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Abstract: This paper discusses the dissipative filtering problem for discrete-time nonlinear networked
systems with dynamic quantization and data packet dropouts. The Takagi–Sugeno (T–S) fuzzy model
is employed to approximate the considered nonlinear plant. Both the measurement and performance
outputs are assumed to be quantized by the dynamic quantizers before being transmitted. Moreover,
the Bernoulli stochastic variables are utilized to characterize the effects of data packet dropouts
on the measurement and performance outputs. The purpose of this paper is to design full- and
reduced-order filters, such that the stochastic stability and dissipative filtering performance for the
filtering error system can be guaranteed. The collaborative design conditions for the desired filter and
the dynamic quantizers are expressed in the form of linear matrix inequalities. Finally, simulation
results are used to illustrate the feasibility of the proposed filtering scheme.
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1. Introduction

In recent years, there has been a surge in academic interest in networked systems. The
fundamental reason is that, due to their benefits of low cost, easy maintenance, and high
reliability, networked systems are gradually replacing traditional control systems and taking
center stage in the development of control systems [1]. Nowadays, networked systems are
used in industries such as autonomous vehicles, industrial process control, smart homes, and
others, with great success [2]. However, because of network restrictions, networked systems
invariably generate some issues such as quantization, data packet dropouts, and so on [3].
These issues not only cause networked systems to run less efficiently, but they additionally
possess the potential to cause instability. One of the primary sources of these issues is signal
quantization inaccuracy and data packet dropouts. Among them, one of these causes of
networked systems’ poor operating efficiency and instability is quantization error. Therefore,
it is crucial to deal with the analysis and design problems for networked systems subject to
signal quantization and data packet dropouts. Over the past several years, a great number
of achievements have been reported on these topics. The analysis and design problems for
networked systems with quantization were addressed in [4–11]. The analysis and design
problems for networked systems with data packet dropouts were studied in [8–12].

As is well known, nonlinearities exist in many practical physical systems [13]. There-
fore, nonlinear control systems have attracted the attention of many scholars. As an effective
means to deal with nonlinear systems, the Takagi–Sugeno (T–S) fuzzy model approach has
received extensive attention from many international scholars and a series of important re-
sults have been published in the open literature (see, e.g., [14–16] and references therein). In
recent years, based on the T–S fuzzy model approach, the study on networked systems has
also attracted attention and some important results have been achieved (see, e.g., [17–20]
and references therein). Particularly, based on the T–S fuzzy model approach, the control
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problem of nonlinear networked systems with quantization was studied in [21–26] and
the control problem of nonlinear networked systems subject to data packet dropouts was
addressed in [27–29].

In addition, the filtering problem is considered to be an important issue in the study
of control theory because the state variables that can reflect the inside of the system are not
always available in the vast majority of practical systems. Scholars at home and abroad have
undertaken enormous research on the filtering problem and many significant results have
been proposed. For linear networked systems, the filter design problem was researched
in [30–32]. For nonlinear systems, the resilient mixed H∞ and energy-to-peak filtering
problem and the H∞ filtering problem with D stability constraints were addressed based
on the T–S fuzzy model approach in [33] and [34], respectively. For nonlinear networked
systems, based on the T–S fuzzy model approach, the event-triggered H∞ filtering problem
was addressed with the effect of weighted try-once-discard protocol in [35]. Particularly,
based on the T–S fuzzy model approach, the filtering problem for nonlinear networked
systems with the effect of quantization was investigated in [36–41] and the filtering problem
for nonlinear networked systems with the effects of data packet dropouts was considered
in [39–43]. However, it should be noted that most of the above literature is about H∞
filtering. As pointed out in [23,44], the dissipative performance is more general than the
H∞ performance. As a result, the study of the dissipative filtering problem is significant
for nonlinear networked systems. As far as the author knows, there is no relevant research
on the dissipative filtering problem for nonlinear discrete-time networked systems under
the effects of dynamic quantization and data packet dropouts on the measurement output
and the performance output, simultaneously, which motivated the current research.

This paper considered the quantized dissipative filtering problem of discrete-time
nonlinear networked systems with data packet dropouts based on the T–S fuzzy model
strategy. The primary contributions of this paper can be summarized as follows.

(1) According to the T–S fuzzy model approach, the dissipative filtering problem is investi-
gated for discrete-time nonlinear networked systems subject to dynamic quantization
and data packet dropouts.

(2) In this paper, both the effects of dynamic quantization and data packet dropouts on
the measurement output and performance output are considered, simultaneously.
Moreover, a more general adjusting strategy is proposed for the dynamic parameter
of the dynamic quantizer.

(3) By introducing a dimension adjustment matrix, the design conditions for both the de-
sired full- and reduced-order dissipative filters are proposed in the unified framework
of linear matrix inequalities.

The rest of this paper is organized as follows. The filtering problem to be investigated
is formulated in Section 2. In Section 3, the main results on the design of the dissipative
filter with dynamic quantization and data packet dropouts are presented. In Section 4, an
example is provided to demonstrate the effectiveness of the developed filtering strategy.
Finally, the conclusion of this paper is provided in Section 5.

Notations: The notations used in this paper are standard. Rn and Rm×n indicate
the n-dimensional Euclidean space and the set of all real matrices of dimension m × n,
respectively. I is used to denote the identity matrix with compatible dimensions. |·|
stands for Euclidean vector norm. The symbols diag{· · · } and ∗ are utilized to denote
block-diagonal matrix and symmetric element in the matrix, respectively. AT and A−1

represent the transpose matrix and inverse matrix of matrix A, respectively. λmin(A) stands
for the smallest eigenvalue of the matrix A and l2[ 0, ∞) denotes the space of the square
integrable vectors over [ 0, ∞).

2. Problem Formulation
2.1. Nonlinear Plant

In this paper, a discrete-time T–S fuzzy model is used to approximate the nonlinear
plant under consideration and ith is formulated as follows
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Plant Rule i: IF n1(t) is M1i and n2(t) is M2i and . . . and np(t) is Mpi, THEN

x(t + 1) = Aix(t) + Biw(t)
y(t) = Cix(t) + Diw(t)
z(t) = Eix(t) + Fiw(t)

(1)

where Mτi with i = 1, 2, . . . , s and τ = 1, 2, . . . , p are the fuzzy sets, s stands for the
number of fuzzy rules, and n(t) = [n1(t), n2(t), . . . , np(t)] stands for the premise variable.
x(t) ∈ Rnx and y(t) ∈ Rny stand for the system state and the measurement output,
respectively, z(t) ∈ Rnz stands for the performance output, and w(t) ∈ Rnw stands for the
noise signal belonging to l2[ 0, ∞). Ai ∈ Rnx×nx , Bi ∈ Rnx×nw , Ci ∈ Rny×nx , Di ∈ Rny×nw ,
Ei ∈ Rnz×nx , and Fi ∈ Rnz×nw are the system matrices.

Denote

bi(n(t)) =
p

∏
τ=1

Mτi(nτ(t)), i = 1, 2, . . . , s (2)

where Mτi(nτ(t)) is the grade of membership of nτ(t) in Mτi.
Throughout this paper, it is assumed that

bi(n(t)) > 0,
s

∑
i=1

bi(n(t)) > 0, i = 1, 2, . . . , s. (3)

Let

pi(n(t)) =
bi(n(t))

∑s
i=1 bi(n(t))

, i = 1, 2, . . . , s. (4)

Then

pi(n(t)) ≥ 0,
s

∑
i=1

pi(n(t)) = 1, i = 1, 2, . . . , s. (5)

Moreover, the T–S fuzzy model can be further represented as

x(t + 1) = A(p)x(t) + B(p)w(t)
y(t) = C(p)x(t) + D(p)w(t)
z(t) = E(p)x(t) + F(p)w(t)

(6)

where
A(p) =

s
∑

i=1
pi(n(t))Ai, B(p) =

s
∑

i=1
pi(n(t))Bi,

C(p) =
s
∑

i=1
pi(n(t))Ci, D(p) =

s
∑

i=1
pi(n(t))Di,

E(p) =
s
∑

i=1
pi(n(t))Ei, F(p) =

s
∑

i=1
pi(n(t))Fi.

2.2. Dynamic Quantizers and Data Dropouts

In order to reduce the frequency of information exchange and the burden of communi-
cation, the measurement output y(t) and the performance output z(t) will be quantized
by the dynamic quantizer developed in [6], respectively. According to [6], the quantized
measurement output and the quantized performance output can be formulated as

gας(t)(ς(t)) = ας(t)gς

(
ς(t)
ας(t)

)
, ς = y, z. (7)

In (7), ας(t) > 0 stands for the dynamic parameter of the quantizer and gς(ς(t)/ας(t))
stands for a static quantizer satisfying∣∣∣∣gς

(
ς(t)
ας(t)

)
− ς(t)

ας(t)

∣∣∣∣ ≤ ∆ς, IF
∣∣∣∣ ς(t)
ας(t)

∣∣∣∣ ≤ Rς (8)
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∣∣∣∣gς

(
ς(t)
ας(t)

)
− ς(t)

ας(t)

∣∣∣∣ > ∆ς, IF
∣∣∣∣ ς(t)
ας(t)

∣∣∣∣ > Rς (9)

where Rς stands for the range of the quantizer and ∆ς denotes the bound of the quantiza-
tion error.

As an important challenge in networked systems, the effects of data packet dropouts
will also be considered in this paper. Two independent Bernoulli stochastic variables ε and
ρ will be employed to characterize the effects of data packet dropouts on the quantized
measurement output and quantized performance output. In this way, the measurement
output and performance output signals received by the filter can be indicated as

y(t) = εαy(t)gy

(
y(t)
αy(t)

)
, αy(t) > 0 (10)

z(t) = ραz(t)gz

(
z(t)
αz(t)

)
, αz(t) > 0. (11)

This implies that the quantized measurement output (quantized performance output)
is successfully transmitted when ε = 1 (ρ = 1), and that the quantized measurement
output (quantized performance output) is unsuccessfully transmitted when ε = 0 (ρ = 0).
Moreover, we assume that ε and ρ satisfy

Prob{ε = 1} = E{ε} = ε̄
Prob{ε = 0} = 1 − ε̄
Prob{ρ = 1} = E{ρ} = ρ̄
Prob{ρ = 0} = 1 − ρ̄

(12)

with known constants 0 ≤ ε̄ ≤ 1 and 0 ≤ ρ̄ ≤ 1.

Remark 1. As claimed in [38,43], in the study of the filtering problem for networked systems, both
the measurement and performance outputs should be transmitted by an unreliable communication
network. Therefore, the effects of both the dynamic quantization and data packet dropouts on the
measurement and performance outputs are considered in this paper. In contrast with the results
in [38] where only the effects of quantization are considered, and the results in [43] where only the
effects of data packet dropouts are considered, the problem studied in this paper is more general for
networked systems.

2.3. Filtering Error Systems

In this paper, the structure of the employed filter is provided as

x f (t + 1) = Âx f (t) + B̂y(t)
z f (t) = Êx f (t)

(13)

where x f (t) ∈ Rnx denotes the state of the filter and z f (t) ∈ Rnz stands for the output of the
filter. Â ∈ Rnx×nx , B̂ ∈ Rnx×ny , and Ê ∈ Rnz×nx stand for the parameters of the designed
filter. The structure of the filter in (13) is general, which can be utilized to investigate the
full-order filtering problem with nx = nx and the reduced-order filtering problem with
1 ≤ nx < nx.

Then, we can express the filtering error system as

ϕ(t + 1) = (Aa + ε̃Ab)ϕ(t) + (Ba + ε̃Bb)w(t)
+ (Ha + ε̃Hb)ry(t)

e(t) = (Ca + ρ̃Cb)ϕ(t) + (Da + ρ̃Db)w(t)
+ (ρ̄ + ρ̃)rz(t)

(14)
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where ϕT(t) = [xT(t) xT
f (t)], e(t) = z(t)− z f (t), and

Aa =

[
A(p) 0

ε̄B̂C(p) Â

]
, Ab =

[
0 0

B̂C(p) 0

]
,

Ba =

[
B(p)

ε̄B̂D(p)

]
, Bb =

[
0

B̂D(p)

]
,

Ha =

[
0

ε̄B̂

]
, Hb =

[
0
B̂

]
,

Ca =
[

ρ̄E(p) −Ê
]
, Cb =

[
E(p) 0

]
,

Da = ρ̄F(p), Db = F(p),
ry(t) = αy(t)

(
gy

(
y(t)

αy(t)

)
− y(t)

αy(t)

)
,

rz(t) = αz(t)
(

gz

(
z(t)

αz(t)

)
− z(t)

αz(t)

)
,

ε̃ = ε − ε̄, ρ̃ = ρ − ρ̄.

Next, we will provide the definitions on the dissipativity and stochastic stability of
the filtering error system (14), which will be needed in the process of dissipative filtering
performance analysis.

Definition 1 ([27,37,43]). For any initial condition ϕ(0), if there exists a matrix Y > 0 such that

E
{

∞
∑

t=0
|ϕ(t)|2

∣∣∣ϕ(0)} < ϕT(0)Yϕ(0) (15)

holds. Then, the filtering error system in (14) is stochastically stable with w(t) = 0.

Definition 2 ([44]). For zero initial condition, the filtering error system in (14) is strictly dissipative
with the dissipativity performance bound γ > 0, such that

ϱ

∑
t=0

E
{(

eT(t)J1e(t) + eT(t)J2w(t) + wT(t)

×JT
2 e(t) + wT(t)(J3 − γI)w(t)

)}
≥ 0

(16)

holds with ϱ ≥ 0. In (16), J1 = JT
1 ∈ Rnz×nz ≤ 0, J2 ∈ Rnz×nw , and J3 = JT

3 ∈ Rnw×nw are
known matrices and −J1 = JT

11 J11 with J11 ∈ Rnz×nz ≥ 0.

Finally, the purpose of this paper is to design the filter in the form of (13), such that the
filtering error system in (14) is stochastically stable in the sense of Definition 1 and strictly
dissipative in the sense of Definition 2.

3. Main Results
3.1. Filtering Performance Analysis

In this subsection, it is assumed that the filter (13) studied in this paper is known.
Based on the Lyapunov approach, a significant dissipative filtering performance analysis
criterion for the filtering error system (14) will be presented in the following theorem.

Theorem 1. Suppose that the quantization ranges Ry and Rz, the quantization error bounds
∆y and ∆z, and the constants ρ̄, ε̄, γ > 0, 0 < c1y ≤ c2y, 0 < d1y ≤ d2y, 0 < c1z ≤ c2z,
0 < d1z ≤ d2z, satisfying c1yd1y ≥ 1 and c1zd1z ≥ 1 are provided. The filtering error system
in (14) is stochastically stable with the provided dissipative filtering performance γ, if there exist
matrix P > 0, positive scalars oy, oz, ζy, and ζz satisfying

c1ς

Rς
≤ oς ≤

c2ς

Rς
, ς = y, z (17)
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
Υ11 ∗ ∗ ∗
Υ21 Υ22 ∗ ∗
Υ31 0 −I ∗
Υ41 0 0 Υ44

 < 0 (18)

where

Υ11 =


−P ∗ ∗ ∗

−JT
2 Ca Ω22 ∗ ∗
0 0 −ζy I ∗
0 −ρ̄J2 0 −ζz I

,

Υ21 =

[
Aa Ba Ha 0

ε̂Ab ε̂Bb ε̂Hb 0

]
,

Υ31 =

[
J11Ca J11Da 0 ρ̄J11

ρ̂J11Cb ρ̂J11Db 0 ρ̂J11

]
,

Υ41 =

[
σyC σyD 0 0
σzE σzF 0 0

]
,

Ω22 = −JT
2 Da − DT

a J2 − (J3 − γI),

Υ22 = −diag{P−1, P−1}, Υ44 = −diag{ζy
−1 I, ζz

−1 I}, ε̂ = (ε̄(1− ε̄))1/2, ρ̂ = (ρ̄(1− ρ̄))1/2,
C = [C(p) 0 ], D = D(p), E = [ E(p) 0 ], F = F(p), σy = (c2yd2y∆y)/Ry, σz =
(c2zd2z∆z)/Rz, and the adjusting strategy for the dynamic parameters αy(t) and αz(t) are pro-
vided as:

d1ςoς|ς(t)| ≤ ας(t) ≤ d2ςoς|ς(t)|, ς = y, z. (19)

Proof. For the filtering error system (14), the Lyapunov function is established as

V(ϕ(t)) = ϕT(t)Pϕ(t), P > 0. (20)

Then, one can be obtain that

E{V(ϕ(t + 1))} − V(ϕ(t))− E
{(

eT(t)J1e(t) + eT(t)
×J2w(t) + wT(t)JT

2 e(t) + wT(t)(J3 − γI)w(t)
)}

= E{((Aa + ε̃Ab)ϕ(t) + (Ba + ε̃Bb)w(t)
+(Ha + ε̃Hb)ry(t))T P((Aa + ε̃Ab)ϕ(t)
+(Ba + ε̃Bb)w(t) + (Ha + ε̃Hb)ry(t))

}
−ϕT(t)Pϕ(t)− E{((Ca + ρ̃Cb)ϕ(t)
+(Da + ρ̃Db)w(t) + (ρ̃ + ρ̄)rz(t))T J1
((Ca + ρ̃Cb)ϕ(t) + (Da + ρ̃Db)w(t)
+(ρ̃ + ρ̄)rz(t)) + ((Ca + ρ̃Cb)ϕ(t)
+(Da + ρ̃Db)w(t) + (ρ̃ + ρ̄)rz(t))T J2w(t)
+wT(t)JT

2 ((Ca + ρ̃Cb)ϕ(t)
+(Da + ρ̃Db)w(t) + (ρ̃ + ρ̄)rz(t))
+wT(t)(J3 − γI)w(t)}
= ηT(t)

(
E
{
([ Aa Ba Ha 0 ] + ε̃[ Ab Bb Hb 0 ])T

P([ Aa Ba Ha 0 ] + ε̃[ Ab Bb Hb 0 ])
−([ Ca Da 0 ρ̄I ] + ρ̃[ Cb Db 0 I ])T J1
([ Ca Da 0 ρ̄I ] + ρ̃[ Cb Db 0 I ])
−([ Ca Da 0 ρ̄I ] + ρ̃[ Cb Db 0 I ])T

J2[ 0 I 0 0 ]− [ 0 I 0 0 ]T JT
2 ([ Ca Da 0 ρ̄I ]

+ρ̃[ Cb Db 0 I ])
}
− diag{P, J3 − γI, 0, 0}

)
η(t)

= ηT(t)Φ0η(t)

(21)
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where ηT(t) = [ ϕT(t) wT(t) rT
y (t) rT

z (t) ] and

Φ0 = [ Aa Ba Ha 0 ]T P[ Aa Ba Ha 0 ]
+ ε̂2[ Ab Bb Hb 0 ]T P[ Ab Bb Hb 0 ]
− [Ca Da 0 ρ̄I ]T J1[Ca Da 0 ρ̄I ]
− ρ̂2[Cb Db 0 I ]T J1[Cb Db 0 I ]
− [Ca Da 0 ρ̄I ]T J2[ 0 I 0 0 ]
− [ 0 I 0 0 ]T JT

2 [Ca Da 0 ρ̄I ]
− diag{P, J3 − γI, 0, 0}.

As in [4], based on the online adjusting strategy in (19) and the conditions in (8) and
(17), we have

rT
y (t)ry(t) ≤ σ2

y yT(t)y(t)
rT

z (t)rz(t) ≤ σ2
z zT(t)z(t)

(22)

which can be further expressed as

ηT(t)Φ1η(t) ≥ 0
ηT(t)Φ2η(t) ≥ 0

(23)

with
Φ1 = [ σyC σyD 0 0 ]T [ σyC σyD 0 0 ]− diag{0, 0, I, 0},
Φ2 = [ σzE σzF 0 0 ]T [ σzE σzF 0 0 ]− diag{0, 0, 0, I}.

By utilizing the Schur complement to (18), we obtain

Φ0 + ζyΦ1 + ζzΦ2 < 0. (24)

According to the S-Procedure in [6,36], we have that ηT(t)Φ0η(t) < 0 based on (21),
(23), and (24), i.e.,

E{V(ϕ(t + 1))} − V(ϕ(t))− E
{(

eT(t)J1e(t) + eT(t)
×J2w(t) + w(t)T JT

2 e(t) + wT(t)(J3 − γI)w(t)
)}

< 0
(25)

Then, by summing up (25) from t = 0 to t = ϱ with ϱ ≥ 1, one can obtain

E{V(ϕ(ϱ + 1))} − V(ϕ(0))− ∑
ϱ
t=0 E

{(
eT(t)J1e(t) + eT(t)

×J2w(t) + w(t)T JT
2 e(t) + wT(t)(J3 − γI)w(t)

)}
< 0

(26)

By considering E{V(ϕ(ϱ + 1))} ≥ 0 and V(ϕ(0)) = 0, we have

∑
ϱ
t=0 E

{
(eT(t)J1e(t) + eT(t)J2w(t) + w(t)T

×JT
2 e(t) + wT(t)(J3 − γI)w(t)

)}
≥ 0

(27)

Therefore, according to Definition 2, one can obtain that the given dissipative filtering
performance bound γ > 0 of the filtering error system in (14) can be guaranteed.

Next, for w(t) = 0, the stochastic stability of the filtering error system in (14) will
be discussed.

For w(k) = 0, the inequality in (25) reduces to

E{V(ϕ(t + 1))} − V(ϕ(t)) < E
{

eT(t)J1e(t)
}

. (28)

By considering the fact that J1 ≤ 0, we have that

E{V(ϕ(t + 1))} − V(ϕ(t)) = ηT(t)Φ̂0η(t) < 0 (29)
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where ηT(t) = [ ϕT(t) rT
y (t) rT

z (t) ] and

Φ̂0 = [ Aa Ha 0 ]T P[ Aa Ha 0 ] + ε̂2[ Ab Hb 0 ]T

× P[ Ab Hb 0 ]− [Ca 0 ρ̄I ]T J1[Ca 0 ρ̄I ]
− ρ̂2[Cb 0 I ]T J1[Cb 0 I ]− diag{P, 0, 0}.

Based on (29), it can be obtained that

E{V(ϕ(t + 1))} − V(ϕ(t)) ≤ −λmin(−Φ̂0)η
T(t)η(t). (30)

By calculating the mathematical expectation of (30) on both sides and summing up
both sides of (30) from t = 0 to t = ϱ with ϱ ≥ 1, one can obtain that

E
{

ϕT(ϱ + 1)Pϕ(ϱ + 1)
}
− ϕT(0)Pϕ(0)

≤ −λmin(−Φ̂0)E
{

∑
ϱ
t=0 |η(t)|2

}
,

(31)

which is equivalent to

E
{

∑
ϱ
t=0 |η(t)|2

}
≤ (λmin(−Φ̂0))

−1(ϕT(0)Pϕ(0)− E
{

ϕT(ϱ + 1)Pϕ(ϱ + 1)
})

.
(32)

For ϱ −→ ∞, we have that E
{

ϕT(∞)Pϕ(∞)
}
≥ 0 and E

{
∑∞

t=0 |η(t)|2
}
≥ E

{
∑∞

t=0 |ϕ(t)|2
}

.
Then, based on inequality in (32), it can be obtained that

E
{

∑∞
t=0 |ϕ(t)|2

}
≤ (λmin(−Φ̂0))

−1(ϕT(0)Pϕ(0)
)

= ϕT(0)(λmin(−Φ̂0))
−1Pϕ(0) = ϕT(0)Yϕ(0)

(33)

with Y = (λmin(−Φ̂0))
−1P.

According to ηT(t)Φ̂0η(t) < 0, it can be deduced that Φ̂0 < 0, which implies that
λmin(−Φ̂0) > 0. Based on the above discussions, we have that Y = (λmin(−Φ̂0))

−1P > 0.
Therefore, for w(t) = 0, one can obtain that the filtering error system in (14) is stochastically
stable in accordance with Definition 1.

Remark 2. As pointed out in [4], the adjusting strategy for the dynamic parameters αy(t) and αz(t)
proposed in (19) is more general than the one in [6,11,36] and the one in [21,37]. The adjusting
strategy in [6,11,36] can be obtained from the one in (19) by choosing d1ς = d2ς and the adjusting
strategy in [21,37] can be obtained from the one in (19) by choosing c1ς = 1, d1ς = 1, and d2ς = 2.
Moreover, another advantage of the adjusting strategy in (19) is that the constant oς is independent
of the matrix inequality (18).

3.2. Filter Design

Based on the results developed in Theorem 1, the design results characterized by linear
matrix inequalities for the desired filter in (13) will be proposed in the following theorem.

Theorem 2. Suppose that the quantization ranges Ry and Rz, the quantization error bounds
∆y and ∆z, the dimension adjustment matrix K, and the constants ρ̄, ε̄, γ > 0, 0 < c1y ≤ c2y,
0 < d1y ≤ d2y, 0 < c1z ≤ c2z, 0 < d1z ≤ d2z, satisfying c1yd1y ≥ 1 and c1zd1z ≥ 1 are provided.
In the presence of the adjusting strategy for the dynamic parameters αy(t) and αz(t) provided in
(19) with the inequality in (17), the filtering error system in (14) is stochastically stable with the
provided dissipative filtering performance γ, if there exist matrices P1 > 0, P2, P3 > 0, G1, G2, Ã,
B̃, Ẽ, nonsingular matrix G3, and positive scalars ζy, ζz satisfying

Ψi < 0, i = 1, 2, . . . , s. (34)
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where

Ψi =


Θ11i ∗ ∗ ∗ ∗
Θ21i Θ22 ∗ ∗ ∗
Θ31i 0 Θ22 ∗ ∗
Θ41i 0 0 −I 0
Θ51i 0 0 0 Θ55

,

Θ11i =


−P1 ∗ ∗ ∗ ∗
−P2 −P3 ∗ ∗ ∗

−ρ̄JT
2 Ei JT

2 Ẽ Λ33 ∗ ∗
0 0 0 −ζy I ∗
0 0 −ρ̄J2 0 −ζz I

,

Λ33 = −ρ̄FT
i J2 − ρ̄JT

2 Fi − (J3 − γI),

Θ21i =

[
∆11 KÃ ∆13 ε̄KB̃ 0
∆21 Ã ∆23 ε̄B̃ 0

]
,

Θ31i =

[
ε̂KB̃Ci 0 ε̂KB̃Di ε̂KB̃ 0
ε̂B̃Ci 0 ε̂B̃Di ε̂B̃ 0

]
,

Θ41i =

[
ρ̄J11Ei −J11Ẽ ρ̄J11Fi 0 ρ̄J11
ρ̂J11Ei 0 ρ̂J11Fi 0 ρ̂J11

]
,

Θ51i =

[
ζyσyCi 0 ζyσyDi 0 0
ζzσzEi 0 ζzσzFi 0 0

]
,

Θ22 =

[
P1 − G1 − GT

1 ∗
P2 − G2 − GT

3 KT P3 − G3 − GT
3

]
,

Θ55 = −diag{ζy I, ζz I},
∆11 = G1 Ai + ε̄KB̃Ci, ∆21 = G2 Ai + ε̄B̃Ci,
∆13 = G1Bi + ε̄KB̃Di, ∆23 = G2Bi + ε̄B̃Di.

Moreover, the parameters for the filter (13) can be obtained by

Â = G−1
3 Ã, B̂ = G−1

3 B̃, Ê = Ẽ. (35)

Proof. For the nonsingular matrix G, based on −(P − G)T P−1(P − G) ≤ 0 and P > 0, we
have that

−GT P−1G ≤ −G − GT + P (36)

By considering (36) and performing congruence transformation to (18) by diag{I, ĜT ,
I, ζ̂} with Ĝ = diag{G, G} and ζ̂ = diag{ζy I, ζz I}, it can be obtained that

Υ11 ∗ ∗ ∗
Υ21 Υ22 ∗ ∗
Υ31 0 −I ∗
Υ41 0 0 Υ44

 < 0 (37)

where

Υ21 =

[
GT Aa GT Ba GT Ha 0
ε̂GT Ab ε̂GT Bb ε̂GT Hb 0

]
,

Υ22 = diag{ −G − GT + P,−G − GT + P} ,

Υ41 =

[
ζyσyC ζyσyD 0 0
ζzσzE ζzσzF 0 0

]
,

Υ44 = −diag{ζy I, ζz I}.

We assume P =

[
P1 ∗
P2 P3

]
, GT =

[
G1 KG3
G2 G3

]
with G3 is nonsingular and define

Ã = G3 Â, B̃ = G3B̂, and Ẽ = Ê, the inequality in (37) can be expressed as

s

∑
i=1

pi(n(t))Ψi < 0 (38)
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Finally, by considering pi(n(t)) ≥ 0 stated in (5), one can deduce that if the inequality
in (34) is satisfied, then the inequality in (38) holds, which completes the proof.

Next, some discussions on the main results in this paper will be provided.

Remark 3. In Theorem 2, for the provided dimension adjustment matrix K, both the full-order
dissipative filter and the reduced-order dissipative filter design results are presented in a unified
framework characterized by linear matrix inequalities, which can be effectively solved by the LMI
toolbox. In general, the dimension adjustment matrix K can be chosen as K = Inx×nx for full-order
dissipative filter and K =

[
Inx×nx 0nx×(nx−nx)

]T for reduced-order dissipative filter.

Remark 4. The deign results proposed in Theorem 2 on the dissipative filter for nonlinear networked
systems with dynamic quantization and data packet dropouts are general. By selecting J11 = I,
J2 = 0, and J3 = (γ2 + γ)I, the deign results proposed in Theorem 2 can be utilized to design
the H∞ filter. By selecting J11 = 0, J2 = I, and J3 = 2γI, the deign results proposed in
Theorem 2 can be utilized to design the passive filter. By selecting J11 =

√
κ I, J2 = (1 − κ)I, and

J3 = (κ(γ2 − γ) + 2γ)I with 0 ≤ κ ≤ 1, the deign results proposed in Theorem 2 can be utilized
to design the mixed passive/H∞ filter.

Remark 5. Based on the results in [8,21], we know that a feasible adjusting rule is necessary for
the dynamic parameter ας(t) due to the use of the unreliable transmission communication network.
As in [4], the adjusting rule for the dynamic parameter ας(t) in this paper is proposed as

ας(t) = floor(d2ςoς|ς(t)| × 10−ȷ)

where ȷ = min
{

ȷ ∈ N+
∣∣(d2ςoς|ς(t)| × 10ȷ

)
> 1

}
and the function floor(h̄) denotes the maxi-

mum integer that is not bigger than h̄.

Remark 6. According to the conclusions in [23], we have that the numerical complexity of the
design results proposed in Theorem 2 is closely related to the number of variables V and the number
of rows L. Moreover, the deign conditions in Theorem 2 can be solved in polynomial time with
complexity proportional to C = V3L, where V = 2 + 2nxnx + 2nxnx +

1
2 nx(nx + 1) + 1

2 nx(nx +
1) + nxnx + nxny + nxnz and L = (3nx + 3nx + 2ny + 4nz + nw)s.

Remark 7. In general, Ry, Rz, ∆y, ∆z are provided parameters for dynamic quantizers and ε̄, ρ̄
are provided parameters for data packet dropouts. However, how to deal with the dissipative filtering
problem with the unknown parameters Ry, Rz, ∆y, ∆z, ε̄, and ρ̄ is still a open problem, which
needs further study. Moreover, it should be noted that the conservatism of the results proposed in
Theorem 2 can be further reduced by employing the fuzzy Lyapunov function strategy in [15] and
introducing slack matrix variables via Lemma 4 in [45].

4. Simulation Example

In this section, we will show that the proposed dissipative filtering strategy is effective
via a practical example.

Consider the tunnel diode circuit depicted in Figure 1, which is also employed to study
the l2–l∞ fuzzy filtering problem for nonlinear networked systems with dynamic quantiza-
tion in [36]. As in [36], by choosing x1(t) = vC(t), x2(t) = iL1(t), and x3(t) = iL2(t), state
equations for the tunnel diode circuit can be represented as

Cẋ1(t) = −Wx1(t)−Nx3
1(t) + x2(t) + x3(t)

L1 ẋ2(t) = −x1(t)−R1x2(t) +Vw(t)
L2 ẋ3(t) = −x1(t)−R2x3(t)

(39)
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Figure 1. Tunnel diode circuit.

In this paper, we assume that C = 20 mF, W = 0.002 s, N = 0.01 s, L1 = 1000 mH,
R1 = 10 Ω, V = 1, L2 = 100 mH, R2 = 1 Ω, and |x1(t)| ≤ 3, i.e., 0 ≤ x2

1(t) ≤ 9. Then, the
nonlinear tunnel diode circuit in (39) can be approximated by the following continuous-time
T–S fuzzy model:

Plant Rule 1 : IF x2
1(t) is 0, THEN

ẋ(t) = A1x(t) + B1u(t)
Plant Rule 2 : IF x2

1(t) is 9, THEN
ẋ(t) = A2x(t) + B2u(t)

(40)

where

A1 =

 −0.1 50 50
−1 −10 0
−10 0 −10

, B1 =

 0
1
0

,

A2 =

 −4.6 50 50
−1 −10 0
−10 0 −10

, B2 =

 0
1
0

.

Moreover, the membership functions can be provided as

p1(x1(t)) =


1 − x2

1(t)
9 , − 3 ≤ x1(t) ≤ 3

0, otherwise
p2(x1(t)) = 1 − p1(x1(t)).

By setting the sampling period T = 0.02 s, we have that

A1 =

 0.8970 0.8726 0.8726
−0.0175 0.8101 −0.0086
−0.1745 −0.0859 0.7328

,

A2 =

 0.8170 0.8332 0.8332
−0.0167 0.8104 −0.0083
−0.1666 −0.0833 0.7354

,

B1 =

 0.0092
0.0181
−0.0006

, B2 =

 0.0089
0.0181
−0.0006

,

and other relative matrices are supposed to be

C1 = C2 =
[

1 3 2
]
, D1 = D2 = 0.4,

E1 = E2 =
[
−2 −2 −4

]
, F1 = F2 = 0.1.

By applying Theorem 2 with K = I3×3, J1 = −2, J2 = 2, J3 = 2, Ry = Rz = 50,
∆y = ∆z = 0.5, ρ̄ = ε̄ = 0.8, c1y = c1z = 1, d1y = d1z = 1, c2y = c2z = 2, d2y = d2z = 2,
and γ = 0.55, the related parameters for the desired full-order dissipative filter can be
obtained as
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Â =

 0.7820 0.4766 0.5534
0.0017 0.4906 −0.0466
−0.2126 −0.0845 0.6139

, B̂ =

 −0.0809
−0.0552
−0.0111

,

Ê =
[

1.1356 6.0793 5.2254
]
.

For the simulation, we assume that x(0) = x f (0) = [0 0 0]T and w(t) = 5 cos(0.25t)e−0.2t.
The simulation results are presented in Figures 2–7, where the responses of x(t) and x f (t) are
indicated in Figure 2 and Figure 3, respectively, Figure 4 plots the responses of z(t) and z f (t),
Figure 5 shows the trajectory of e(t), and the trajectories of the dynamic parameters αy(t) and
αz(t) are shown in Figure 6 and Figure 7, respectively. The simulation results presented in
Figures 2–7 demonstrate that the proposed dissipative filter design approach in this paper
is effective.

Next, the tunnel diode circuit system (39) will be utilized to investigate the H∞ filter
design problem according to the results developed in Theorem 2, and the other parameters
without detailed definition are same as the first case. Firstly, the effects of quantization error
bound ∆y(∆z) and quantization range Ry(Rz) on the optimized H∞ filtering performance
γmin will be studied with J1 = −1, J2 = 0, and J3 = γ + γ2. The optimized H∞ filtering
performances γmin computed by Theorem 2 with different quantization error bound ∆y(∆z)
and quantization range Ry(Rz) are shown in Figure 8 and Figure 9, respectively. As
expected, one can observe that γmin increases as the quantization range Ry(Rz) decreases
and γmin increases as the quantization error bound ∆y(∆z) increases. Moreover, it is well
known that a higher filter order nx will lead to less design conservatism, i.e., a smaller
optimized H∞ filtering performance γmin. Then, we demonstrate this proposition. In
the presence of different filter order nx, the optimized H∞ filtering performances γmin
computed by Theorem 2 with different quantization error bounds and quantization ranges
are shown in Tables 1 and 2, respectively.

0 20 40 60 80 100
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Figure 2. The response of x(t).
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Figure 3. The response of x f (t).
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Figure 4. The responses of z(t) and z f (t).

0 20 40 60 80 100

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Figure 5. The trajectory of e(t).
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Figure 6. The trajectory of the dynamic parameter αy(t).
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Figure 7. The trajectory of the dynamic parameter αz(t).
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Figure 8. Optimized H∞ filtering performance γmin with different quantization error bound ∆y(∆z).

Figure 9. Optimized H∞ filtering performance γmin with different quantization error Ry(Rz).

Table 1. Optimized H∞ filtering performance γmin with different quantization error bounds.

∆y = ∆z 0.1 0.3 0.5 0.7 0.9

γmin(nx = 3) 0.1984 0.2040 0.2100 0.2163 0.2228

γmin(nx = 2) 0.3189 0.3257 0.3325 0.3393 0.3461

γmin(nx = 1) 0.3425 0.3504 0.3583 0.3664 0.3744

Table 2. Optimized H∞ filtering performance γmin with different quantization ranges.

Ry = Rz 10 30 50 70 90

γmin(nx = 3) 0.2850 0.2206 0.2100 0.2057 0.2034

γmin(nx = 2) 0.4021 0.3438 0.3325 0.3276 0.3249

γmin(nx = 1) 0.4405 0.3717 0.3583 0.3526 0.3495

Comparative Explanations: In this paper, the developed filtering strategy can effec-
tively solve both the full- and reduced-order dissipative filtering problems for the nonlinear
tunnel diode circuit system in (39) with the effects of dynamic quantization and data packet
dropouts based on the T–S fuzzy model strategy. In contrast with the existing results, the
main advantages of the proposed filtering strategy can be summarized in the following
three aspects.

(1) The proposed dissipative filtering strategy in this paper is more general than the
existing results on fuzzy H∞ filtering for nonlinear networked systems in [34,35,37,39–42],
because it can also be utilized to deal with several kinds of filtering problems, including
passive, H∞, and mixed passive/H∞ filtering problems for the nonlinear tunnel diode
circuit system (39). Particularly, both the effects of dynamic quantization and data packet
dropouts on the measurement output and the performance output have been considered
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simultaneously; it implies that the problem addressed in this paper is more in agreement
with practical circumstances than the ones considered in [36,38,41–43].

(2) In contrast with the quantized filtering problem considered in [38,41], the dynamical
quantization methodology employed herein is more general. This is mainly because the
stochastic stability of the filtering error system can be ensured under a finite number of
quantization levels. By choosing the relevant parameters, the online adjusting strategies
in [36,39] can be obtained from the one developed in (17) and (19), which implies that
the adjusting strategy for the dynamic parameters ας(t) (ς = y, z) provided in this paper
is more general. Moreover, simulation results in Figure 6 and Figure 7 show that the
adjustment of the dynamic parameters ας(t) can be realized based on the online adjusting
strategy developed in this paper.

(3) In contrast with the existing results of the filtering problem for networked sys-
tems where only full-order filtering problems [34,35,38,39,41] or reduced-order filtering
problems [46] were considered, the developed filtering strategy can effectively solve both
the full- and reduced-order filtering problems, which is more general. Moreover, different
from the results in [36], this example illustrates that both full- and reduced-order filter-
ing problems have been solved in the unified framework of linear matrix inequalities by
introducing a dimension adjustment matrix K.

5. Conclusions

In this paper, the dissipative filtering problem has been addressed for discrete-time
nonlinear networked systems with dynamic quantization and data packet dropouts based
on the T–S fuzzy strategy. Both the effects of dynamic quantization and data packet
dropouts have been taken into consideration in both communication channels from the
plant to the filter and from the filter to the plant. The sufficient design conditions for both
the desired full- and reduced-order dissipative filters have been established in the unified
framework of linear matrix inequalities, which guarantees the stochastic stability and the
predefined dissipative filtering performance for the filtering error system subject to dynamic
quantization and data packet dropouts. In addition, a practical simulation example has
been employed to show the effectiveness of the proposed dissipative filtering approach.

However, it is well known that communication delays and cyber attacks, as important
challenges in networked systems, are also considered to be unavoidable in practical cases. In
this paper, we have only addressed dynamic quantization and data packet dropouts, and the
study of the dissipative fuzzy filtering problem for nonlinear networked systems with the
simultaneous consideration of dynamic quantization, data packet dropouts, communication
delays, and cyber attacks deserves further investigation.
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