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Abstract: This paper extends the k-out-of-n:G reliability system to a multi-server queue. We study a
multi-server reliability-queuing model with the N-policy of repair. The queuing system considered
here has n servers, each of which has identically and exponentially distributed service times with
parameter µ. Servers are subject to breakdown at an exponential rate γ. The repair process follows
the N-policy of repair. Although these servers work independently of each other, service can be
provided only when k functional servers are available in the system. We study the model in the
steady state, using the matrix analytic method. We evaluate some associated performance measures
and provide graphical/numerical illustrations. We consider an optimization problem, and the results
of the study are presented.
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1. Introduction

This paper extends the reliability system k-out-of-n:G to a multi-server queue (n par-
allel server, with server failure and N-policy of repair). As in the k-out-of-n:G system, at
least k servers should be operational in order for the whole system to work (system can
provide service). At the moment that the number of operational servers is reduced to k − 1,
the service is disrupted. As a result, the system can start operation only after one working
server is added to the system. This model can be applied directly to the high-altitude
platform (HAP) system used for smooth telecommunication when all other facilities fail,
due to natural calamities. The system collapses when the number of operational servers is
reduced to k − 1, irrespective of the number of customers in the system. As with parallel
(at least one operational component should be UP for the system to function)/serial (all
components should be operational for the system to be functional) systems in the reliability
context, we encounter a similar situation in the queuing model discussed in this paper.
Thus, this paper extends the k-out-of-n reliability system to the queuing system and simul-
taneously to the classical multi-server queuing system. In the proposed queuing model,
an element of dependency on the number of operational servers arises. Thus, it differs
from the classical multi-server queuing models in that at least k (k = 1, for the classical
multi-server system with server failures and their repair) servers should be operational to
provide a service. This phenomenon can be interpreted as the system becoming overloaded
when the number of operational servers reduces to k − 1.

The mathematical foundation of reliability was laid by the pioneering work of Barlow
and Proschan (1965) [1]. The element of interest is the reliability of the machine in a given
interval of time or failure-free operation up to time t. Naturally, one investigates the
distribution of the number of failed components at any random time when the machine is
in operation. The k-out-of-n system is classified as COLD, WARM or HOT, depending on
whether the operational components are also subject to deterioration when the system is
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down. In the COLD system, no operational components fail when the system is DOWN
(not operational); for the WARM system, the operational components fail at a reduced rate
when the system is DOWN compared to that when it is UP (operational); and in the case
of a HOT system, the failure rate of components is the same, irrespective of whether the
system is UP or DOWN. As such, for k-out-of-n systems, the notion of “providing service”
was not in vogue until Krishnamoorthy, Sathian and Viswanath (2016) [2] introduced
it. They considered separately two distinct cases of providing service. In one of them,
the system serves (repairs) failed machines in an organization. The k-out-of-n system is
considered as a single server subject to failure. Therefore, at most, one failed machine
undergoes repair by the server at a time. The repair of failed components is according to
some specific policy. In this case, the system state remains finite because it is assumed that
there are only a limited number of machines in the organization. In the second model, the
authors assumed that when the server (the k-out-of-n system) is idle, it provides a service
to external customers. However, priority is given to the repair of internal customers (for
example, failed machines in the organization). For these two cases, the authors investigated
continuous-time server reliability.

The N-policy was introduced by Yadin and Naor in [3]. The N-policy of repair was
introduced by Krishnamoorthy et al. (2002) [4] and is as follows: when the number of oper-
ational components comes down to level N(k ≤ N ≤ n), a repair facility starts repairing
failed units, one at a time. This repair process continues until all failed components are
brought back to an operational state. It is assumed that the components repaired are as
good as new. This assumption is essential for mathematical tractability. There is another
means of keeping the system reliability high—placing an order for n − k + 1 components
when the number of operational components goes down to N. It takes a certain amount
of time, deterministic or random, for the order to materialize. Sometimes, this may take
place only after the system becomes non-operational. The higher the N value, the higher
the probability of the system remaining UP until the order materialization. We can further
improve the system reliability by combining the N-policy of repair and the order placement
for new components. The order can be placed above the level at which the number of
operating components drops to N or we can place the order at this level or even below this
level. This policy can be further modified for the cancellation of a placed order if the num-
ber of operational components reaches the maximum n through the repair process before
the materialization of the order placed. Thus, various extensions are possible. N-policy
queuing systems with server breakdowns (both working and non-working breakdowns)
are studied extensively in the queuing literature (for example, [5–7]).

Other than the N-policy of repair, for policies such as D (the accumulated work load
reaching or crossing the level D (D is a continuous random variable)) and T, the time until
the repair facility is activated after the system completely returns to a fully functional state
(all components are in an operational state due to repair), are used. Additional solutions
are different combinations of these policies. In the queuing literature, the N-policy of repair
is the best- and the T-policy is the worst-performing. Similarly, comparisons among the
combinations of policies can also be performed.

Highlights of This Work

• The present work is the first to consider the k-out-of-n system as a multi-server queue.
• Unlike the classical multi-server queue, in the present work, at least k servers should

be operational to provide a service. The multi-server case can be deduced from the
present work by assuming that k = 1.

• Two birth and death processes encountered in the analysis are (i) the customer’s arrival
and service processes and (ii) the accumulation of servers that break while providing
a service; until this number reaches n − N (pure death process), the repair process
starts from this point of time and, with this, we have a birth and death process. Note
that we assume all random variables (inter-arrival times, service time, repair time of
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failed servers) involved to be exponentially distributed. The combined process turns
out to be a birth and death process.

• The system under consideration reduces to the classical M/M/∞ queue if we assume
that the servers (system components) do not fail and that k = 1. Then, we take the
limit as n → ∞.

The remaining part of this paper is as follows. In Section 2, the description of the prob-
lem is given. In Section 3, the mathematical modeling of the problem and its analysis are
presented. The stability condition is derived in Section 4 and the steady state probabilities
found. Section 5 outlines certain distributions and performance measures of the system’s
behavior. Numerical and graphical illustrations providing insights into the working of
the system are included in Section 6. An optimization problem is considered in Section 7.
Concluding remarks are provided in Section 8.

2. Model Description

The model considered here is one that extends the k-out-of-n:G reliability system to
a multi-server queue, especially to a multi-server queue with n servers/units working
in parallel.

We consider a multi-server queueing system where customers arrive according to a
Poisson process with parameter λ. The service facility consists of n servers/units, each
of which can provide service to individual customers. We are considering a k-out-of-n:G
system All the n parallel servers have identically and exponentially distributed service
times with parameter µ. Although these servers work independently, service will take
place only if at least k servers are operational or in working condition. These servers are
susceptible to breakdown. Breakdown occurs at exponentially distributed time intervals
with rate γ. Repair will take place according to the N-policy of repair as described in the
previous section. When the number of operational components comes down to the level
N(k ≤ N < n), a repair facility starts repairing failed units one at a time. The repair process
continues until all failed components are restored to an operational state. It is assumed
that the time taken to repair each unit is exponentially distributed with parameter δ. The
system considered here is COLD, i.e., when the system fails due to the lack of at least k
operational units, the units that are operational do not deteriorate until the system restarts
again, with the failed units replaced with new ones. If we are considering a k-out-of-n : F
COLD system, system failure occurs when any k of the n units fail. Here, the model under
consideration is a k-out-of-n:G COLD system.

We formulate the problem mathematically as follows.

3. Mathematical Formulation

Define, for t ≥ 0,
N1(t) : the number of customers in the system at time t;
N2(t) : the number of operational units in the system at time t;
R(t) : the status of the server that repairs the failed components at time t.

R(t) =

{
0 i f the repair is OFF
1 i f the repair is ON

Then, {(N1(t), N2(t), R(t))|t ≥ 0} is a regular irreducible CTMC on state space
Ω = {(n1, n2, 1) : n1 ≥ 0; k − 1 ≤ n2 ≤ n − 1}⋃{(n1, n2, 0) : n1 ≥ 0; N + 1 ≤ n2 ≤ n}.
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The generator matrix for this process when the states are arranged lexicographically is of
the form

Q =



A0
1 A0

A1
2 A1

1 A0
A2

2 A2
1 A0

. . . . . .
An−1

2 An−1
1 A0
A2 A1 A0

. . . . . . . . .


Ai

1 contains transitions within level i for 0 ≤ i ≤ n − 1. Ai
2 (which are diagonal matrices)

contain transitions from level i to i − 1 for 1 ≤ i ≤ n − 1. A2 (diagonal matrix) contains
transitions from i to i − 1 and A1 within level i. A0 (diagonal matrix) contains transitions
from i to i + 1, ∀i. All the matrices are square matrices of dimension d = 2n − (N + k) + 1.

A0 =

[
0

λId−1

]

A(n1+1,n2,n3)
0(n1,n2,n3)

= λ

For 1 ≤ i ≤ k,

Ai
2 =

[
0

iµId−1

]
Ai

2
(n1−1,n2,n3)
(n1,n2,n3)

= n1µ

For k + 1 ≤ i ≤ N,

Ai
2 =



0
kµ

(k + 1)µ
. . .

(i − 1)µ
iµI


I is an identity matrix of order d − (i − k + 1).

Ai
2
(n1−1,n2,n3)
(n1,n2,n3)

=

{
n2µ i f k ≤ n2 ≤ i − 1
iµ i f i ≤ n2 ≤ n

For N + 1 ≤ i ≤ n − 1,

Ai
2 =



0
kµ

(k + 1)µ
. . .

Nµ
I2 ⊗ (N + 1)µ

. . .
I2 ⊗ (i − 1)µ

iµI
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Ai
2
(n1−1,n2,n3)
(n1,n2,n3)

=

{
n2µ i f k ≤ n2 ≤ i − 1
iµ i f i ≤ n2 ≤ n

A2 =



0
kµ

(k + 1)µ
. . .

Nµ
I2 ⊗ (N + 1)µ

. . .
I2 ⊗ (n − 1)µ

nµ


A2

(n1−1,n2,n3)
(n1,n2,n3)

= n2µ

To easily represent matrix Ai
1, the states {(n1, n2, 1) : k − 1 ≤ n2 ≤ N} of order N − k + 2

are grouped together and given subscript 1, the states {(n1, n2, r) : N + 1 ≤ n2 ≤ n − 1,
r = 0, 1} of order 2(n − 1 − N) are grouped together and given subscript 2, and the state
{(n1, n2, 0) : n2 = n} is given subscript 3.

A0
1 = L

Ai
1 = L − Ai

2

L =

 L11 L12 0
L21 L22 L23
0 L32 L33


L11 = γE− + δE+ − δIN−k+2 − (λ + γ)

[
0

IN−k+1

]
where E− and E+ (refer to page 19) are square matrices of dimension N − k + 2.

L12 = EN−k+21 ⊗ [0 δ]

L21 = E′
N−k+21 ⊗ [γ γ]′

EN−k+21 is a matrix (refer to page 19) of order (N − k + 2)× (n − 1)− N.

L22 = E+ ⊗
[

0 0
0 δ

]
+ E− ⊗

[
γ 0
0 γ

]
− In−1−N ⊗

[
0 0
0 δ

]
− (λ + γ)I2(n−1−N)

where E− and E+ (refer to page 19) are square matrices of dimension (n − 1)− N.

L23 = en−1−N ⊗ [0 δ]′

L32 = e′n−1−N ⊗ [γ 0],

en−1−N is a column vector with 1 in the (n − 1 − N) position.

L33 = −(λ + γ)

A1 = L − A2.
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The transitions in A0
1 = L excluding diagonal entries are given as

A0
1
(n1,m2,m3)
(n1,n2,n3)

=


δ i f n3 = 1, m3 = 1, m2 = n2 + 1, k − 1 ≤ n2 ≤ n − 2
δ i f n3 = 1, m3 = 0, n2 ≤ n − 1, m2 = n
γ i f n3 = m3, m2 = n2 − 1, n2 ̸= N + 1
γ i f n3 = 0, m3 = 1, m2 = N, n2 = N + 1

The transitions from one state to another are given below:

• Transitions due to the arrival of a customer to the system:
(n1, n2, r) → (n1 + 1, n2, r) with rate λ when n2 ̸= k − 1.

• Transitions due to the service completion of a customer:
(n1, n2, r) → (n1 − 1, n2, r) with rate
n1µ when 1 ≤ n1 ≤ k;
n2µ when k + 1 ≤ n1 ≤ n, n2 ≤ n1;
n1µ when k + 1 ≤ n1 ≤ n, n2 > n1;

• Transitions due to the breakdown of an operational unit in the k-out-of-N system:
(n1, n2, r) → (n1, n2 − 1, r) with rate γ when n2 ≥ k, n2 ̸= N + 1, r = 0, 1.
(n1, N + 1, 0) → (n1, N, 1) with rate γ.

• Transitions due to the repair of an operational unit in the k-out-of-N system:
(n1, n2, 1) → (n1, n2 + 1, 1) with rate δ when k − 1 ≤ n2 ≤ n − 1.
(n1, n − 1, 1) → (n1, n, 0) with rate δ.

4. Stability Analysis
4.1. Stability Condition

Let A = A2 + A1 + A0.

A =



−δ δ
γ −γ − δ δ

γ −γ − δ δ
. . . . . .

γ −γ − δ δ
γ −γ − δ B1

B2 B3 B4
B5 B3 B4

. . . . . . . . .
B5 B3 B4

B5 B3 B6
B7 −γ


where

B1 =
[

0 δ
]
, B2 =

[
γ
γ

]
, B3 =

[
−γ 0
0 −γ − δ

]
, B4 =

[
0 0
0 δ

]
,

B5 =

[
γ 0
0 γ

]
, B6 =

[
0
δ

]
, B7 =

[
γ 0

]
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Let π = (πk−1, πk, πk+1...πN−1, πN , πN+1, ...πn−1, πn) be the steady-state probability vec-
tor of the infinitesimal generator matrix A.
In other words,

πA = 0; πe = 1. (1)

Define
Un−1 =

1
γ

B6

Ui =


(B3 + B7Un−1)

−1(−B4) f or i = n − 2
(B3 + B5Ui+1)

−1(−B4) f or N − 1 ≤ i ≤ n − 3
(B3 + B5UN+1)

−1(−B1) f or i = N

For k ≤ i ≤ N,

πi = (
δ

γ
)i−(k−1)πk−1

For N + 1 ≤ i ≤ n − 1,
πi = πi−1Ui−1

πn = πn−1Un−1

From the normalizing condition πe = 1, we have

πk−1[
k

∑
i=0

(
δ

γ
)i + (

δ

γ
)k

n−1

∑
l=N

l

∏
j=N

Uje] = 1. (2)

The infinitesimal generator of this Markov chain indicates that it is a level-independent
quasi-birth–death process. Thus, this queuing system is stable if and only if πA0e < πA2e;
see Neuts [8]. The stability condition is given as follows:

Theorem 1. The given system is stable if and only if

λ <
N−k

∑
i=0

(k + i)µ(
δ

γ
)i+1πk−1 +

n

∑
l=N+1

lµ
l

∏
j=N

Uje(
δ

γ
)kπk−1 (3)

4.2. Steady-State Probability Vector

Assuming the stability of the system, we proceed to find the steady-state probability
of the system states.

Let x be the steady-state probability vector of Q, i.e., x satisfies xQ = 0 and xe = 1.
We partition this vector as

x = (x0, x1, x2 . . .),

where xi = x(i,n2,r) are of dimension d = 2n − (N + k) + 1.

xn+i = xnRi, i ≥ 1

where the matrix R is the minimal non-negative solution to the matrix quadratic equation

R2 A2 + RA1 + A0 = 0

and the vectors x0, x1, · · · , xn . . . are obtained by solving the equations

x0 A0
1 + x1 A1

2 = 0 (4)

xi−1 A0 + xi Ai
1 + x2 Ai

2 = 0, for i ≤ i ≤ n − 2 (5)

xn−2 A0 + xn−1 An−1
1 + xn A2 = 0 (6)

xn−1 A0 + xn(A1 + RA2) = 0 (7)
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subject to the normalizing condition

n−1

∑
i=0

xie + xn(I − R)−1e = 1 (8)

4.3. Special Case

If we consider a system in which k = 1 and assume that the servers do not break
down, the above queuing model reduces to the classical M/M/n queuing system. In this
case, {N1(t); t ≥ 0} forms a CTMC on state space {0, 1, 2, 3, ...} The infinitesimal generator
matrix reduces to the form

Q′ =



−λ λ
µ −(λ + µ) λ

2µ −(λ + 2µ) λ
. . . . . . . . .

nµ −(λ + nµ) λ
. . . . . . . . .


The above system is stable if and only if λ < nµ. For further details, refer to [9].

5. System Characteristics
5.1. Distribution of Server Idle Times

Some servers are not operational when the number of customers in the system is less
than the number of working servers. Here, we compute the distribution of server idle times.

Consider the Markov Chain {(N1(t), N2(t), R(t))|t ≥ 0} on state space,
Ω1 = {(n1, n2, 1) : 0 ≤ n1 ≤ n − 1; n1 < n2 : k − 1 ≤ n2 ≤ n − 1}⋃{(n1, n2, 0) :
0 ≤ n1 ≤ n − 1; n1 < n2 : N + 1 ≤ n2 ≤ n}⋃{∗}. Here, {∗} denotes the absorbing state
indicating that all servers are busy. The time to absorption of this CTMC to {∗} is the time
for which the n2 − n1 operational units are idle. The infinitesimal generator matrix of this
Markov chain is of the form

Q1 =

[
T1 T0

1
0 0

]

Q1 =



A0
1 A0

A1
2 A1

1 A0
. . . . . .

Ak−2
2 Ak−2

1 A0

Ck−1
2 Ck−1

1 Ck−1
0

. . . . . . . . .
Cn−2

2 Cn−2
1 Cn−2

0
Cn−1

2 Cn−1
1


For k − 1 ≤ i ≤ N − 1,

Ci
2 =

[
0 iµI2n−i−1−N

]
Ci

0 =

[
0

λI2n−i−2−N

]
For N ≤ i ≤ n − 2,

Ci
2 =

[
0 iµI2(n−i)−1

]
Ci

0 =

[
0

λI2(n−i)−3

]
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Cn−1
2 =

[
0 0 (n − 1)µ

]
Cn−1

1 =
[
−(n − 1)µ

]
The matrices Ci

1; k − 1 ≤ i ≤ N − 1 are square matrices of order 2n − (i + 1 + N) obtained
by deleting i − 1 rows and columns from Ai

1 : k − 1 ≤ i ≤ N − 1. Ci
1; N ≤ i ≤ n − 1 are

square matrices of order 2n − 2 − i; N ≤ i ≤ n − 1 obtained by deleting N − 1 + (i − N)
rows and columns from Ai

1; N ≤ i ≤ n − 1.
The matrix T0

1 is a column matrix [0, ..0, Tk−1
1 , ..TN−1

1 , TN
1 , ..Tn−1

1 ]. Ti
1; k− 1 ≤ i ≤ N − 1

is a column matrix with the first entry λ + γ. Ti
1; N ≤ i ≤ n − 2 is a column matrix with the

first two entries λ + γ. Tn−1
1 = [λ + γ]

Theorem 2. Let U be the random variable designating the server idle time. Then, P(U > t) =
α.eQ1te. This distribution is also of the PH type with representation PH(α,Q1), where α =
1
d (x(0,k−1,1), ..., x(0,N,1)...x(0,n,0)..., x(k−1,k,1)..x(k−1,n,0), ...x(n−2,n−1,0), .., x(n−2,n,0), x(n−1,n,0)),
and d is the normalizing constant.

5.2. Distribution of First Passage Time from an Inoperative State to n-Operational Server State

Under the assumption that a sufficiently large number of customers are present in the
system, we compute the distribution of time taken for the system to pass from a state in
which there are k − 1 operational servers to a state in which there are n operational servers.

Consider the Markov chain {(N2(t), 1)|t ≥ 0} on state space Ω2 = {(n2, 1) : k − 1 ≤
n2 ≤ n − 1}⋃{∗}. Here, {∗} denotes the absorbing state indicating that all servers are
working. The time to absorption of this CTMC to {∗} is the first passage time from state
(k − 1, 1) to the state {∗}. The infinitesimal generator matrix of this Markov chain, when
the states are arranged in ascending order of n2, is of the form

Q2 =



−δ δ 0
γ −(δ + γ) δ 0

. . . . . . . . .
γ −(δ + γ) δ

γ −(δ + γ) δ

0 0 0 0 0 0


Theorem 3. Let V be the random variable denoting the first passage time from an inoperative state
to an n-operational server state, under the assumption of a large number of customers in the system.
Then, V has a PH distribution with representation PH(β,Q2), where β = (1, 0, ..., 0).

5.3. Distribution of First Passage Time from an n-Operational Server State to an Inoperative State

Here, we also compute the distribution of time taken for the system to pass from a
state in which there are n operational servers to a state in which there are k − 1 operational
servers, under the assumption that a sufficiently large number of customers are present in
the system.

Consider the Markov chain {(N2(t), r)|t ≥ 0} on state space Ω3 = {(n2, 1) : k ≤ n2 ≤
n − 1}⋃{(n2, 0) : N + 1 ≤ n2 ≤ n}⋃{∗}. Here, {∗} denotes the absorbing state indicating
that only k − 1 servers are working/operational. The time to absorption of this CTMC to
{∗} is the first passage time from state (n, 0) to the state {∗}. When the states are arranged in
decreasing order of n2, the infinitesimal generator matrix of this Markov chain is of the form

Q3 =

[
S1 S0

1
0 0

]
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where

S1 =

 S11 S12 0
S21 S22 S23
0 S32 S33


S11 = −γ

S12 = γ

S21 = e1 ⊗ [0, δ]′,

is e1 is a column matrix of order n − 1 − N.

S22 = I(n−1−N) ⊗
[

−γ
−(γ + δ)

]
+ E− ⊗

[
0 0
0 δ

]
+ E+ ⊗

[
γ 0
0 γ

]
where E− and E+ are square matrices (refer to page 19) of dimension n − 1 − N.

S23 = E(n−1)−N1 ⊗ [γ γ]′

E(n−1)−N1 is a matrix (refer to page 19) of order (n − 1)− N × (N − k).

S32 = E1(n−1)−N ⊗ [0 δ]

E1(n−1)−N is a matrix of order (N − k)× (n − 1)− N.

S33 = −(λ + γ)IN−k + δE− + γE+

where E− and E+ are square matrices (refer to page 19) of dimension N − k.

S0
1 = γe2n−(N+k)

Theorem 4. Let W be the random variable denoting the first passage time from the n-operational
server state to an inoperative state, under the assumption of a large number of customers in the
system. Then, W has a PH distribution with representation PH(χ, Q3), where χ = (1, 0, ..., 0).

5.4. Distribution of Number of Times That the System Becomes Inoperative before Reaching the n
Server State

Under the assumption of a large number of customers in the system, we compute
the distribution of the number of times that the system hits the k − 1 server state before
reaching the n server state. Let ∆ denote the absorbing state indicating the number of
working servers hitting n. Then, (M(t), N2(t)), (where M(t) is the number of times that the
system hits the k − 1 server state before reaching the n server state) is the Markov chain on
state space Ω4 = {∆}⋃{(m, n2) : m ≥ 0, k − 1 ≤ n2 ≤ n − 1}. The infinitesimal generator
is of the form

Q4 =


0 0 0 0 0 ...

δen−k M0 M1 0 0 ...
δen−k 0 M0 M1 0 ...
δen−k 0 0 M0 M1

...
. . . . . .


where

M0 =

[
−δ δe′n−k
0 γE− + δE+ − (γ + δ)In−k

]
M1 = γE21

E21 is a matrix of order n − k − 1 with 1 in the (2, 1) position and E−, E+ are matrices (refer
to page 19) of order n − k.
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Let ym denote the probability that the system hits the k − 1 server state m times before
reaching the n server state.

y0 = −δψM−1
0 e

ym = (−1)mδψ(M1M−1
0 )m M−1

0 e

where ψ is the initial probability vector ψ = 1
d1
(πk−1, ..πN , ...π(N+1,1)...π(n−1,1)), and d1 is

the normalizing constant.

Theorem 5. The expected number of times that the system hits the k − 1 server state before reaching
the n server state is ∑ mym.

5.5. Other Performance Measures

• Fraction of time for which the system is under repair:

FRepair = ∑∞
n1=0 ∑n−1

n2=k−1 x(n1,n2,1)

• Fraction of time for which the servers are idle:

FIdle = ∑∞
n1=0 x(n1,k−1,1) + ∑∞

n1=0,n1≤n2 ∑n
n2=k−1 ∑r=0,1 x(n1,n2,r)

• System reliability, i.e., the probability that at least k servers are operational:

S = ∑∞
n1=0 ∑n

n2≥k ∑r=0,1 x(n1,n2,r) = 1 − ∑∞
n1=0 x(n1,k−1,1)

• Average number of customers in the system:

ESystem = ∑∞
n1=0 n1xn1

• Average number of failed servers in the system:

EFS = ∑n−1
n2=k−1(n − n2)∑∞

n1=0 ∑r=0,1 x(n1,n2,r)

• Average number of servers that are idle:

EIS = ∑∞
n1=0(k − 1)x(n1,k−1,1) + ∑∞

n1=0,n1≤n2 ∑n
n2=k−1 ∑r=0,1(n2 − n1)x(n1,n2,r)

6. Numerical Illustrations

In this section, we give some numerical examples that show the effect of the level N of
the N-policy and the repair rate δ on certain performance measures. For this, we consider a
5-out-of-20 : G system.

6.1. Effect of Level N on the Performance of the System

In this numerical example, the following parameters are kept fixed with values as
given below:

λ = 10; µ = 4; γ = 2; δ = 1

From Table 1 and Figures 1–4, the following conclusions can be made:

• The fraction of time for which the servers are under repair is the minimum for a value
N = 7. To minimize FRepair, we need to initiate the repair process when the number of
non-operational servers is 13.
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• The fraction of time for which the servers are idle can be minimized if we choose
N = 8. It plays a crucial role in enhancing the cost-effectiveness of the model.

• The system reliability is maximum when N = 7. We can achieve a more reliable
system if we take into consideration the results in Figure 3.

• The expected number of customers found waiting in the system is the minimum if we
choose N = 8. The value of the expected number of customers is low as the servers
are working in parallel.

Figure 1. Effect of parameter N on the fraction of time for which the servers are under repair.

Figure 2. Effect of the level N on the fraction of time for which the servers are idle.

Table 1. Effect of N on FRepair,FIdle, S and Erepair.

N FRepair FIdle S ESystem

6 0.0507 0.0332 0.9691 0.0651
7 0.0499 0.0265 0.9726 0.0530
8 0.0528 0.0246 0.9722 0.0505
9 0.0562 0.0245 0.9708 0.0510
10 0.0588 0.0250 0.9696 0.0523
11 0.0608 0.0255 0.9685 0.0537
12 0.0626 0.0261 0.9676 0.0551
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Table 1. Cont.

N FRepair FIdle S ESystem

13 0.0642 0.0268 0.9667 0.0564
14 0.0658 0.0274 0.9658 0.0578
15 0.0676 0.0281 0.9649 0.0594
16 0.0700 0.0291 0.9636 0.0615
17 0.0753 0.0314 0.9608 0.0662
18 0.0909 0.0379 0.9527 0.0799

6 8 10 12 14 16 18

N

0.95

0.955

0.96

0.965

0.97

0.975

S

Effect of N on S

Figure 3. Effect of the level N on the reliability of the system.

Figure 4. Effect of the level N on ESystem.
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The above example illustrates that the analysis can guide us in properly managing the
repair policy with specific objectives.

6.2. Effect of the Repair Rate δ on the Performance of the System

In this section, we study the effect of the repair rate δ on the performance of the system.
In this example, the following parameters are kept fixed with values as given below:

λ = 35; µ = 26; γ = 3; N = 6

From Table 2 and Figures 5–8, the following conclusions can be made:

• The fraction of time for which the servers are under repair is the minimum for a
value δ = 4. We can decide to what extent we need to enhance the repair facilities or
resources based on the data in Figure 5.

• The fraction of time for which the servers are idle is maximum for δ = 2. The data
in Figure 6 play a crucial role in specifically designing the facilities so that the idle
time of the servers can be effectively utilized and the entire system can be managed
accordingly.

• The system reliability increases with increasing values of δ as expected. The rate at
which this increase occurs helps us to decide on the optimum value to be considered
when compared to the resources or efforts involved in enhancing the repair facilities;
see Figure 7.

• The expected number of customers found waiting in the system is maximum for δ = 2.

0 2 4 6 8 10 12
0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

F
R

e
p

a
ir

Effect of  on F
Repair

Figure 5. Effect of the repair rate δ on the fraction of time for which the servers are under repair.
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Figure 6. Effect of the repair rate δ on the fraction of time for which the servers are idle.
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Figure 7. Effect of the repair rate δ on the reliability of the system.
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Figure 8. Effect of δ on ESystem.

Table 2. Effect of repair rate δ on FRepair, FIdle, S and Erepair.

δ FRepair FIdle S ESystem

1 0.0507 0.0332 0.9691 0.0651
2 0.0418 0.0469 0.9850 0.0775
3 0.0272 0.0418 0.9950 0.0624
4 0.0232 0.0383 0.9979 0.0544
5 0.0223 0.0364 0.9989 0.0504
6 0.0222 0.0352 0.9993 0.0481
7 0.0225 0.0345 0.9995 0.0466
8 0.0228 0.0340 0.9997 0.0456
9 0.0232 0.0336 0.9998 0.0448
10 0.0235 0.0333 0.9998 0.0442
11 0.0237 0.0331 0.9999 0.0438
12 0.0240 0.0329 0.9999 0.0434

7. Cost Analysis and Optimization Problem

Cost analysis plays an important role in decision making or in formulating policies
related to the working of any system that we encounter in everyday life. In this section,
we propose a cost function related to the system under consideration. We consider an
optimization problem to find the value of the level N of the N-policy of the repair. With
the help of numerical examples as well as graphical illustrations, we show that an optimal
value N exists so that the total expected cost is the minimum. We also study the effect of
the repair rate δ on the the total expected cost.

To determine the optimal level of N at which the repair facility can start working and
to determine the effectiveness of enhancing the repair rate, we proceed as follows. For the
cost analysis, we define the following costs.

• C1: Establishment cost or setup cost.
• C2: Holding cost per customer per unit time.
• C3: Unit time cost to run the repair mechanism.
• C4: Unit time cost incurred due to the idleness of the servers.
• C5: unit time revenue received from the busy servers.
• C6: Unit time revenue received when at least k servers are operational.
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The expected total cost is

TC = C1 + C2 ∗ ESystem + C3 ∗ FRepair + C4 ∗ FIdle − C5 ∗ (1 − FIdle)− C6 ∗ S

We fix the following values:

C1 = 1000, C2 = 75, C3 = 100, C4 = 200, C5 = 500, C6 = 160

The values of other parameters are the same as in Section 6.

• From Table 3 and Figure 9, we see that the optimal value of the level N is N = 8,
for which the total expected cost is the minimum. Thus, it is optimal to wait until
12 servers are non-operational before starting the repair.

• From Table 3 and Figure 10, it can be seen that the expected total cost is the maximum
when the repair rate is δ = 2. This means that if we spend more to increase the rate
at which the repair is performed from 1 to 2 or more, it will not be reflected in the
total expected cost. Thus, a decision regarding the facilities to be arranged to ensure
a specific repair rate can be made using this cost analysis. In this specific numerical
example, it is enough to ensure a repair rate of at most δ = 1.

• By analyzing the problem numerically, we can decide on the optimal values of the
level N of the N−policy and also the optimal repair rate δ to be maintained.

Table 3. Effect of N and δ on expected total cost.

N TC δ TC

6 528.2877 1 528.2877
7 523.1107 2 540.4254
8 521.8479 3 535.9006
9 521.9576 4 532.8554
10 522.4002 5 531.2721
11 522.9301 6 530.3771
12 523.4913 7 529.8193
13 524.0646 8 529.4412
14 524.6497 9 529.1666
15 525.2904 10 528.9562
16 526.1948 11 528.7882
17 528.1975 12 528.6496
18 534.0302

6 8 10 12 14 16 18

N

520

525

530

535

T
C

Effect of N on Total Cost(TC)

Figure 9. Effect of the changes in level N on the expected total cost.
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Figure 10. Effect of the repair rate δ on the expected total cost.

8. Conclusions

This paper studies a multi-server queuing system with the N-policy of repair, by
viewing it as a k-out-of-n:G system. The steady-state distributions of various system states
are computed. The distribution of server idle times is analyzed. Under the assumption of a
sufficiently large number of customers in the system, the distribution of the first passage
times from an inoperative state to an n server state and vice versa has been found. The
assumption of a sufficiently large number of customers in the system is made to avoid
complications that may arise due to future arrivals. Other system performance measures
such as system reliability, the expected number of failed servers, etc., are computed.

The effect of an increase in the level N and the repair rate δ on various performance
measures, when other parameters are kept fixed, is studied numerically and graphically.
An increase in the repair rate significantly increases the system reliability and decreases the
expected number of customers in the system. It reduces the idleness of servers and reduces
the fraction of time for which the servers are under repair. On the other hand, an increase
in N increases the fraction of time for which the servers are under repair. However, as N
increases, the idleness of servers and the expected number in the system first decrease and
then increase, while the system reliability first increases and then decreases. The optimal
value of N depends on the parameters of the system. The examples illustrate how an
optimal policy could be derived for a multi-server queuing system, keeping in mind certain
specific objectives. A cost function has been constructed and the results of the cost analysis
are presented.

There can be several extensions to the problem considered in this paper. An extension
of the present work to one in which consecutive k-out-of-n systems provide a service to
customers, either linearly or in a circular fashion, is proposed for future research. A similar
study of the k-out-of-n : F system is underway. Moreover, the k-out-of-n system could be
analyzed under both HOT and WARM conditions.
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Notations and Abbreviations
The following abbreviations are used in this manuscript:

CTMC Continuous-time Markov chain
QBD process Quasi-birth–death process
e All one vector with appropriate dimension
In Identity matrix of order n × n

E− Square matrix of appropriate size with all zero entries except the entries
(E−)(j,j−1), which are equal to 1

E+ Square matrix of appropriate size with all zero entries except the entries
(E+)(j,j+1), which are equal to 1

Eij
Matrix of appropriate size with all zero entries except the entry (i, j), which is
equal to 1

ei
Column vector of appropriate dimension with all zero entries except the entry i,
which is equal to 1

A′ Transpose of matrix A
0 Matrix whose entries are 0, of appropriate size

A ⊗ B
Kronecker product; if A = [aij] is a matrix of order m × n and if B is a matrix of
order p × q, then A ⊗ B = [aijB] will denote a matrix of order mp × nq
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