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Abstract: This paper addresses a problem of optimal error quantification in the framework of robust
control theory in the `1 setup. The upper bounds of biased external disturbance and the gains of
coprime factor perturbations in a discrete-time linear time invariant SISO plant are assumed to be
unknown. The computation of optimal data-consistent upper bounds under a known bias of external
disturbance has been simplified to linear programming. This allows for the computation of optimal
estimates in real-time and their application to achieve optimal robust steady-state tracking even when
facing an unknown bias in the external disturbance. The presented results have been illustrated
through computer simulations.
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1. Introduction

The present paper addresses a specific problem of optimal error quantification for
robust control. Robust control deals with systems under uncertainties and external distur-
bances. The theory of robust control emerged in the 1980s, and by the mid-1990s, basic
results on robust stability and robust performance had been obtained [1]. Robust control
synthesis requires not only a nominal model, but also a quantification of the uncertainty
in that model [2]. Problems of finding a nominal model and error quantification were
recognized as the main problems of system identification for practical applications of the
robust control theory [3,4]. These problems have remained an open issue until the present
time both in online and offline settings [5,6]. The main distinction arises from deterministic
models of external disturbances and uncertainties in robust control theory, as opposed to
the predominant use of stochastic external disturbances and the absence of uncertainties in
identification theory.

The model of deterministic external disturbances is used in system identification under
the set-membership approach, where upper bounds on magnitudes of disturbances are
assumed to be known a priori [7]. The assumption of known upper bounds was criticized
for “conservatism of bounds, sensitivity of bounds to accuracy of prior information, and
difficulty in providing prior information” [2]. It was noted in [8] that “The activity on
estimation of uncertainty sets was often erroneously put under the umbrella of identification
for control, since in most of this work the control objective was not taken into account in the
identification design”. Difficulties in accounting for control objectives when quantifying
errors are inevitable in H∞ robust control theory, a dominant area of robust control that
corresponds to the `2 signal space. This challenge arises because direct representations
for control criteria have not been derived in H∞ theory. Consequently, problems related
to optimal error quantification in H∞ theory have either never been considered or have
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been addressed using artificial identification criteria, such as minimizing a convex linear
combination of upper bounds on uncertainty and disturbance [9,10].

The traditional set-membership approach to system identification under known upper
bounds of disturbances excludes problems of error quantification. It was used mainly
for computation of various upper and lower polyhedral, ellipsoidal or other estimates of
the sets of unknown control system parameters consistent with measurement data. Rare
applications of these estimates to control problems are of a heuristic nature and do not have
a strict mathematical background. Nonconservative and strictly proven stabilization of the
linear time-invariant plant with an unknown matrix of the state equation under bounded
external disturbance and measurement noise with unknown upper bounds was recently
proposed without the direct use of any identification [11]. In this paper, set estimation and
error quantification are “hidden” in the `1 optimization problem associated with a linear
representation of the current state xt through the previous states x0, · · · , xt−1 and require
additional storage of the previous controls u0, · · · , ut−1.

The present paper addresses the problem of optimal error quantification in the frame-
work of the `1 theory of robust control, which corresponds to the model of bounded external
disturbances and the `∞ signal space. In the `1 robust control theory, basic results on robust
stability and robust performance were presented in [12,13] and direct representations for
the steady-state tracking error were obtained in [14–16]. These results opened the door for
using the control criterion as the identification criterion in problems of error quantification
and synthesis of adaptive optimal control [17]. The problem of model evaluation on the
basis of error quantification for robust steady-stated tracking was considered in [18] in an
offline setting for the discrete-time plant, with the linear time invariant nominal model
under coprime factor perturbations, bounded external disturbance, and measurement noise
with unknown upper bounds.

In the present paper, the problem of error quantification is considered in the more
advanced optimal setup. Upper bounds of the gains of coprime factor perturbations and
biased external disturbance in a discrete-time minimum phase plant are assumed to be
unknown. The control criterion is the worst-case upper bound of the steady-state tracking
error. This criterion is proven to be linear-fractional with respect to the unknown parameters.
The solution of the problem under a known bias of the external disturbance is based on
treating the control criterion as an identification criterion and on recursive computation
of polyhedral estimates, consistent with measurement data, of unknown upper bounds
and gains. Since linear-fractional programming is reducible to linear programming [19],
the optimal error quantification becomes computationally tractable online. Polyhedral
estimates of unknown parameters are described by linear inequalities with respect to these
parameters. Due to the choice of a sufficiently small dead zone parameter, the optimal error
quantification is solved with a prescribed accuracy and the number of possible updates of
the polyhedral estimates is finite.

The remaining contents of the paper are organized as follows. Key notation is de-
scribed at the end of the Introduction. A model description and a preliminary problem
statement are presented in Section 1. Representation for the steady-state tracking error
of the optimal closed loop system in the framework of the `1 theory of robust control is
derived in Section 3. The problem of optimal error quantification under a known bias
of the external disturbance is strictly formulated in Section 4 and its solution with a pre-
scribed accuracy is described in Section 5. Section 6 presents simulations and comments on
them. Robust steady-state tracking under an unknown bias of the external disturbance is
discussed in Section 7. Section 8 concludes the paper.

Notation 1. |ϕ| – the Euclidean norm of the vector ϕ ∈ Rn;
`e – the vector space of real sequences x = (· · · , x−2, x−1, x0, x1, x2, · · · ),
xt

s = (xs, xs+1, . . . , xt) for x ∈ `e;
|xt

s| = maxs≤k≤t |xk|;
`∞ – the normed space of bounded real sequences x = (x0, x1, x2, . . .),
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‖x‖∞ = supt |xt| for x ∈ `∞;
‖x‖ss = lim supt→+∞ |xt|,
`1 – the normed space of absolutely summable sequences,
‖x‖1 = ∑+∞

k=0 |xk| for x ∈ `1;
‖G‖ = ∑+∞

k=0 |gk| = ‖g‖1 – the induced norm of stable linear time-invariant system G : `∞ → `∞

with the transfer function G(λ) = ∑+∞
k=0 gkλk.

2. Model Description and Preliminary Problem Statement

Let the model of the controlled discrete-time plant be described by equation

a(q−1)yt = b(q−1)ut + vt , t = 1, 2, 3, . . . , (1)

where yt ∈ R is the output at the time instant t, ut ∈ R is the control, vt ∈ R is the total
disturbance,

a(q−1) = 1 + a1q−1 + . . . + anq−n, b(q−1) = b1q−1 + . . . + bmq−m, b1 6= 0,

and q−1 : `e → `e is the backward shift operator (q−1yt = yt−1). Initial values y0
1−n =

(y1−n, . . . , y0) are arbitrary, yk = 0 for k < 1− n, and uk = 0 for k < 0.
The polynomials a(λ) = 1 + a1λ + . . . + anλn and b(λ) = b1λ + . . . + bmλm character-

ize the known nominal model of the plant and the roots of b(λ)/λ are outside the closed
unit disk of the complex plane (such a plant is called minimum phase).

The total disturbance vt in (1) is modeled in the form accepted in the `1-theory of
robust control

vt = cw + δwwt + δy∆1(y)t + δu∆2(u)t ∀t , ‖w‖∞ ≤ 1 . (2)

In (2), cw + δwwt describes the bounded external disturbance, where cw is its bias, w ∈ `∞
is an unknown normalized real sequence, δw is the upper bound of unbiased disturbance.
The last two terms in (2) represent coprime factor perturbations satisfying inequalities

|∆1(y)t| ≤ |yt−1
t−µ|, |∆2(u)t| ≤ |ut−1

t−µ| ∀t . (3)

The real numbers δy and δu are the gains (i.e., the `∞-induced norms) of uncertainties
in output and control, respectively. Normalized uncertainties ∆i : `∞ → `∞, i = 1, 2
are unknown strictly causal nonlinear time-varying operators [12]. The parameter µ
in (3) describes the memory of the uncertainties ∆1 and ∆2 and can be chosen by the
controller designer to be sufficiently large without introducing excessive conservatism into
the disturbance model (see Comment 1 to Theorem 1 in Section 3). One can show (see
Lemma 4 [14] and Lemma 1 [17] for details) that the description of the total disturbance v
in the form (2) and (3) is equivalent to the description

|vt − cw| ≤ cw + δy|yt−1
t−µ|+ δu|yt−1

t−µ| ∀t . (4)

Preliminary problem statement. The vector

δ = (δw, δy, δu)T

of the parameters of the total disturbance v is assumed to be unknown and the problem
under consideration is to provide the online optimal error quantification in the framework
of the robust control theory in the `1 setup.

3. Optimal Robust Tracking under Known Nominal Model

Let us introduce the notation ξ = (a1, . . . , an, b1, . . . , bm)T for the vector of known
parameters of the nominal model.
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Let r ∈ `∞ be a given bounded reference signal and the control criterion is the worst-
case steady state tracking error

Jµ(δ) = sup
v∈V

lim sup
t→+∞

|yt − rt| = sup
v∈V
‖y− r‖ss , (5)

where sup is computed on the set V of the total disturbances v of the form (2), (3). Note that
specific values vt of the total disturbance v are determined by specific admissible values wt,
∆1(y)t, and ∆2(u)t.

Consider the controller described by the equation

b(q−1)ut = (a(q−1)− 1)yt + rt − cw . (6)

Then we have for the tracking error in the closed loop system (1) and (6)

yt − rt = vt − cw = δwwt + δy∆1(y)t + δu∆2(u)t . (7)

Due to the unpredictability and arbitrariness of the values of the right-hand side in (7) at
the time of computing the control ut, it follows that the controller (6) is optimal for the
control criterion (5).

Let us introduce notation for the transfer function from y to u of the controller (6)

Gξ
uy(λ) =

a(λ)− 1
b(λ)

and rewrite the controller equation (6) as follows

ut = Gξ
uy(q−1)yt +

1
b(q−1)

rt −
1

b(q−1)
cw . (8)

Definition 1. The closed loop system (1) and (6) is said to be robustly stable if Jµ(δ) < +∞.

Definition 2. We will say that the sequence |r| gets into neighborhoods of ‖r‖ss uniformly often, if
for arbitrary ε > 0 there exists T > 0 and a sequence t1 < t2 < t3 < ... so that

∀j ∈ N 0 < tj+1 − tj ≤ T ∧ |rtj+1 | ≥ ‖r‖ss − ε .

The performance of the optimal closed loop system (1) and (6) is described in the next theorem.

Theorem 1. The following statements are true for the closed system (1) and (6).
(1) The system with infinite memory (i.e., µ = +∞) perturbations is robustly stable if and

only if
δy + δu‖Gξ

uy‖ < 1 . (9)

For the system with µ = +∞ and zero initial data y0
1−n

J(δ) := J+∞(δ) =
δw + δy‖r‖ss + δu(|cw|+ ‖r‖ss)‖1/b(q−1)‖

1− δy − δu‖Gξ
uy‖

. (10)

(2) For the system with µ < +∞ and arbitrary initial data y0
1−n,

Jµ(δ) ≤ J+∞(δ) ∀ µ > 0 . (11)

If the sequence |r| gets into neighborhoods of the limsup ‖r‖ss uniformly often, then for any initial
data

Jµ(δ)↗ J+∞(δ) (µ→ +∞) , (12)

where the sign↗ means the monotonic convergence from below as µ→ +∞.
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Proof. To prove Theorem 1, we represent the closed loop system (1), (6) in the standard
M− ∆ form shown in Figure 1 and described by equations

(
e
z

)
= M

 f
w
ξ

 , e = y− r , ξ = ∆z . (13)

where z and ξ are, respectively, the input and output of the structured uncertainty ∆,

zt =

(
yt
ut

)
, ξ =

(
∆1 0
0 ∆2

)
z =

(
∆1(y)
∆2(u)

)
,

and f is a fixed input signal including the tracked signal r and a constant signal equal to 1
to account for the bias cw:

f =

(
r
1

)
, 1 := (1, 1, . . .) ∈ `∞ .

w

z

y-r

x

M

D

f

Figure 1. M-∆ form of the system (1), (6).

Let us represent the matrix M in (13) in block form corresponding to the input and
output signals in Figure 1:

M =

(
Me f Mew Meξ

Mzr Mzw Mzξ

)
. (14)

For the system (1), (6) this presentation is of the form

M =


0 0 δw δy δu

1 0 δw δy δu

1
b(q−1)

− cw

b(q−1)
δwGξ

uy δyGξ
uy δuGξ

uy

, (15)

where q is the forward shift operator (qrt = rt+1). The first row of the matrix M in (15)
corresponds to the right-hand side of the equality (7). The second row of M is obtained by
moving rt to the right-hand side of the equality (7). The third row of M corresponds to the
representation of the optimal controller in the form (8).

The necessary and sufficient condition for robust stability (9) follows from Theorem 7
in [16] applied to the system (1), (6).

To prove the representation (10) for the control criterion J+∞(δ), it suffices to apply
Theorems 5 and 6 of [16]. Let us introduce the notation

[A]1 :=

 ‖A11‖1 · · · ‖A1q‖1
...

...
...

‖Ap1‖1 · · · ‖Apq‖1


for an arbitrary p× q matrix A of impulse responses Aij ∈ `1.

For the block matrix M in (14), we define

Mss( f ) :=
(

[Me f f ]ss + [Mew]1 [Meξ ]1
[Mz f r]ss + [Mzw]1 [Mzξ ]1

)
.
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The matrix Mss( f ) for the specific matrix M in (15) takes the form δw δy δu

‖r‖ss + |δw| δy δu

(‖r‖ss + |cw|)‖1/b(q−1)‖+ δw‖Gξ
uy‖ δy‖Gξ

uy‖ δu‖Gξ
uy‖

. (16)

According to Theorem 5 in [16],

J+∞(δ) =[Merr]ss + [Mew]1+ (17)

[Myξ ]1(I − [Mzξ ]1)
−1([Mzrr]ss + [Mzw]1) .

Applying the formula (17) to the matrix (16), we get

J(δ) = δw + (δy δu)

(
I −

(
δy δu

δy‖Gξ
uy‖ δu‖Gξ

uy‖

))−1

×(
‖rss‖+ δw

(‖r‖ss + |cw|)‖1/b(q−1)‖+ δw‖Gξ
uy‖

)
=

δw +
1

1− δy − δu‖Gξ
uy‖

(δy δu)

(
1− δu‖Gξ

uy‖ δu

δy‖Gξ
uy‖ 1− δy

)
×(

‖rss‖+ δw

(‖r‖ss + |cw|)‖1/b(q−1)‖+ δw‖Gξ
uy‖

)
.

Considering that

(δy δu)

(
1− δu‖Gξ

uy‖ δu

δy‖Gξ
uy‖ 1− δy

)
= (δy δu) ,

we obtain the representation (10)

J(δ) =δw +
1

1− δy − δu‖Gξ
uy‖
×

(δy δu)

(
‖rss‖+ δw

(‖r‖ss + |cw|)‖1/b(q−1)‖+ δw‖Gξ
uy‖

)
=

δw + δy‖r‖ss + δu‖r‖ss‖1/b(q−1)‖|+ δu|cw|‖1/b(q−1)‖)
1− δy − δu‖Gξ

uy‖
.

The inequality (11) follows from the fact that the set of perturbations (3) with bounded
memory µ is a subset of perturbations with infinite memory. The monotonicity of Jµ(δ)
with respect to µ follows from the enlargement of the sets of perturbations (3) with the
increase of µ. Finally, the convergence of Jµ(δ) to J+∞(δ) is guaranteed by Theorem 6 in [16].
Theorem 1 is proved.

Theorem 1 provides the guaranteed upper bound J(δ) for the steady-state tracking
error, and this upper bound is tight, e.g., for common periodic or constant reference signals.

Remark 1. The bounded memory perturbation model (3) was proposed in [16] instead of the finite
or fading memory perturbation models introduced in [14] because the latter are not testable against
data. The model of bounded memory perturbations needs the computation of |yt−1

t−µ| and |ut−1
t−µ|

for the purpose of online estimation and this computation, even for large µ, is not a considerable
problem for modern computers. The larger the memory size µ chosen by the control designer, the less
conservative the upper bound (11). At the same time, choosing too large values of µ makes little
sense in real applications.
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4. Problem of Optimal Error Quantification

The robust stability condition (2) requires the following a priori assumption

Assumption 1. The vector
δ = (δw, δy, δu)T

of parameters of the total disturbance v is unknown and satisfies the inequality

δy + δu‖Gξ
uy‖ ≤ δ̄ < 1 (18)

with a known δ̄.
The number δ̄ > 0 is chosen by the controller designer on the basis of a priori information

or even without it and can be as close to 1 as desired. Assumption 1 excludes from consideration
non-stabilizable models and models that are unacceptable for practical application since they are
too close to the boundary of the region of robustly stabilizable models. This is because the value
of the control criterion J(δ) for these models is too large in view of the small denominator in the
representation (10).

Problem 1. Let the plant (1) with the known nominal model, bias cw of the external disturbance,
and unknown parameters δ of the total disturbance v be controlled by the the controller (6). The
problem under consideration is to online compute the minimal upper bound of the steady-state
tracking error |y − r|ss consistent with the current measurement data (yt

0, ut−1
0 ) and with the

prescribed accuracy.

5. Optimal Online Error Quantification

Let us introduce the notation

py
t = |yt−1

t−µ|, pu
t = |ut−1

t−µ| . (19)

Lemma 1. Let δ̂ = (δ̂w, δ̂y, δ̂u)T be some estimate of δ. If

|a(q−1)yt − b(q−1)ut − cw| ≤ δ̂w + δ̂y py
t + δ̂u pu

t , (20)

for all sufficiently large t, then the output of the closed loop system (1) and (6) satisfies the inequality

‖y− r‖ss ≤ J(δ̂) . (21)

Proof. Let us define a sequence of imaginary total disturbance

v̂t = a(q−1)yt − b(q−1)ut ∀ t .

Then the output y satisfies the equation (1) with the total disturbance v̂t and

|v̂t − cw| ≤ δ̂w + δ̂y py
t + δ̂u pu

t (22)

for all sufficiently large t in view of (20). Since violations of the inequalities (22) are possible
on finite initial time intervals only, one can apply the second statement of Theorem 1 to
the closed loop system with the total disturbance v̂ and get the inequality (21). Lemma 1 is
proven.

At time t, complete information about the unknown vector δ in the closed loop
system (1) and (6) is in the form of the set estimate

δ ∈ Dt = {δ̂ | |a(q−1)yk − b(q−1)uk − cw| ≤ δ̂w + δ̂y py
k + δ̂u pu

k ∀k ≤ t } .
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Then the best estimate of δ, unfalsified by data yt
0, ut−1

0 , is as follows

δ
opt
t = argmin

δ̂∈Dt

J(δ̂) . (23)

The inequalities in the description of the set estimates Dt can contain redundant
inequalities, which can be excluded online (see, e.g., [20]). Despite this, the number of
inequalities in the description of Dt can increase without limit as t → +∞. To avoid an
unlimited increase in the number of stored inequalities, we will solve the problem (23) with
the prescribed accuracy.

We choose a positive number ε, which should be sufficiently small and characterizes
the size of the dead zone when updating the outer set estimates St of the unknown vector
δ. At each time instant, a set estimate St and a vector estimate δt will be computed. The
estimates S0 and δ0 are defined as follows.

S(0) := { δ̂ = (δ̂w, δ̂y, δ̂u)T | δ̂ ≥ 0 , δ̂y + δ̂u‖Gξ
uy‖ ≤ δ̄ < 1 } , δ0 = (0, 0, 0)T .

We introduce the notation

νt+1 = |a(q−1)yt+1 − b(q−1)ut+1 − cw| , φt+1 = (1, py
t+1, pu

t+1)
T

and rewrite the inequality (20) that presents new information about the unknown vector δ
at the time instant t + 1 in the form of the inclusion

δ ∈ Ωt+1 = { δ̂ | νt+1 ≤ δ̂φt+1 } . (24)

Let St and δt be the set and vector estimates of δ at the time instant t, respectively. Define

St+1 =

{
St , if νt+1 ≤ δtφt+1 + ε|φt+1|,
St ∩Ωt+1 , otherwise ,

(25)

δt+1 = argmin
δ̂∈St+1

J(δ̂) . (26)

Geometric interpretation of the updating (25) is simple. The set estimate St is updated
by adding the new inequality from (24) if and only if the distance from δt to the half-space
Ωt+1 is greater ε. Note that the vector estimate remains the same, i.e., δt+1 = δt, in the case
St+1 = St.

Theorem 2. Let Assumption 1 be satisfied and the chosen dead zone parameter ε in (25) satisfy the
inequalities

0 < ε <
1− δ̄

1 + ‖Gξ
uy‖

. (27)

Let the set estimates St and the vector estimates δt be computed in the closed loop system (1)
and (6) according to (25) and (26). Then the number of updates of the set estimates St and the vector
estimates δt is finite and the output y of the closed loop system satisfies

‖y− r‖ss ≤ J(δε
∞) = J(δ∞) + O(ε) (ε→ 0) , (28)

where δ∞ = limt→+∞ δt is the final value of δt,

δε
∞ = (1 + ε, δ

y
∞ + ε, δu

∞ + ε) ,

and
J(δ∞) ≤ J(δ) . (29)
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Proof. Under each updating δt, we have from (25)

δtφt+1 < νt+1 − ε|φt+1| .

Then for any δ̂ ∈ Ωt+1,

|δ̂− δt||φt+1| ≥ |(δ̂− δt)φt+1| > ε|φt+1|

and, therefore, |δ̂− δt| > ε. This means that the distance from the vector estimate δt to the
half-space Ωt+1 is greater than ε. Since δt+1 ∈ Ωt+1, the distance between δt and δt+1 is
greater than ε. Then the distance from δt to all future estimates δk, k > t is greater than ε
because Sk ⊂ St ⊂ Ωt+1. Then the number of updates of St and δt cannot be infinite if the
sequence of estimates δt is bounded, since each update of set estimates excludes disjoint
balls with a radius of ε/2 and with centers at δt. The sequence of estimates δt is bounded
because the set {δ̂ | J(δ̂) ≤ J(δ)} is bounded and J(δt) ≤ J(δ) for all t in view of (26). The
inequality (29) follows from (26) and the inclusions δ ∈ St for all t. The inequality in (28) is
guaranteed by Lemma 1 for δ̂ = δε

∞. Finally, the equality in (28) follows from the inequality

|φt| ≤ 1 + py
t + pu

t ,

the definition of δε
∞, and the monotonicity of J(δ) with respect to the components of δ.

Theorem 2 is proven.

Remark 2. The main merit of the presented algorithm (25) and (26) of optimal online error
quantification is it that, consistent with the measurement data yt

0, ut
0, it provides a nonconservative

upper bound J(δε
∞) for the steady-state tracking error

‖y− r‖ss ≤ J(δε
∞) = J(δ) + O(ε) (ε→ 0) ,

which follows from (21) and (29) and where the value of J(δ) corresponding to the “true” vector δ is
not known.

Remark 3. To guarantee the desired accuracy of error quantification, one can compute the differences

J(δε
t )− J(δt) , where δε

t = (1 + ε, δ
y
t + ε, δu

t + ε) . (30)

Taking into account the inequality J(δt) ≤ J(δ) (since δ ∈ St for all t, see the proof of Theorem 2),
we get

J(δε
t )− J(δ) ≤ J(δε

t )− J(δt) .

If the current difference is greater than the desired accuracy, one can choose a smaller (half as much,
for example) dead zone parameter ε. The desired accuracy will be guaranteed after several corrections
of ε, if they ever occur.

Remark 4. Computation of the estimate δt+1 in (26) is a linear-fractional problem with respect
to δ̂ ∈ St+1 ⊂ R3. This problem is reducible to linear programming via a standard change of
variables [19] and can be solved online.

6. Simulations and Comments

In this section, the problem of optimal error quantification is illustrated by simulations
and some comments.

Consider the unstable and minimum phase plant

yt − 1.9672yt−1 + 1.6393yt−2 = 2ut−1 − 4/3yt− 2 + vt (31)
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with the poles 0.6± 0.5i and the zero 1.5 (note, that computational complexity of optimal er-
ror quantification (25) and (26) is independent of the orders n and m). The total disturbance
is modeled in the form

vt = cw + wt + 0.1δ1
t |yt−1

t−µ|+ 0.1δ2
t |ut−1

t−µ| (32)

with the parameters

cw = 2, µ = 20, δ = (δw, δy, δu) = (1, 0.1, 0.1) .

We present simulations with the total disturbance vt of two kinds.
For random disturbance and perturbations, the normalized external disturbance wt

and the coefficients δ1
t , δ2

t in (32) are independent and uniformly distributed on [−1,1].
For deterministic disturbance and perturbations, wt, δ1

t , and δ2
t are of the form

wt = cos(5t), δ1
t = sin(70t), δ2

t = cos(ln(0.5t)) .

Comment 1. The dead zone parameter in simulations was chosen as ε = 10−4, which is
three orders of magnitude less than the gains of perturbations δy, δu. This choice guarantees
high accuracy of the solution of the problem of optimal error quantification. Despite ε being
so small, the number of updates of the estimates St and δt in numerous simulations did not
exceed 15 on the time interval [1, 1000] and 25 on the time interval [1, 10,000]. The time
of each of the numerous simulations on the notebook with the processor i5-7200U CPU
@2.50GHz was in the range of 0.6–0.9 s.

Comment 2. In all simulations with the optimal closed loop system (1) and (6), the
current estimates δt were of the form

δt = (δw
t , 0, 0) , (33)

which corresponds with zero perturbations in the plant. The values of J(δt) = δw
t were in

the interval [3.8, 5.4] in all simulations, while the optimal value was near J(δ) = 9.4153.
Possible reasons for the estimates of the form (33) seem to be as follows. First, it can be seen
that the values of the control criterion J(δ) are more sensitive to increasing the gain δy of
the output perturbations compared with the upper bound δw of the external disturbance
and even more sensitive to increasing the gain δu of the control perturbations. This means
that small values of δ̂y and δ̂u are more preferable in the optimal estimation (26). Second,
the total random and deterministic disturbances vt described above are not the worst-case
ones that maximize ‖y− r‖ss. The problem of modeling the worst-case total disturbance vt
is challenging and its solution is unknown.

To make the disturbance and perturbations (32) worse for the control criterion ‖y− r‖ss,
their values in the time intervals [251, 255], [551, 560], and [751, 770] were chosen in the form

wt+1 = δ1
t+1 = δ2

t+1 = sign(rt+1) (34)

to maximize each subsequent value of |yt+1| on these intervals. The bursts of the tracking
error yt − rt on all presented plots are the result of this local maximizing |yt+1|. Despite the
“locally worst” disturbance and perturbations of the form (34), the estimates δt in the closed
loop system (1), (6), remained unchanged (33).

Consider now a more realistic situation where the exact nominal model is unknown,
but the controller designer has some estimate of it and the task is to evaluate the quality
of the corresponding optima controller on real data. Let the approximated model be of
the form

â(q−1)yt = b̂(q−1)ut−1 + v̂t , t = 1, 2, 3, . . . ,

with the parameters

â = (â1, â2) = (−2, 1.6), b̂ = (b̂1, b̂2) = (2.1,−1.3) .
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The optimal controller for this model is

b̂(q−1)ut = (â(q−1)− 1)yt+1 + rt+1 − cw . (35)

The closed loop system (1) and (35) without perturbations is stable because the roots
−49.5203, −12.9108, and 1.4311 of its characteristic polynomial lie outside the unit disk of
the complex plane. Then, for the tracking error in the closed loop system, we have

yt+1 − rt+1 =δwwt+1 + δy∆1(y)t+1 + δu∆2(u)t+1+

(â− a)(yt, yt−1)
T + (b− b̂)(ut, ut−1)

T , (36)

where a = (a1, a2), b = (b1, b2), and the last two terms at the right-hand side can be
considered as additional output and control perturbations compared with those in (7). Then
the gains δ̂y and δ̂u of the output and control perturbations in the closed loop system (1)
and (35) can be estimated, respectively, as

δ̂y ≤ δy + ‖â− a‖1 = δy + 0.0721 , δ̂u ≤ δu + ‖b− b̂‖1 = δy + 0.1333... .

Then the closed loop system (1) and (35) is robustly stable. The plots of the tracking
errors for the closed loop system (1) and (35) under random and deterministic perturbations
are presented on the left panes of Figures 2 and 3, respectively.

Comment 3. It was noted in the Introduction that the set-membership approach was
criticized for conservatism of prior upper bounds [2]. The optimal error quantification (25)
and (26) needs no prior upper bounds except the condition of robust stabilizability (18).
This condition is necessary for strict mathematical proof of Theorem 2.

Comment 4. Simulations with the “locally worst” disturbance and perturbations (34)
of maximal magnitudes and inexact nominal model with the respective non-optimal con-
troller (35) illustrate additional nonconservatism of the set-membership approach. Indeed,
the unfalsified upper bounds J(δt) on the tracking error were considerably less than the
optimal upper bound J(δ) despite disturbance and perturbations of maximal magnitudes
(but not the worst-case for the control criterion (5)). In other words, this approach with
optimal estimation is able to take into account a real randomness of disturbance and per-
turbations. Moreover, simulations with the gains δy and δy that slightly violate the robust
stability condition (9) showed similar results and really worst-case perturbations seem to
be necessary to obtain estimates J(δt) closer to the worst-case upper bound J(δ).

Comment 5. Despite the estimates of the form (33) associated with no uncertainty
in the model, the presented plots for the case of non-worst-case perturbations indirectly
provide information about the presence of uncertainty δy∆1(y)t + δu∆2(u)t in the closed-
loop system. Indeed, if there were no uncertainties in the plant (1), the tracking error
should remain in the intervals [−J(δt), J(δt)] in steady-state. But this is not the case on the
presented plots.

0 250 500 750 1000

−10

−5

0

5

10

y
−
r

t
0 250 500 750 1000
0

2

4

6

8

10

t

J
(

δ
t
)

Figure 2. Plots of yt − rt (left pane) and J(δt) (right pane) under random w, ∆1, ∆2. ±J(δ)—red lines,
the optimal unfalsified bounds ±J(δ1000)—blue lines.
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Figure 3. Plots of yt − rt (left pane) and J(δt) (right pane) under deterministic w, ∆1, ∆2. ±J(δ)—red
lines, the optimal unfalsified bounds ±J(δ1000)—blue lines.

7. Suboptimal Robust Tracking under Unknown Bias of External Disturbance

In this section, we show how the optimal error quantification from section 5 can be used
for suboptimal robust tracking under an unknown bias cw of the biased external disturbance.

Let us introduce more detailed notation,

J(cw, δ) := J(δ),

for the control criterion J(δ) defined in (10). Let a priori information on the unknown bias
cw be of the form

cw ∈ [cw
min, cw

max]

with some known cw
min and cw

max. Let us choose a natural number N and define the grid of
tested values cw

k of the unknown bias cw as follows:

cw
k = cw

min + kε1 , k = 0, 1, · · · , N , ε1 =
cw

max − cw
min

N
. (37)

This grid will approximate the best unfalsified estimate of cw with the accuracy ε/2.
Now, we will use optimal online estimation (24) and (25) for all cw

k in parallel. The control
ut at the time instant t is computed by the optimal controller (6) corresponding to the bias
cw

kt
, where

kt = argmin
k

J(cw
k , δk

t ) (38)

and δk
t is the estimate of δ corresponding to cw

k at the time instant t.
Typical results of applying the described adaptive control under parameters

cw = 2.5 , [cw
min, cw

max] = [−5, 5], N = 10, ε1 = 1

and random disturbance and perturbations are presented in Figure 4. Note that cw
8 = 2

and cw
9 = 3 are equidistant from cw = 2.5 and the estimates cw

kt
took only these two values,

rarely switching between them and, in particular, cw
kt
= 2 on the time interval [765, 1000].

The time of each of the numerous simulations with unknown cw was within the interval of
2–4 s.
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Figure 4. Plot of y− r (left pane) and J(δk
1000), k = 0, 1, · · · , 10, (blue squares on right pane). ±J(δ)—

red lines, ±J(δk1000
1000)—blue lines.
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Note that online estimation of the bias cw is a nontrivial problem in both classical
adaptive control and the tracking problem under consideration. The described parallel
error quantification provided the best estimate cw

k1000
= 2 of the unknown cw = 2.5, but the

value of J(δk1000
1000 ) itself is not the best unfalsified upper bound of ‖y− r‖ss corresponding to

cw
8 = 2. This is seen on the plot of the tracking error y− r on the left pane of Figure 4. To

compute the best one, it is necessary to leave in the set estimate S1000 only those inequalities
from (24) that correspond to the last estimate cw

k1000
= 2 and to delete all others.

8. Conclusions

The problem of online control-oriented optimal quantification of the unknown bound
of biased external disturbance and the gains of coprime factor perturbations of the linear
time invariant discrete-time plant with a known nominal model is considered in the frame-
work of the `1 robust control theory. Computation of the optimal data-consistent upper
bounds under the known bias of external disturbance is reduced to linear programming.
This makes it possible to compute optimal estimates online and apply them to optimal
robust steady-state tracking under the unknown bias of the external disturbance. The
results are illustrated by computer simulations.
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