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Abstract: This article proposes a stochastic SIR model with general nonlinear incidence and Lévy
jumps, which is used to describe diseases spreading in human populations. The model takes into
account the randomness and sublinearity of diseases and can more accurately describe the disease
transmission process. Firstly, we prove that this stochastic SIR model has a unique global positive
solution. Then, sufficient conditions for the extinction of the disease are given. We also discuss
the case that the disease persists in the model. In addition, we study the asymptotic behavior of
the solution of the stochastic SIR model relative to the equilibrium points of the deterministic SIR
model. These results allow us to understand the trends and dynamic changes of diseases in human
populations, providing theoretical support for developing more scientific and effective disease control
strategies and prevention measures. Finally, we give some examples and numerical simulations to
demonstrate the effectiveness and feasibility of the theoretical results.
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1. Introduction and Main Results
1.1. Introduction on the Background

Infectious diseases have long been a significant challenge throughout human history,
ranging from ancient plagues and the Black Death to modern-day pandemics such as
influenza, AIDS, and, in recent years, the novel coronavirus. The outbreak of infectious
diseases poses significant threats to human health and has profound impacts on society,
the economy, and politics. Therefore, the research of infectious diseases has consistently
remained a critical global agenda.

Researchers have developed a diverse array of mathematical models to gain a deeper
understanding of the transmission mechanisms of infectious diseases, anticipate their devel-
opmental trends, and evaluate the effectiveness of various prevention and control strategies.
Among these, differential equation-based models for infectious diseases, including the
SIR model and SEIR model, have been widely used and continuously evolved. In 1927,
Kermack and McKendrick [1] established the classic deterministic SIR model. They divided
the population into three individuals:

(S) Susceptible individuals—These individuals are not immune to the disease and, there-
fore, vulnerable to infection.

(I) Infected individuals—These individuals are currently infected with the disease and
can spread it to other susceptible individuals.

(R) Removed individuals—These individuals have been infected with the disease, have
recovered from it, and are now immune to further infection.

Let S(t), I(t), and R(t) denote the number of susceptible individuals, infected individ-
uals, and removed individuals, respectively, at time t. Then the classical deterministic SIR
model in [2] is formulated by the following ordinary differential equations (ODEs)
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dS(t) = [α − βS(t)I(t)− µ1S(t)]dt,

dI(t) = [βS(t)I(t)− (µ2 + ρ + γ)I(t)]dt,

dR(t) = [γI(t)− µ3R(t)]dt,

(1)

where α is the birth rate of the population per unit time, µi, i = 1, 2, 3 as the natural
death rates of S(t), I(t), and R(t), respectively. β is the effective contact rate between
S(t) and I(t), γ represents the recovery rate of infected individuals, and ρ reflects the
additional disease-induced death rate of the infected individuals. These epidemiological
parameters are all positive constants. In particular, with the development of infectious
disease dynamics, many results about the deterministic SIR model can be found in [3–6].

The bilinear term βSI in the system (1) is a good approximation of the incidence to
study some certain infectious diseases, such as dengue fever and avian influenza, see [7,8].
However, in the spread of some sexually transmitted diseases (STDs), such as AIDS and
syphilis, etc., the number of people infected by each carrier may gradually decrease as
the number of infected individuals increases. This is because people take measures to
protect themselves or reduce contact with infected individuals as the disease spreads,
which reduces the infection rate. However, the bilinear incidence rate assumes that each
carrier can infect infinitely many people, which does not agree with the reality. In addition,
the mathematical expression of the sublinear incidence rate is more complex than the
bilinear incidence rate, which can better fit the actual data of disease transmission and more
accurately predict the future development trend of the disease.

In [9], Zhou et al. introduced the nonlinear incidence rate βSg(I), where the function
g(I) is twice continuously differentiable and satisfies:

(i). g(0) = 0 and g′(I) > 0, (ii). 0 ⩽
(

I
g(I)

)′
⩽ m, ∀I ⩾ 0. (2)

Significantly, the condition (i) of g(I) indicates that there will be no contact infections
when no infected individuals are in the population. Besides, as the number of infected
individuals increases, the risk of disease transmission will also increase accordingly. The
condition (ii) of g(I) reflects the assumption of sublinear incidence, where people will
take measures to protect themselves or reduce contact with infected individuals, thereby
reducing the infection rate. In particular, the deterministic SIR model in [9] was described
by the following equations

dS(t) = [α − βS(t)g(I(t))− µ1S(t)]dt,

dI(t) = [βS(t)g(I(t))− (µ2 + ρ + γ)I(t)]dt,

dR(t) = [γI(t)− µ3R(t)]dt,

(3)

and they obtained that the system (3) has an invariant attracting set

D =

{
(S, I, R)

∣∣∣S ⩾ 0, I ⩾ 0, R ⩾ 0, S + I + R ⩽
α

min{µ1, µ2 + ρ, µ3}
≜ Λ

}
, (4)

and the basic reproduction number is R0 = αβg′(0)
µ1(µ2+ρ+γ)

. If R0 ⩽ 1, there is a disease-free

equilibrium E0 =
(

α
µ1

, 0, 0
)

, which is globally asymptotically stable on D. If R0 > 1, E0

is unstable, but there exists a unique endemic equilibrium E∗ = (S∗, I∗, R∗) of system (3)
and it is globally asymptotically stable on D, where S∗ =

(µ2+ρ+γ)I∗
βg(I∗)

, R∗ =
γ
µ3

I∗, and I∗ is
solved by the nonlinear equation αβg(I∗) = (µ2 + ρ + γ)I∗[βg(I∗) + µ1].

In real life, due to the fact that the spread of infectious diseases is affected by many
random factors, the introduction of stochastic epidemic models can provide more accu-
rate predictions of the dynamic spread of diseases. By combining epidemic models with
stochastic theory, we can better understand the mechanism of disease transmission and
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more accurately predict its spread, providing a solid foundation for public health depart-
ments to make scientific decisions. Therefore, stochastic epidemic models have essential
application value in revealing the laws of disease transmission and formulating effective
prevention and control strategies. The research on stochastic epidemic models has been
emerging in recent years, leading to significant advancements. Jiang et al. [10] analyzed
the asymptotic behavior of the following stochastic SIR model

dS(t) = [α − βS(t)I(t)− µS(t)]dt + σ1S(t)dW1(t),

dI(t) = [βS(t)I(t)− (µ + ρ + γ)I(t)]dt + σ2 I(t)dW2(t),

dR(t) = [γI(t)− µR(t)]dt + σ3R(t)dW3(t),

(5)

where Wi(t) are independent standard Brownian motions with intensities σi ⩾ 0. Liu and
Jiang [11] constructed a stochastic SIR model with distributed delay, building upon the
deterministic model (1) and studied the disease extinction conditions of this model. El Hajji,
Sayari, and Zaghdani in [12] considered the deterministic and stochastic SIR infectious
disease models with nonlinear incidence rates in continuous reactors. They studied the
asymptotic behavior of the solutions and established the conditions for disease persistence
and extinction.

Notably, the infectious disease models studied in the mentioned works are all affected
by white noise, and their solutions exhibit continuous characteristics. However, actual
population systems may be subject to sudden environmental perturbations, such as earth-
quakes, volcanic eruptions, and tsunamis, etc. These extreme situations can interrupt the
continuity of the solution, making traditional stochastic models unable to describe the sys-
tem’s dynamic behavior accurately. To capture this discontinuous, researchers introduced
the Lévy jump process, a stochastic process that can capture sudden, large-scale changes.
This process is particularly suitable for describing population systems affected by sudden
perturbations. In biology, Lévy jump process describes many biological phenomena, in-
cluding animal predation behavior and population diffusion. Recently, it has also been
applied to infectious disease models to describe the spread of disease better, see [13–15].
In [13,14], they considered stochastic SIR models with Lévy jumps and specific incidence
rates. Although these models have particular applications in specific situations, they lack
generality. In [15], the authors conducted in-depth research on the dynamic behavior of
SVIR models with Lévy jumps.

In this paper, we suppose that massive environmental events can affect the disease
transmission rate β in model (3), and the stochastic perturbations are of Lévy noise type,
that is

β → β + σdW(t) + dJ(t),

where W(t) is a standard Brownian motion on the probability space (Ω, F , {Ft}t⩾0,P) sat-
isfying the usual condition, and σ > 0 is the intensity of W(t). J(t) =

∫ t
0

∫
Y Q(a)Ñ(da, ds),

where Ñ(da, ds) = N(da, ds)− v(da)ds, and N is a Poisson counting measure with charac-
teristic measure v on the measurable subset Y of [0, ∞) with v(Y) < ∞.

In this sense, the corresponding stochastic version of the system (3) with Lévy jumps
is obtained as follows

dS(t) = (α − βS(t)g(I(t))− µ1S(t))dt − σS(t)g(I(t))dW(t)

−
∫
Y

Q(a)S(t−)g(I(t−))Ñ(dt, da),

dI(t) = (βS(t)g(I(t))− (µ2 + ρ + γ)I(t))dt + σS(t)g(I(t))dW(t)

+
∫
Y

Q(a)S(t−)g(I(t−))Ñ(dt, da),

dR(t) = (γI(t)− µ3R(t))dt,

(6)
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where Q : Y × Ω → R represents the effect of random jumps. We assume that Q is
continuous with respect to the first variable and B(Y)×Ft-measurable. Here, B(Y) is a
σ-algebra on Y.

Besides, the biological system typically possesses inherent stability and adaptability,
and the evolution process of living organisms is a long-lasting, harmonious coexistence
with the environment. In the face of sudden environmental changes or special events,
these organisms can maintain a relatively stable state through their own regulatory and
adaptive mechanisms. Over time, they have also developed a series of mechanisms and
strategies to respond to external environmental disturbances. Therefore, we assume that
the intensity of the jumps is nonnegative and bounded, which can be seen as an expression
of the self-regulatory ability of the biological system in response to external disturbances,
or an expression of the evolved adaptability of living organisms when facing the jumping
behavior during the spread of infectious diseases. These assumptions bring the model
closer to biological reality, enhancing its practical rationality.

Assumption 1. 0 ⩽ Q(a)Λg′(0) ⩽ ζ < 1, ∀a ∈ Y.

This article considers the random effects and the impact of emergencies on the spread
of infectious disease models. It introduces a general nonlinear incidence rate, making the
infectious disease model more realistic and widely applicable. This improvement enables
the model to simulate the spread of infectious diseases more accurately, providing a more
reliable basis for formulating prevention and control strategies. In the following content,
we present the main results of this SIR model (6) in Section 1.2 and give the proofs of these
results in Section 2. We provide some examples and numerical simulations in Section 3.
Finally, we give a meaningful conclusion of this article in Section 4 and add an Appendix A
to introduce some lemmas and necessary mathematical notations at the end.

1.2. Main Results

In order to study the dynamic behavior of the population system (6), it is necessary to
consider whether the solution is positive and global. In [16], it is shown that for any given
initial value, if the coefficients of the stochastic differential equation with jumps satisfy the
linear growth condition and local Lipschitz continuity, the stochastic differential equation
has a unique global solution (that is, it does not explode in finite time). However, the
coefficients of Equation (6) do not satisfy the linear growth condition, which means that
the solution of this system may explode in a finite time.

The following theorem presents the region D is almost surely invariant for the sys-
tem (6) by using the Lyapunov analysis from [17].

Theorem 1. For any initial value (S(0), I(0), R(0)) ∈ D, this model (6) has a unique positive
solution (S(t), I(t), R(t)) ∈ D, ∀t ⩾ 0 a.s.

The basic reproduction number of infectious disease models is a crucial parameter
that indicates how many healthy individuals each infected individual can transmit the
disease to in a completely susceptible population. This parameter plays a pivotal role in
evaluating the transmission potential of infectious diseases, predicting the spread dynamics
of the illness, and devising prevention and control strategies. In deterministic model (3),
the value of R0 determines whether the disease in system (3) persists or die out. In the
following theorem, we establish sufficient conditions for disease extinction in the model (6)
and present that noise will affect disease extinction.

Set

Θ2 ≜
g2(Λ)

Λ2

(
σ2 +

∫
Y

Q2(a)
(1 + ζ)2 v(da)

)
and Re ≜

αβg′(0)

µ1

(
µ2 + ρ + γ + α2

2µ2
1
Θ2
) . (7)
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Theorem 2. For any initial value (S(0), I(0), R(0)) ∈ D, the solution (S(t), I(t), R(t)) of system
(6) satisfies

(i) lim sup
t→∞

ln I(t)
t ⩽ (µ2 + ρ + γ)(Re − 1) < 0 a.s. if Re < 1 and Θ2 ⩽ µ1βg′(0)

α ;

(ii) lim sup
t→∞

ln I(t)
t ⩽ −(µ2 + ρ + γ) + β2(g′(0))2

2Θ2 < 0 a.s. if β2(g′(0))2

2Θ2(µ2+ρ+γ)
< 1.

Namely, the infectious disease I(t) tends to zero exponentially a.s. in these two cases.

Remark 1. (1) The expression of Re reveals that stochastic perturbations impact the extinction of
the disease in system (6). Additionally, the disease extinction condition of the model (6) is weaker
than that of the model (3).

(2) The study of disease extinction can help people to utilize medical and social resources
effectively. For instance, when a disease is on the verge of extinction, appropriate adjustments can be
made to the allocation and utilization of medical resources to allocate more resources to treating and
preventing other diseases.

In both the natural world and human society, many infectious diseases persist and
evolve over time. By studying the persistence of diseases through stochastic SIR models, we
can better understand the mechanisms behind disease persistence and evolution. Now, we
establish sufficient conditions for the persistence of this disease in the following theorem.
Firstly, the persistence in the mean of system (6) is defined as follows.

Definition 1. System (6) is said to be persistence in the mean, if

lim inf
t→∞

1
t

∫ t

0
S(u)du > 0, lim inf

t→∞

1
t

∫ t

0
I(u)du > 0, lim inf

t→∞

1
t

∫ t

0
R(u)du > 0 a.s. (8)

Set

Rp ≜
αβ

µ1(µ2 + ρ + γ)

g(Λ)

Λ
− σ2Λ2(g′(0))2

2(µ2 + ρ + γ)
−
∫
Y Q(a)Λg′(0)v(da)

(µ2 + ρ + γ)
. (9)

Theorem 3. If Rp > 1, the solution (S(t), I(t), R(t)) of model (6) with any initial value
(S(0), I(0), R(0)) ∈ D satisfies

lim inf
t→∞

1
t

∫ t

0
S(u)du ⩾

α

βg(Λ) + µ1
> 0 a.s.

lim inf
t→∞

1
t

∫ t

0
I(u)du ⩾

µ2 + ρ + γ

K0
(Rp − 1) > 0 a.s.

lim inf
t→∞

1
t

∫ t

0
R(u)du ⩾

γ

µ3

µ2 + ρ + γ

K0
(Rp − 1) > 0 a.s.

where K0 = βg(Λ)(Λµ1(µ2 + ρ + γ))−1.

Remark 2. By the condition (2) of g(I), we know that Rp < R0, this indicates that while the
stochastic system (6) may rapidly approach extinction, the model (3) may continue to exist.

In 1892, Lyapunov [18] introduced the concept of stability for dynamic systems: if the
trajectory of the system remains close to the equilibrium state for any initial condition, then
the system is said to be Lyapunov stable under those initial conditions. This stability notion
is an important theory for analyzing system stability, especially in the field of automatic
control, where it is widely used in the design of dynamic systems. We use the definitions
of stability introduced in [17] and demonstrate the globally stochastically asymptotically
stable of system (6) on D.
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Theorem 4. If R0 < 1, then the disease-free equilibrium E0 is globally stochastically asymptotically
stable on the region D.

If R0 > 1, the deterministic SIR model (3) has an endemic equilibrium E∗ = (S∗, I∗, R∗).
However, E∗ is not the endemic equilibrium for stochastic system (6). Then, the dynamic of
the solution (S(t), I(t), R(t)) of system (6) around E∗ is discussed in the following theorem.

Theorem 5. If R0 > 1 holds, then the solution of system (6) with (S(0), I(0), R(0)) ∈ D has the
property

lim sup
t→∞

1
t
E
∫ t

0

[
(S(u)− S∗)

2 + (I(u)− I∗)2 + (R(u)− R∗)
2
]
du ⩽

Kσ

M
.

where

M = min
{

µ1, µ2 + ρ + γ − γ2q
2µ3

,
qµ3

2

}
, 0 < q <

2µ3(µ2 + ρ + γ)

γ2 ,

Kσ =
pI∗
2

(
σ2Λ2(g′(0))2 +

∫
Y

Q(a)Λg′(0)v(da)
)

.

Remark 3. Based on the above results, we can observe that as the number of random factors
gradually increases, the deviation of the solution of the stochastic SIR model from the deterministic
model also gradually increases. This indicates that randomness significantly impacts the spread of
diseases, leading to discrepancies in epidemic trends from those predicted by deterministic models.
Therefore, when formulating prevention and control strategies, it is crucial to consider the influence
of random factors and adopt more flexible and effective measures to address the spread and evolution
of diseases.

2. Proofs of the Main Results
2.1. Proof of Theorem 1

Proof. Since the coefficients of system (6) are locally Lipschitz continuous, then for any
initial value (S(0), I(0), R(0)) ∈ D, this system has a unique local solution for t ∈ [0, τe),
where τe is an explosion time. In this sense, we only need to prove τe = ∞. Given k0 > 0
be sufficiently large for S(0) > 1

k0
, I(0) > 1

k0
and R(0) > 1

k0
. For each k ≥ k0, define the

stopping time

τk = inf
{

t ∈ [0, τe) : min{S(t), I(t), R(t)} ⩽
1
k

}
,

where throughout this paper we set inf ∅ = ∞. Obviously, τk ⩽ τe and τk is increasing as
k → ∞. Set τ∞ = limk→∞ τk. Then, we only need to show that τ∞ = ∞. If it is false, then
there exists T > 0 and ϵ ∈ (0, 1) such that P(τ∞ ⩽ T) > ϵ. Thus there is an integer k1 ⩾ k0
such that

P(τk ⩽ T) ⩾ ϵ ∀k ⩾ k1. (10)

Define a nonnegative function V: R3
+ → R+ by

V(S, I, R) = (S − a1 − a1 ln(S/a1)) + (I − 1 − ln I) + (R − 1 − ln R),

where a1 is a positive constant to be determined later.
Applying Itô’s formula, we obtain

dV = L Vdt + σg(I)(a1 − S/I)dW(t)

−
∫
Y
[a1 ln(1 − Q(a)g(I)) + ln(1 + Q(a)Sg(I)/I)]Ñ(dt, da),

(11)
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where

L V =
(

1 − a1

S

)
(α − βSg(I)− µ1S) +

(
1 − 1

I

)
(βSg(I)− (µ2 + ρ + γ)I)

+

(
1 − 1

R

)
(γI − µ3R) +

a1

2
σ2g2(I) +

1
2I2 σ2S2g2(I)

− a1

∫
Y
[Q(a)g(I) + ln(1 − Q(a)g(I))]v(da)

+
∫
Y
[Q(a)Sg(I)/I − ln(1 + Q(a)g(I)/I)]v(da).

By the condition (2) of g(I), we can have (g(I)/I)′ = (Ig′(I)− g(I))/I2 ⩽ 0, which
means that

g(Λ)

Λ
⩽

g(I)
I

⩽ lim
I→0+

g(I)
I

= g′(0) for any I ⩾ 0. (12)

Thus, we have

L V ⩽α + a1µ1 + µ2 + ρ + γ + µ3 + [a1βg′(0)− (µ2 + ρ)]I

+
a1

2
σ2g2(Λ) +

1
2

σ2Λ2(g′(0))2

− a1

∫
Y
[Q(a)g(I) + ln(1 − Q(a)g(I))]v(da)

+
∫
Y
[Q(a)Sg(I)/I − ln(1 + Q(a)g(I)/I)]v(da).

Choose a1 = (µ2 + ρ)/(βg′(0)) such that a1βg′(0)− (µ2 + ρ) = 0, then

L V ⩽α + a1µ1 + µ2 + ρ + γ + µ3 +
a1

2
σ2g2(Λ) +

1
2

σ2Λ2(g′(0))2

− a1

∫
Y
[Q(a)g(I) + ln(1 − Q(a)g(I))]v(da)

+
∫
Y
[Q(a)Sg(I)/I − ln(1 + Q(a)g(I)/I)]v(da).

By the Assumption 1 and (12), we can obtain that

1 − Q(a)g(I) ⩾ 1 − Q(a)Ig′(0) ⩾ 1 − Q(a)Λg′(0) > 0,

1 − Q(a)Sg(I)/I ⩾ 1 − Q(a)Sg′(0) ⩾ 1 − Q(a)Λg′(0) > 0.

In addition, by Taylor–Lagrange’s formula,

− Q(a)g(I)− ln(1 − Q(a)g(I)) ⩽
1

2(1 − ζ)2 , (13)

Q(a)S
g(I)

I
− ln

(
1 + Q(a)S

g(I)
I

)
⩽

1
2(1 − ζ)2 . (14)

Thus,

L V ⩽α + a1µ1 + µ2 + ρ + γ + µ3 +
a1

2
σ2g2(Λ) +

1
2

σ2Λ2(g′(0))2 +
(a1 + 1)v(Y)

2(1 − ζ)2

≜K.
(15)

Combining (11) and (15), we can have

dV ⩽Kdt + σg(I)(a1 − S/I)dW(t)

−
∫
Y
[a1 ln(1 − Q(a)g(I)) + ln(1 + Q(a)Sg(I)/I)]Ñ(dt, da).

(16)
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Integrating both sides of (16) from 0 to τk ∧ T and taking expectation, we obtain

E[V(S(τk ∧ T), I(τk ∧ T), R(τk ∧ T))] ⩽ V(S(0), I(0), R(0)) + KT. (17)

Set Ωk = {τk ⩽ T} for k ⩾ k1. By (10), we have P(Ωk) ⩾ ϵ. Note, that ∀ω ∈ Ωk, we
have either S(τk, ω), or I(τk, ω), or R(τk, ω) equals 1

k , and therefore,

V(S(τk, ω), I(τk, ω), R(τk, ω)) ⩾ 1/k − 1 + ln k.

It then follows from (17)

V(S(0), I(0), R(0)) + KT ⩾ E[IΩk V(S(τk), I(τk), R(τk))] ⩾ ϵ[1/k − 1 + ln k],

where IΩk is the indicator function of Ωk. Letting k → ∞, we have

KT + V(S(0), I(0)) = ∞,

which is a contradiction. Hence, we must have τ∞ = ∞, which implies S(t), I(t), and R(t)
will not become extinct in a finite time with probability one.

2.2. Proof of Theorem 2

Proof. According to Equation (6), we have

d(S(t) + I(t)) = (α − µ1S(t)− (µ2 + ρ + γ)I(t))dt. (18)

Integrating both sides of (18) from 0 to t and dividing by t, we have

1
t

∫ t

0
S(u)du =

α

µ1
− µ2 + ρ + γ

µ1

1
t

∫ t

0
I(u)du + ψ(t), (19)

where
ψ(t) = −t−1µ−1

1 (S(t)− S(0) + I(t)− I(0)).

Since (S(0), I(0)) ∈ D, then (S(t), I(t)) ∈ D by Theorem 1, and we have

lim
t→∞

ψ(t) = 0 a.s. (20)

Applying Itô’s formula to ln I(t), yields

d ln I(t) =
{

βS(t)
g(I(t))

I(t)
− (µ2 + ρ + γ)− 1

2
σ2S2(t)

g2(I(t))
I2(t)

+
∫
Y

[
ln
(

1 + Q(a)S(t)
g(I(t))

I(t)

)
− Q(a)S(t)

g(I(t))
I(t)

]
v(da)

}
dt

+ σS(t)
g(I(t))

I(t)
dW(t) +

∫
Y

ln
(

1 + Q(a)S(t)
g(I(t))

I(t)

)
Ñ(dt, da).

(21)

Similar to (14), by (12) and Taylor–Lagrange’s formula, we also have

d ln I(t) ⩽
[

βS(t)g′(0)− (µ2 + ρ + γ)− 1
2

σ2S2(t)
g2(Λ)

Λ2

− g2(Λ)

Λ2 S2(t)
∫
Y

Q2(a)
2(1 + ζ)2 v(da)

]
dt + σS(t)

g(I(t))
I(t)

dW(t)

+
∫
Y

ln
(

1 + Q(a)S(t)
g(I(t))

I(t)

)
Ñ(dt, da).

(22)
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Integrating from 0 to t and dividing by t on both sides of (22), and by the expression
of Θ2 in (7) and the Cauchy-Schwarz inequality, we obtain that

ln I(t)
t

⩽
ln I(0)

t
+ βg′(0)

1
t

∫ t

0
S(u)du − (µ2 + ρ + γ)

− 1
2

g2(Λ)

Λ2

(
σ2 +

∫
Y

Q2(a)
(1 + ζ)2 v(da)

)
1
t

∫ t

0
S2(u)du

+
1
t

∫ t

0
σS

g(I)
I

dW(u) +
1
t

∫ t

0

∫
Y

ln
(

1 + Q(a)S
g(I)

I

)
Ñ(du, da)

⩽
ln I(0)

t
+ βg′(0)

1
t

∫ t

0
S(u)du − 1

2
Θ2
(

1
t

∫ t

0
S(u)du

)2
− (µ2 + ρ + γ)

+
1
t

∫ t

0
σS

g(I)
I

dW(u) +
1
t

∫ t

0

∫
Y

ln
(

1 + Q(a)S(u)
g(I(u))

I(u)

)
Ñ(du, da). (23)

Substituting (19) into (23), we obtain

ln I(t)
t

⩽
ln I(0)

t
+ βg′(0)

(
α

µ1
− µ2 + ρ + γ

µ1

1
t

∫ t

0
I(u)du + ψ(t)

)
− (µ2 + ρ + γ)

− Θ2

2

(
α

µ1
− µ2 + ρ + γ

µ1

1
t

∫ t

0
I(u)du + ψ(t)

)2
+

σ

t

∫ t

0
S

g(I)
I

dW(u)

+
1
t

∫ t

0

∫
Y

ln
(

1 + Q(a)S(u)
g(I(u))

I(u)

)
Ñ(du, da)

= βg′(0)
α

µ1
− Θ2

2
α2

µ2
1
− (µ2 + ρ + γ)− Θ2(µ2 + ρ + γ)2

2µ2
1

(
1
t

∫ t

0
I(u)du

)2

− µ2 + ρ + γ

µ1

(
βg′(0)− Θ2α

µ1

)
1
t

∫ t

0
I(u)du + φ(t), (24)

where

φ(t) =
ln I(0)

t
+ βg′(0)ψ(t)− 1

2
Θ2ψ2(t)− Θ2 α

µ1
ψ(t)

+
Θ2(µ2 + ρ + γ)

µ1
ψ(t)

1
t

∫ t

0
I(u)du +

1
t

∫ t

0
σS(u)

g(I(u))
I(u)

dW(u)

+
1
t

∫ t

0

∫
Y

ln
(

1 + Q(a)S(u)
g(I(u))

I(u)

)
Ñ(du, da).

Moreover, by (2), (12) and Theorem 1, we have

∫ t

0
σ2S2(u)

g2(I(u))
I2(u)

du ⩽ σ2Λ2(g′(0))2t,

∫ t

0

∫
Y

(
ln
(

1 + Q(a)S(u)
g(I(u))

I(u)

))2

v(da)du ⩽ (ln(1 + ζ))2v(Y)t.
(25)

In view of Lemma A1 and (20), φ(t) satisfies

lim
t→∞

φ(t) = 0. (26)

By (24), if Re < 1 and Θ2 ⩽ µ1βg′(0)/α hold, we have

ln I(t)
t

⩽βg′(0)
α

µ1
− 1

2
Θ2 α2

µ2
1
− (µ2 + ρ + γ) + φ(t)

=
(

µ2 + ρ + γ + α2Θ2/(2µ2
1)
)
(Re − 1) + φ(t). (27)
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Since lim
t→∞

φ(t) = 0, taking the limit superior on both sides of (27), we have

lim sup
t→∞

ln I(t)
t

⩽

(
µ2 + ρ + γ +

α2

2µ2
1

Θ2

)
(Re − 1) < 0 a.s. (28)

On the other hand, according to (22), we can also obtain that

ln I(t)
t

⩽
ln I(0)

t
+ βg′(0)

1
t

∫ t

0
S(u)du − 1

2
Θ2
(

1
t

∫ t

0
S(u)du

)2
− (µ2 + ρ + γ)

+
1
t

∫ t

0
σS

g(I)
I

dW(u) +
1
t

∫ t

0

∫
Y

ln
(

1 + Q(a)S
g(I)

I

)
Ñ(du, da)

= − Θ2

2

(
1
t

∫ t

0
S(u)du − βg′(0)

Θ2

)2

− (µ2 + ρ + γ) +
β2(g′(0))2

2Θ2 +
ln I(0)

t

+
σ

t

∫ t

0
S

g(I)
I

dW(u) +
1
t

∫ t

0

∫
Y

ln
(

1 + Q(a)S
g(I)

I

)
Ñ(du, da)

⩽− (µ2 + ρ + γ) +
β2(g′(0))2

2Θ2 +
ln I(0)

t
+

1
t

∫ t

0
σS

g(I)
I

dW(u)

+
1
t

∫ t

0

∫
Y

ln
(

1 + Q(a)S
g(I)

I

)
Ñ(du, da).

If β2(g′(0))2

2Θ2(µ2+ρ+γ)
< 1 holds, using the strong law of large numbers for local martingales

in Lemma A1 again, we have

lim sup
t→∞

ln I(t)
t

⩽ −(µ2 + ρ + γ) +
β2(g′(0))2

2Θ2 < 0 a.s. (29)

Equations (28) and (29) both imply limt→∞ I(t) = 0 a.s. Thus, the epidemic of system
(6) will exponentially go to extinction with probability one under certain conditions. The
decay rate of (28) is at least (µ2 + ρ + γ + α2Θ2/(2µ2

1))(Re − 1), and the decay rate of (29)
is at least −(µ2 + ρ + γ) + (β2(g′(0))2)/(2Θ2).

2.3. Proof of Theorem 3

Proof. Since I(t) ∈ D, according to the stochastic differential equation of S(t) in (6), we
can have

dS(t) ⩾(α − βS(t)g(Λ)− µ1S(t))dt − σS(t)g(I(t))dW(t)

−
∫
Y

Q(a)S(t−)g(I(t−))Ñ(dt, da).
(30)

Integrating from 0 to t and dividing by t on both sides of (30), we obtain

(βg(Λ) + µ1)
1
t

∫ t

0
S(u)du ⩾α − S(t)− S(0)

t
− 1

t

∫ t

0
σS(u)g(I(u))dW(u)

− 1
t

∫ t

0

∫
Y

Q(a)S(u−)g(I(u−))Ñ(du, da).

Similar to (25), using the strong law of large numbers for local martingales in Lemma A1,
we also have

lim
t→∞

(
−S(t)− S(0)

t
− 1

t

∫ t

0
σSg(I)dW(u)− 1

t

∫ t

0

∫
Y

Q(a)Sg(I)Ñ(du, da)
)
= 0 a.s.
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Hence,

lim inf
t→∞

1
t

∫ t

0
S(u)du ⩾

α

βg(Λ) + µ1
a.s. (31)

For infected individuals I(t), since ln
(

1 + Q(a)S g(I)
I

)
− Q(a)S g(I)

I ⩾ −Q(a)Λg′(0),
we can rewrite (21) as follows

d ln I(t) ⩾
[

β
g(Λ)

Λ
S(t)− (µ2 + ρ + γ)− 1

2
σ2Λ2(g′(0))2 −

∫
Y

Q(a)Λg′(0)v(da)
]

dt

+ σS(t)
g(I(t))

I(t)
dW(t) +

∫
Y

ln
(

1 + Q(a)S(t)
g(I(t))

I(t)

)
Ñ(dt, da).

(32)

Integrating from 0 to t on both sides of (32), we obtain

ln I(t) ⩾ ln I(0) + β
g(Λ)

Λ

∫ t

0
S(u)du − (µ2 + ρ + γ)t − 1

2
σ2Λ2(g′(0))2t

− t
∫
Y

Q(a)Λg′(0)v(da) +
∫ t

0
σS(u)

g(I(u))
I(u)

dW(u)

+
∫ t

0

∫
Y

ln
(

1 + Q(a)S(u)
g(I(u))

I(u)

)
Ñ(du, da),

(33)

Substituting (19) into (33), and by the expression of K0 and Rp, we have

ln I(t) ⩾ ln I(0) +
αβ

µ1

g(Λ)

Λ
t − (µ2 + ρ + γ)t − 1

2
σ2Λ2(g′(0))2t

− t
∫
Y

Q(a)Λg′(0)v(da)− (µ2 + ρ + γ)β
g(Λ)

µ1Λ

∫ t

0
I(u)du

+ β
g(Λ)

Λ
ψ(t)t +

∫ t

0

σS(u)g(I(u))
I(u)

dW(u)

+
∫ t

0

∫
Y

ln
(

1 +
Q(a)S(u)g(I(u))

I(u)

)
Ñ(du, da)

= ln I(0) + [(µ2 + ρ + γ)(Rp − 1)]t −K0

∫ t

0
I(u)du + ϕ(t), (34)

where

ϕ(t) =
∫ t

0

σS(u)g(I(u))
I(u)

dW(u) + β
g(Λ)

Λ
ψ(t)t

+
∫ t

0

∫
Y

ln
(

1 +
Q(a)S(u)g(I(u))

I(u)

)
Ñ(du, da).

Similar to (25), by Lemma A1 and Equation (20), we have

lim
t→∞

t−1ϕ(t) = 0 a.s.

Note that I(t) ∈ D, we have −∞ < ln I(t) < ln Λ. The inequality (34) can be written
as

1
t

∫ t

0
I(u)du ⩾

1
K0

[
ln I(0)− ln Λ

t
+ (µ2 + ρ + γ)(Rp − 1) +

ϕ(t)
t

]
. (35)

We have the following inequality by taking the limit inferior of (35)

lim inf
t→∞

1
t

∫ t

0
I(u)du ⩾

µ2 + ρ + γ

K0
(Rp − 1). (36)
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For removed individuals R(t) in Equation (6), we obtain

R(t)− R(0)
t

= γ

∫ t
0 I(u)du

t
− µ3

∫ t
0 R(u)du

t
.

Thus,

lim inf
t→∞

1
t

∫ t

0
R(u)du ⩾

γ

µ3

µ2 + ρ + γ

K0
(Rp − 1) > 0 a.s. (37)

2.4. Proof of Theorem 4

Proof. Let x(t) = S(t)− α
µ1

, y(t) = I(t), z(t) = R(t). The Equation (6) can be written as

dx(t) =
(
−βx(t)g(y(t))− βα

µ1
g(y(t))− µ1x(t)

)
dt − σ

(
x(t) +

α

µ1

)
g(y(t))dW(t)

−
∫
Y

Q(a)
(

x(t−) +
α

µ1

)
g(y(t−))Ñ(dt, da),

dy(t) =
(

β

(
x(t) +

α

µ1

)
g(y(t))− (µ2 + ρ + γ)y(t)

)
dt + σ

(
x(t) +

α

µ1

)
g(y(t))dW(t)

+
∫
Y

Q(a)
(

x(t−) +
α

µ1

)
g(y(t−))Ñ(dt, da),

dz(t) = (γy(t)− µ3z(t))dt.

Define a nonnegative function V : R3
+ → R+ by

V(x, y, z) = (x + y)2/2 + c1y + c2z2/2 with c1, c2 > 0.

where c1 and c2 are positive constants to be determined later.
By Itô’s formula, we have

dV = L Vdt + c1σ(x + α/µ1)g(y)dW(t) + c2

∫
Y

Q(a)(x + α/µ1)g(y)Ñ(dt, da),

where

L V = (x + y)(−µ1x − (µ2 + ρ + γ)y) + c1(β(x + α/µ1)g(y)− (µ2 + ρ + γ)y)
+ c2z(γy − µ3z).

By the condition (2) of g(I) and Theorem 1, we obtain

L V ⩽− µ1x2 − (µ2 + ρ + γ)y2 + [c1βg′(0)− (µ1 + µ2 + ρ + γ)]xy

+ c1αβg′(0)y/µ1 − c1(µ2 + ρ + γ)y + c2γyz − c2µ3z2

⩽− µ1x2 − (µ2 + ρ + γ)y2 − c2µ3z2 + [c1βg′(0)− (µ1 + µ2 + ρ + γ)]xy

+
[
c2γΛ + c1

(
αβg′(0)/µ1 − (µ2 + ρ + γ)

)]
y.

Based on the fact R0 < 1, we can choose c1 = (µ1 + µ2 + ρ + γ)(βg′(0))−1 > 0 and
c2 = c1(µ2 + ρ + γ)(1 − (αβg′(0))(µ1(µ2 + ρ + γ))−1) > 0 such that

c1βg′(0)− (µ1 + µ2 + ρ + γ) = 0 and c2γΛ + c1

(
αβg′(0)µ−1

1 − (µ2 + ρ + γ)
)
= 0.

Then
L V ⩽ −µ1x2 − (µ2 + ρ + γ)y2 − c2µ3z2 < 0,

which implies that the equilibrium E0 is globally asymptotically stable on D by
Theorem A1.
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2.5. Proof of Theorem 5

Proof. Consider the nonnegative C2-function V : R3
+ → R+ given by

V(S, I, R) =
1
2
(S − S∗ + I − I∗)2 + p

(
I − I∗ − I∗ ln

I
I∗

)
+

q
2
(R − R∗)

2,

where p and q are positive constants to be determined later.
By Itô’s formula, we have

dV = L Vdt + p(I − I∗)σSg(I)/IdW(t)

+ p
∫
Y
[Q(a)Sg(I)− I∗ ln(1 + Q(a)Sg(I)/I)]Ñ(dt, da).

In detail,

L V = (S − S∗ + I − I∗)(α − µ1S − (µ2 + ρ + γ)I) + pI∗σ2g2(I)S2/(2I2)

+ p(1 − I∗/I)(βSg(I)− (µ2 + ρ + γ)I) + q(R − R∗)(γI − µ3R)

+ pI∗
∫
Y
[Q(a)Sg(I)/I − ln(1 + Q(a)Sg(I)/I)]v(da).

(38)

Since the endemic point (S∗, I∗, R∗) satisfies the following equations

S∗ =
(µ2 + ρ + γ)I∗

βg(I∗)
, R∗ =

γ

µ3
I∗ and α = (µ2 + ρ + γ)I∗

βg(I∗) + µ1

βg(I∗)
.

The Equation (38) can be rewritten as

L V = (S − S∗ + I − I∗)(µ1S∗ + (µ2 + ρ + γ)I∗ − µ1S − (µ2 + ρ + γ)I)

+ pI∗σ2S2g2(I)/2I2 + p(I − I∗)(βSg(I)/I − βS∗g(I∗)/I∗)
+ q(R − R∗)(γI − γI∗ + µ3R∗ − µ3R)

+ pI∗
∫
Y
[Q(a)Sg(I)/I − ln(1 + Q(a)Sg(I)/I)]v(da)

= − µ1(S − S∗)
2 − (µ2 + ρ + γ)(I − I∗)2 − µ3q(R − R∗)

2

+ γq(I − I∗)(R − R∗) + pβS(I − I∗)(g(I)/I − g(I∗)/I∗)
+ [pβg(I∗)/I∗ − (µ1 + µ2 + ρ + γ)](S − S∗)(I − I∗)

+ pI∗σ2S2g2(I)/2I2 + pI∗
∫
Y
[Q(a)Sg(I)/I − ln(1 + Q(a)Sg(I)/I)]v(da).

By the mean value theorem, g(I)/I − g(I∗)/I∗ = (I − I∗)(g(ς)/ς)′ with ς between I
and I∗, and choose p such that pβg(I∗)/I∗ − (µ1 + µ2 + ρ + γ) = 0, since (g(I)/I)′ < 0 for
all I > 0, we have

L V = − µ1(S − S∗)
2 − (µ2 + ρ + γ)(I − I∗)2 − µ3q(R − R∗)

2

+ pβS(I − I∗)2(g(ξ)/ξ)′ + γq(I − I∗)(R − R∗) + pI∗σ2S2g2(I)/2I2

+ pI∗
∫
Y
[Q(a)Sg(I)/I − ln(1 + Q(a)Sg(I)/I)]v(da)

⩽− µ1(S − S∗)
2 − (µ2 + ρ + γ)(I − I∗)2 − µ3q(R − R∗)

2 +
γ2q
2µ3

(I − I∗)2

+
qµ3

2
(R − R∗)

2 +
pI∗
2

σ2Λ2(g′(0))2 + pI∗
∫
Y

Q(a)Λg′(0)v(da)

⩽− µ1(S − S∗)
2 −

(
µ2 + ρ + γ − γ2q

2µ3

)
(I − I∗)2 − qµ3

2
(R − R∗)

2 + Kσ.
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Choose 0 < q < 2µ3(µ2+ρ+γ)
γ2 such that (µ2 + ρ + γ)− γ2q

2µ3
> 0. Thus,

dV ⩽
[
−µ1(S − S∗)

2 −
(

µ2 + ρ + γ − γ2q
2µ3

)
(I − I∗)2 − qµ3

2
(R − R∗)

2
]

dt

+ Kσdt + p(I − I∗)σSg(I)/IdW(t)

+ p
∫
Y
[Q(a)Sg(I)− I∗ ln(1 + Q(a)Sg(I)/I)]Ñ(dt, da).

(39)

Integrating from 0 to t and taking expectation on both sides of (39), we obtain

0 ⩽EV(S, I, R) ⩽ V(S(0), I(0), R(0))−E
∫ t

0

{
µ1(S(u)− S∗)

2

+

(
µ2 + ρ + γ − γ2q

2µ3

)
(I(u)− I∗)2 +

qµ3

2
(R(u)− R∗)

2
}

du + Kσt,

Dividing both sides by t and taking the limit superior, we obtain

lim sup
t→∞

1
t
E
∫ t

0

{
µ1(S(u)− S∗)

2 +

(
µ2 + ρ + γ − γ2q

2µ3

)
(I(u)− I∗)2

+
qµ3

2
(R(u)− R∗)

2
}

du ⩽ Kσ.

Since M = min{µ1, µ2 + ρ + γ − γ2q
2µ3

, qµ3
2 }, it is easy to obtain

lim sup
t→∞

1
t
E
∫ t

0

[
(S(u)− S∗)

2 + (I(u)− I∗)2 + (R(u)− R∗)
2
]
du ⩽

Kσ

M
.

3. Discussion and Numerical Simulations

The main objective of this paper is to study the properties and dynamic of stochastic
SIR models with general nonlinear incidence rate and Lévy jump. We first demonstrate that
the system possesses a globally unique positive solution. Then, we establish the conditions
for the extinction and persistence of diseases, and analyze the effects and implications of
these conditions. Furthermore, we explore the asymptotic behavior of the solution around
the equilibrium point of the deterministic model.

The results show that Lévy noise can significantly alter the properties of infectious
disease systems. In deterministic models, the equilibrium point of the disease is stable, but
after adding Lévy noise, this equilibrium point may become unstable, leading to sustained
fluctuations in the disease. In addition, we also observe that Lévy noise can accelerate
the extinction of the disease. These results provide important theoretical foundations and
methods for understanding the properties and behaviors of infectious disease models with
Lévy noise.

To demonstrate the above results, we provide some numerical simulations using the
Milstein method [19] and Euler numerical approximation [20]. For computational conve-
nience, we choose the nonlinear incidence rate βSg(I) = βSI

1+I/2 , ensuring that g(I) = I
1+I/2

satisfies the condition (2) with m = 1/2, and g′(0) = 1. In the following figures, the black
line represents the trajectory of the deterministic model, while red, blue, and green lines
represent the trajectories of the stochastic models. All the simulations below are performed
through Matlab 2021b on a personal computer with Windows 11 and CPU i7-10700.

Example 1. In Figure 1, we select the parameter values for model (6) as follows:

S(0) = 0.8, I(0) = 0.1, R(0) = 0.1, α = 0.2, β = 0.4, µ1 = µ2 = µ3 = 0.2,

ρ = 0.12, γ = 0.06, ζ = 0.8, σ = 0.35, Y = (0,+∞), v(Y) = 1, T = 50,
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and consider the trajectories of the stochastic SIR model (6) with parameter Q taking values of 0.25,
0.35, and 0.45, respectively. Then Assumption 1 holds with Λ = 1, and we have

Re < 1 and R0 > 1.

According to (i) in Theorem (2), the disease I(t) in system (6) is extinct with probability one.
Conversely, the disease I(t) in system (3) will persist.

As seen in Figure 1, the disease I(t) in the stochastic models goes extinct due to the influence
of noise. Especially in the early stages of the spread of infectious diseases, the stochastic SIR model
with a considerable Lévy jump strength (i.e., Q = 0.45) exhibits significant volatility. However,
as the spread progresses, this volatility significantly weakens compared to the other two stochastic
processes. This is because the stochastic process with intense volatility causes the disease I(t) to
first approach 0, which means the number of infected individuals decreases and the disease tends to
go extinct.

Example 2. In Figure 2, we select the parameter values for model (6) as follows:

S(0) = 0.8, I(0) = 0.1, R(0) = 0.1, α = 0.2, β = 0.6, µ1 = µ2 = µ3 = 0.2,

ρ = 0.05, γ = 0.05, ζ = 0.8, Q = 0.01, Y = (0,+∞), v(Y) = 1, T = 100,

and consider the trajectories of the stochastic SIR model (6) with parameter σ taking values of 0.05,
0.15, and 0.25, respectively. Then Assumption 1 holds with Λ = 1, and we have

Rp > 1 and R0 > 1.

By Theorem 3, the system (6) will persist.
As seen from the Figure 2, the solution of the stochastic SIR model (6) does fluctuate around

the equilibrium point of the deterministic model (3). This volatility reflects the uncertainty of the
model. In particular, as the intensity σ of Brownian motion gradually increases, the fluctuations of
the stochastic model at the equilibrium point also gradually increase. This entirely agrees with the
conclusion described in Theorem 5.

Example 3. In Figure 3, we select the parameter values for model (6) as follows:

S(0) = 0.8, I(0) = 0.1, R(0) = 0.1, α = 0.2, β = 0.15, µ1 = µ2 = µ3 = 0.2,

ρ = 0.02, γ = 0.03, ζ = 0.8, Y = (0,+∞), v(Y) = 1, T = 50,

and consider the trajectories of the stochastic SIR model (6) with parameter (σ, Q) taking values of
(0.35, 0.1), (0.40, 0.2), and (0.45, 0.3), respectively. Then Assumption 1 holds with Λ = 1, and
we have

β2(g′(0))2

2Θ2(µ2 + ρ + γ)
< 1 and R0 < 1.

According to (ii) in Theorem 2, the disease I(t) of system (6) goes extinct. we can also obtain
E0 = (1, 0, 0) is globally stochastically asymptotically stable on D by Theorem 4.

As seen from Figure 3, as the intensity of Brownian motion and Lévy jumps gradually
increases, the fluctuations in the solution of the stochastic SIR model also gradually increase, which
indicates an increase in model uncertainty. Over time, this volatility gradually decreases, and the
number of infected individuals eventually tends to extinction. This indicates that under condition

β2(g′(0))2

2Θ2(µ2+ρ+γ)
< 1, even if the spread of the disease is affected by various uncertain factors, in the

long run, the disease will gradually die out. Among them, the disease of the stochastic SIR model
with significant fluctuations first tends to 0, which is due to the large fluctuations that make the
disease of this model first tend to 0, resulting in the extinction of the disease.
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(a) The trajectory of susceptible individuals S(t) in Example 1.
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(c) The trajectory of removed individuals R(t) in Example 1.

Figure 1. The black line represents the trajectory of the deterministic system (3) in Example 1 that
satisfies R0 > 1, the red line represents the trajectory of the stochastic system (6) with Q = 0.25 in
Example 1 that satisfies Re < 1, the green line represents the trajectory of the stochastic system (6)
with Q = 0.35 in Example 1 that satisfies Re < 1, and the blue line represents the trajectory of the
stochastic system (6) with Q = 0.45 in Example 1 that satisfies Re < 1.
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Figure 2. The black line represents the trajectory of the deterministic system (3) in Example 2 that
satisfies R0 > 1, the red line represents the trajectory of the stochastic system (6) with σ = 0.05 in
Example 2 that satisfies Rp > 1, the green line represents the trajectory of the stochastic system (6)
with σ = 0.15 in Example 2 that satisfies Rp > 1, and the blue line represents the trajectory of the
stochastic system (6) with σ = 0.25 in Example 2 that satisfies Rp > 1.
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(c) The trajectory of removed individuals R(t) in Example 3.

Figure 3. The black line represents the trajectory of the deterministic system (3) in Example 3 that satisfies
R0 < 1, the red line represents the trajectory of the stochastic system (6) with (σ, Q) = (0.35, 0.1) in

Example 3 that satisfies β2(g′(0))2

2Θ2(µ2+ρ+γ)
< 1, the green line represents the trajectory of the stochastic system

(6) with (σ, Q) = (0.40, 0.2) in Example 3 that satisfies β2(g′(0))2

2Θ2(µ2+ρ+γ)
< 1, and the blue line represents the

trajectory of the stochastic system (6) with (σ, Q) = (0.45, 0.3) in Example 3 that satisfies β2(g′(0))2

2Θ2(µ2+ρ+γ)
< 1.
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4. Conclusions

This article studies a stochastic SIR model with general nonlinear incidence rate and
Lévy jumps to describe the spread of diseases more accurately. By studying stochastic
infectious disease models, we understand the laws and trends of disease transmission.
When the disease tends to die out, we can accelerate its extinction by strengthening disease
surveillance, improving public health awareness, and taking isolation measures. Con-
versely, suppose the disease shows a sustained transmission state. In that case, we may
need to take more aggressive measures, such as mass vaccination, social distancing, etc., to
control and prevent the spread of the disease effectively. In addition, this article also studies
the global asymptotic behavior of the solution of the stochastic SIR model relative to the
disease-free equilibrium point and the endemic equilibrium point of the corresponding de-
terministic model, which helps us better predict the future development of the disease and
formulate more scientific and effective disease control strategies and preventive measures.

In conclusion, the stochastic infectious disease model proposed in this paper has
enhanced infectious disease models’ realism and broad applicability, providing a more
reliable basis for developing prevention and control strategies. In the future, we can further
explore the impact of other influencing factors, such as climate change and biodiversity,
on the spread of infectious diseases to better understand and predict the transmission
of diseases.
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Appendix A

This section introduces some auxiliary statements in [21]. Consider the n-dimension
stochastic process X(t) with initial value X(0) = x0 ∈ Rn,

dX(t) = f (X(t), t)dt + g(X(t), t)dW(t) +
∫
Y

h(X(t−), a)Ñ(dt, da), (A1)

where f (x, t) : Rn × R+ → Rn, g(x, t) : Rn × R+ → Rn ⊗ Rm and h(x, a) : Rn × Y →
Rn ⊗Rl are continuous functions.

The family of all nonnegative continuous functions defined on Rn ×R+ that are twice
differentiable in x and once in t is denoted by C2,1(Rn ×R+;R+). The differential operator
L acts on V ∈ C2,1 is defined by

L V(x(t), t) =
∂V
∂t

(x(t), t) +
n

∑
i=1

∂V
∂xi

fi(x(t)) +
1
2

n

∑
i,j=1

∂2V
∂xi∂xj

[gT(x(t−))g(x(t−))]ij

+
∫
Y

[
V(x(t−) + h(x(t−), a))− V(x(t−))− ∂V

∂x
h(x(t−), a)

]
v(da).

Then the generalized Itô’s formula of V is described by

dV(x(t), t) = L V(x(t−), t)dt +
∂V
∂x

g(x(t))dW(t)

+
∫
Y
[V(x(t−) + h(x(t−), a))− V(x(t−))]Ñ(dt, da).
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The following theorem in [17] gives the stability conditions of the trivial solution of
the stochastic equations under the Lyapunov function.

Theorem A1. Let V(x, t) ∈ C2,1 be a nonnegative function, and u, v : R0
+ → R0

+ be continuous
positive function such that u(|x|) ⩽ V(x, t) ⩽ v(|x|), for |x| < K. If there is a continuous positive
function w : R0

+ → R0
+ satisfying

L V ⩽ −w(|x|), ∀x ̸= 0 and lim
r→∞

w(r) = +∞,

then the trivial solution Equation (A1) is globally asymptotically stable.

We use the following strong law of large numbers for local martingales in [22] to
discuss the extinction and persistence of the disease.

Lemma A1. Let the real-valued continuous local martingale {Mt}t⩾0 vanish at t = 0 and satisfy

lim sup
t→∞

t−1⟨M⟩t < ∞ a.s.

Then, limt→∞ t−1Mt = 0 a.s.
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