, for a tensor X ∈ Rn1×n2×n3 , the tensor singular

value decomposition (t-SVD) can be expressed as X = USV⊤. The singular value threshold
for the tensor X is consequently defined.

Dτ(A) = USτV⊤ (5)

The contraction threshold operator is defined for the truncated 𝓁2,p as Dµ
p,r(.). Then,

the following equation is obtained:

Dµ
p,r(Y) = argmin

X∈Rn1×n2×n3

∥ X ∥2
p,r +

1
2µ

∥ X − Y ∥2
F (6)

According to the t-SVD theorem, Dµ
p,r(Y) represents the solution to the X optimization

problem, µ denotes the threshold parameter for singular value thresholding decomposition,
and p indicates the contraction parameter. When −∞ < p < 1, the larger the truncated
𝓁2,p contraction threshold, the smaller the received penalty. Moreover, ∥ . ∥F refers to the
Frobenius norm. Regarding Dµ

p,r(Y), we have Dµ
p,r(Y) = USr(Σ)VT ; therefore, one can

write
(Dµ

p,r(Σ))ijk = Dµ
p,r(Σijk)

= Diag




σ1, · · · , σr,
[

σr+1 − µ|σr+1|
p−2

2

]
+

, · · · ,

[
σmin{m,n} − µ

∣∣∣σmin{m,n}

∣∣∣ p−2
2

]
+


⊤ (7)

For any value a ∈ R, the addition function (.)+ is defined as a+ = max{a, 0}.

3.2. LRTC-P2TN Model

The NWLRTC model [25] was further optimized using the 𝓁2,p norm to develop the
LRTC-P2TN model:

min
X≥0,B≥0,Z≥0,W≥0

: α1 ∥ B ∥2
p,r +α2 ∥ Z ∥2

p,r +α3 ∥ W ∥2
p,r

s.t. : PΩ(Xi) = PΩ(Mi)
X1 = B,X2 = Z ,X3 = W

(8)
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where B ∈ Rn1×n2×n3 , Z ∈ Rn2×n3×n1 , and W ∈ Rn3×n1×n2 refer to the spatiotemporal
traffic data input in three different directions, whereas the truncated nuclear norm of the
tensor is introduced to avoid dependencies on the input direction. Moreover, α1, α2, and α3
represent the weights of each direction.

Equation (8) denotes a convex optimization problem that incorporates equality con-
straints. To convert this problem into one without such constraints, the augmented La-
grangian function is employed. The definition of the augmented Lagrangian function,
which takes into account only the X1 = B, X2 = Z , X3 = W constraint conditions, is
formulated as follows:

L(X , B,Z ,W ,Y)
= α1 ∥ B ∥2

p,r +α2 ∥ Z ∥2
p,r +α3 ∥ W ∥2

p,r

+ < Y1,X1 −B > + ρ
2 ∥ X1 −B ∥2

F + < Y2,X2 −Z >
+ ρ

2 ∥ X2 −Z ∥2
F + < Y3,X3 −W > + ρ

2 ∥ X3
−W ∥2

F

(9)

where Y1 ∈ Rn1×n2×n3 ,Y2 ∈ Rn2×n3×n1 ,Y3 ∈ Rn3×n1×n2 are the defined Lagrange multipli-
ers and ρ is the penalty parameter. The Frobenius norm is an added regularization term
that can enhance the convergence of the function.

The Frobenius norm of tensor X ∈ Rn1×n2×n3 is defined as follows:

∥X ∥2
F =

1
2

(
n3

∑
k=1

n2

∑
i=1

n1

∑
j=1

∣∣xi,j
∣∣2) 1

2

(10)

Equation (9) is addressed using the alternating direction method of multipliers (ADMM),
an algorithm that simplifies multiparameter optimization challenges by reducing them to
problems concerning a single optimization variable. By leveraging the ADMM approach,
the objective function of the primary problem can be divided into a set of manageable sub-
problems, which may then be simultaneously solved. The resolution of these sub-problems
subsequently converges through coordination, yielding the comprehensive solution to the
initial problem.

When solving the model via the ADMM algorithm, it updates one variable at a time,
maintaining the others as constants. Specifically, for Equation (9), it sequentially employs
gradient descent to update the variables B, Z , W , X , and Y in an alternating fashion.

Step 1: Updating Bl+1. Keeping X l
i , Y l

i , Z l , and W l fixed, let ∂L
∂B = 0; the update is as

follows:
Bl+1 := argmin

B
L(X l

i , B,Z l ,W l ,Y l
1

)
= α1 ∥ B ∥2

p,r + < Y l
1,X l

1 −B > + ρ
2 ∥ X1 −B ∥2

F
= α1 ∥ B ∥2

p,r +
ρ
2 ∥ B− < X l

1 +
1
ρY l

1 >∥2
F

= D α1
ρ ,r,p

(
X l

1 +
1
ρY l

1

) (11)

According to the definition of tensor singular value thresholding, it can be inferred
that D αi

ρ ,r,∗

(
X l

i +
1
ρY l

i

)
is the threshold applied to truncate the tensor

(
X l

i +
1
ρY l

i

)
after

performing singular value decomposition, with the threshold τ = αi
ρ .

Step 2: Updating Z l+1. Keeping X l
i , Y l

i , Bl+1, and W l fixed, let ∂L
∂Z = 0; the update is

as follows:
Z l+1 = argmin

Z
L(X l , Bl+1,Z ,W l ,Y l

2

)
= α2 ∥ Z ∥2

p,r + < Y l
2,X l

2 −Z > + ρ
2 ∥ X l

2 −Z ∥2
F

= α2 ∥ Z ∥2
p,r +

ρ
2 ∥ Z− < X l

2 +
1
ρY l

2 >∥2
F

= D α2
ρ ,r,p

(
X l

2 +
1
ρY l

2

) (12)
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Step 3: Updating W l+1. Keeping X l
i , Y l

i , Bl+1, and Z l+1 fixed, let ∂L
∂W = 0; the update

is as follows:
W l+1 = argmin

W
L(X l

3 , Bl+1,Z l+1,W ,Y l
3

)
= α3 ∥ W ∥2

p,r + < Y l
3,X l

3 −W > + ρ
2 ∥ X l

3 −W ∥2
F

= α3 ∥ W ∥2
p,r +

ρ
2 ∥ W− < X l

3 +
1
ρY l

3 >∥2
F

= D α3
ρ ,p,r

(
X l

3 +
1
ρY l

) (13)

Step 4: Updating X l+1
i . Keeping W l+1, Y l

i , Bl+1, and Z l+1 fixed, let ∂L
∂X = 0; the

update is as follows:

X l+1
i := argmin

X
L(Xi, Bl+1,Z l+1,W l+1,Y l

i

)
=< Y l

1,X1 −Bl+1 > + ρ
2 ∥ X1 −Bl+1 ∥2

F +

< Y ,X2 −Z l+1 > + ρ
2 ∥ X2 −Z l+1 ∥2

F + < Y l
3,

X3 −W l+1 > + ρ
2 ∥ X3 −W l+1 ∥2

F

=
3
∑

i=1

(
(Bl+1 +Z l+1 +W l+1)− 1

ρY l
i

)
(14)

Moreover, the remaining constraint PΩ(Xi) = PΩ(Mi) is added. Thus, X l+1
i can be

expressed as follows:

X l+1
i =

3
∑

i=1

(
(Bl+1 +Z l+1 +W l+1)− 1

ρY l
i

)
s.t. :PΩ(Xi) = PΩ(Mi)

(15)

Consequently, the constraint is removed, and elements at the positions of the observa-
tion points in the completion tensor are replaced by elements at the positions of the original
observation points:

X l+1
i =

3

∑
i=1

(
(Bl+1 +Z l+1 +W l+1)− 1

ρ
Y l

i

)
Ω

+ PΩ(M) (16)

Step 4: Updating Y l+1
i . Keeping W l+1, X l+1

i , Bl+1, and Z l+1 fixed, the value Y l+1
i is

updated based on the following process:

Y l+1
i := Y l

i + ρ

〈 a1

(
Bl+1 −X l+1

1

)
+

a2

(
Z l+1 −X l+1

2

)
+

a3

(
W l+1 −X l+1

3

)
〉

(17)

The number of iterations is set and updated for each iteration according to the above
steps. Moreover, the optimal solution for the model is computed. The steps of the LRTC-
P2TN algorithm are defined as follows (Algorithm 1):
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Algorithm 1 LRTC-P2TN

Input: X ≥ 0, A,PΩ(Mi) = PΩ(Xi), Yi = 0, ρ, k, λ
Output: the recovered tensor X
Calculate W using Formula (1)
for i = 1 to k

Update Bl+1 using Formula (11)
Update Z l+1 using Formula (12)
Update W l+1 using Formula (13)
Update X l+1

i using Formula (16)
Update Y l+1

i using Formula (17)

If ∥X l+1−X l∥2
F

∥PΩ(X )∥2
F

< E then break

end for

During the construction and solution process of the entire mathematical model, the
influence of noise was not considered. In more detail, the LRTC-P2TNN algorithm only
considered the reconstruction accuracy of the given data.

3.3. Multi-Source Data-Fusion Tensor Completion Framework

The core of the multi-source data-fusion completion framework represents the LRTC-
P2TN module. As depicted in Figure 1, the correlated data, gathered from different sources,
were represented as tensors and were set with different deletion rates. After completion
with the LRTC-P2TN module, the final completion data were acquired. The truncated 𝓁2,p
norm integrated into the model played a crucial role in ensuring the convergence of the
algorithm during the completion process.
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4. Results and Discussion
4.1. Data Preparation

The experimental data included two datasets: one set of Shenzhen Tong data, referred
to as SZ, and one set of Beijing Transportation Smart Card data, known as BJ.

The Shenzhen Tong dataset contained Shenzhen Tong Smart Card data for 22 October
2013, covering data gathered from 117 bus and subway stations. The methodology in-
cluded both single-source and multi-source data completion techniques. Single-source data
adopted a three-dimensional array formulated as day × time interval × subway station,
whereas multi-source data extended to a four-dimensional array featuring passenger flow
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type × day × time interval × station. Analysis of bus flows at subway stations leveraged
user ID sequencing to unravel transfer dynamics, with subway flows exclusively account-
ing for entry volumes, tallied at five-minute intervals. Shenzhen’s data footprint for a single
day manifested as a three-dimensional array (1 × 288 × 117) and a four-dimensional array
(2 × 1 × 288 × 117) for single-source and multi-source contexts, respectively. By examining
RMSE and MAPE metrics, we evaluated the augmentation of subway data completion
accuracy via the incorporation of bus data.

Conversely, the BJ dataset encompassed entries from 239 stations, spanning 1 and
10 May 2019. It mirrored the SZ data’s analytical approach, yielding a four-dimensional
structure of day × passenger flow type × time interval × station, quantified in five-minute
intervals. The resulting dataset, encapsulating a ten-day span, consisted of a sizably
expansive array at 2 × 10 × 288 × 239.

The time-series datasets that we analyzed and constructed can be downloaded from the
website https://github.com/yongmeizhao/smartcard-data/blob/main/data.rar, accessed
on 2 December 2023.

4.2. Single-Source Data Completion

During this experiment, we used Beijing subway data for 7 May 2019 and Shenzhen
smart card data for 22 October 2013. Figures 2 and 3 illustrate the visualization results of
both datasets, where the horizontal axis represents the station and the vertical axis is the
passenger flow at each time interval. Based on these figures, it can be observed that the
Beijing subway data for 7 May showed a more obvious periodicity, with clearer peaks in
the morning and evening.
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Moreover, the single-source data experiments were considered for subway flow data.
The experimental data used three-dimensional data consisting of station × time interval
× subway flow (data can be downloaded from the address). The truncation value was
set to 4.5, and ρ represents the iteration step size. The initial iteration step size ρ was set
to 1.15, and the maximum value ρmax of ρ was equal to 1 × 10−5. In each iteration, ρ was
updated through the equation ρ = min{1.05ρ, ρmax}, and the number of iterations was set
to 150. For convenience of recording and accuracy, the MAPE values in the table below
were multiplied by ten. Moreover, Table 2 illustrates the completion results under deletion
rates of 10%, 30%, 50%, and 70%, using LRTC-P2TN.

Table 2. RMSE/MAPE of single-source data completion under random deficiency.

10% 30% 50% 70%

SZ 30.52/37.01 26.13/40.16 32.81/62.08 50.37/83.48
BJ 3.25/5.75 3.25/5.82 3.31/5.90 3.93/6.05

4.3. Multi-Source Data Completion

In this study, we used the Beijing subway and bus data for 7 May 2019 and Shenzhen
smart card data for 22 October 2013. The experimental data were constructed as a four-
dimensional tensor dataset of subway station name, time, subway station passenger flow,
and bus station passenger flow. For missing data processing, deletion rates were only
set for the subway flow data, while the bus flow data were complete. The experimental
parameters were the same as those specified for the single-source data completion.

According to Tables 2 and 3, the completion performance with the fusion of multi-
source data of buses led to better behavior compared to the single-source subway data
completion.

Table 3. RMSE/MAPE of multi-source data completion under random deficiency.

10% 30% 50% 70%

SZ 22.74/32.23 20.39/36.83 25.12/47.74 26.77/48.17
BJ 3.15/5.76 3.20/5.73 3.28/5.87 3.86/6.02

Furthermore, Figures 4 and 5 display the data completion effects of single- and multi-
source data on Route No. 7 at a deletion rate of 0.5. As indicated, the fusion of bus transfer
data enhanced the algorithm’s capability to capture the overall trend of the data.
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4.4. Comparison of the LRTC-P2TN Model with Other Models

The proposed LRTC-P2TN model was compared to the LATC [26], BGCP [27],
NWLRTC [25], and BTTF [28] models. In more detail, LATC is an autoregressive low-
rank tensor completion algorithm, whereas BGCP is a Bayesian tensor decomposition
model that learns latent factor matrices (i.e., low-rank structures) using the Markov chain
Monte Carlo method. Moreover, the Bayesian temporal tensor factorization (BTTF) method
merges low-rank matrix/tensor decomposition with vector autoregressive (VAR) processes
within a probabilistic graphical model framework to facilitate problem-solving. Finally,
NWLRTC is a non-negative multidirectional weighted low-rank tensor completion method.

On the BJ dataset, each baseline algorithm was executed. The deletion rate was set to
20%, 30%, 40%, 50%, 60%, 70%, and 80%; ρ represents the iteration step size, which was
initially set to 1 × 10−5 and updated by ρ = min{1.05ρ, ρmax}, while E is the convergence
accuracy, which was initially set to 1. The experimental results showed that, under random
deficiency, setting ρ = 1 and E = 1 could achieve higher convergence speed and completion
accuracy. Moreover, Figure 6 shows the RMSE values for the different algorithms at various
deletion rates under random deficiency. A comparison of the computed results indicates
that, compared to the LATC, BGCP, NWLRTC, and BTTF models, the LRTC-P2TN model
achieved better imputation accuracy at deletion rates between 20% and 60%. Furthermore,
at deletion rates of 70% and 80%, its MAPE values surpassed those of the other algorithms,
although the RMSE values yielded higher values (as depicted in Table 4). Additionally, the
LRTC-P2TN model achieved higher completion accuracy than LATC, BGCP, NWLRTC,
and BTTF at deletion rates of 20–60%; when the deletion rates were 70% and 80%, our
model achieved higher MAPE values than the other algorithms, but its RMSE values were
relatively higher (see Table 4).

Table 4. RMSE/MAPE of different models under random deficiency.

Missing Rate LATC BGCP BTTF NWLRTC LRTC-P2TN

20% 3.47/6.50 3.15/5.53 3.22/5.55 3.17/5.73 3.15/5.76
30% 3.48/6.69 3.31/5.65 3.35/5.55 3.34/5.84 3.18/5.63
40% 3.56/6.68 3.28/5.55 3.49/5.67 3.25/5.87 3.17/5.78
50% 3.64/6.92 3.33/5.72 3.36/5.74 3.41/5.95 3.19/5.83
60% 3.64/7.03 3.41/5.82 3.48/5.96 3.47/6.10 3.26/5.85
70% 3.77/7.32 3.51/6.13 3.64/6.17 3.86/6.05 3.78/5.99
80% 3.79/7.31 3.93/6.93 4.12/6.95 5.29/5.96 5.06/5.79



Mathematics 2024, 12, 223 11 of 12

Mathematics 2024, 12, x FOR PEER REVIEW 12 of 14 
 

 

 
Figure 6. RMSE of different models under different missing rates. 

Table 4 displays the RMSE and MAPE values for a range of algorithms using the BJ 
data with an input orientation of 1 × 288 × 239. A minimal variation can be observed in the 
RMSE and MAPE metrics for the LATC, BGCP, NWLRTC, and BTTF algorithms when the 
input orientation shifted to 239 × 288 × 1. The incorporation of directional weighting fac-
tors in the LRTC-P2TN and NWLRTC algorithms resulted in negligible changes to their 
RMSE and MAPE values. 

Table 4. RMSE/MAPE of different models under random deficiency. 

Missing Rate LATC BGCP BTTF NWLRTC LRTC-P2TN 
20% 3.47/6.50 3.15/5.53 3.22/5.55 3.17/5.73 3.15/5.76 
30% 3.48/6.69 3.31/5.65 3.35/5.55 3.34/5.84 3.18/5.63 
40% 3.56/6.68 3.28/5.55 3.49/5.67 3.25/5.87 3.17/5.78 
50% 3.64/6.92 3.33/5.72 3.36/5.74 3.41/5.95 3.19/5.83 
60% 3.64/7.03 3.41/5.82 3.48/5.96 3.47/6.10 3.26/5.85 
70% 3.77/7.32 3.51/6.13 3.64/6.17 3.86/6.05 3.78/5.99 
80% 3.79/7.31 3.93/6.93 4.12/6.95 5.29/5.96 5.06/5.79 

5. Conclusions 
Multi-source data can assist in the completion of single-source data, especially when 

the single-source data have a lot of missing values where correlated data could effectively 
contribute to data completion. In this study, a four-dimensional tensor dataset of subway 
and bus transfer was constructed, and experiments were conducted to demonstrate the 
fusion of multi-source bus transfer data that could achieve higher completion accuracy 
than single-source subway data alone. Since the tensor is a natural representation of high-
dimensional data, tensor-based multi-source data fusion has the advantages of simple 
data representation and high completion accuracy. Low-rank tensor completion uses the 
truncated 2,p  norm as an alternative approach for rank minimization, integrating the 

advantages of the truncated nuclear norm and the 2,p  norm; therefore, it achieves more 
compact results than a single norm during the approximation process of rank minimiza-
tion. 

Figure 6. RMSE of different models under different missing rates.

Table 4 displays the RMSE and MAPE values for a range of algorithms using the BJ
data with an input orientation of 1 × 288 × 239. A minimal variation can be observed in
the RMSE and MAPE metrics for the LATC, BGCP, NWLRTC, and BTTF algorithms when
the input orientation shifted to 239 × 288 × 1. The incorporation of directional weighting
factors in the LRTC-P2TN and NWLRTC algorithms resulted in negligible changes to their
RMSE and MAPE values.

5. Conclusions

Multi-source data can assist in the completion of single-source data, especially when
the single-source data have a lot of missing values where correlated data could effectively
contribute to data completion. In this study, a four-dimensional tensor dataset of subway
and bus transfer was constructed, and experiments were conducted to demonstrate the
fusion of multi-source bus transfer data that could achieve higher completion accuracy
than single-source subway data alone. Since the tensor is a natural representation of high-
dimensional data, tensor-based multi-source data fusion has the advantages of simple
data representation and high completion accuracy. Low-rank tensor completion uses the
truncated 𝓁2,p norm as an alternative approach for rank minimization, integrating the
advantages of the truncated nuclear norm and the 𝓁2,p norm; therefore, it achieves more
compact results than a single norm during the approximation process of rank minimization.
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