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Abstract: In this paper, we suggest using a partial randomized response model using Poisson
distribution to efficiently estimate a rare sensitive attribute by applying the probability proportional
to size (PPS) sampling method when the population is composed of several different and sensitive
clusters. We have obtained estimators for a rare and sensitive attribute and their variances and
variance estimates by applying PPS sampling and two-stage equal probability sampling. We compare
the efficiency between the estimators of the rare sensitive attribute, one obtained via PPS sampling
with replacement and the other obtained using the two-stage equal probability sampling with
replacement. As a result, it is confirmed that the estimate obtained via the PPS sampling with
replacement is more efficient than the estimate provided by the two-stage equal probability sampling
with replacement when the cluster sizes are different.

Keywords: Poisson distribution; partial randomized response model; rare sensitive attribute; cluster
sampling; probability proportional to size (PPS) sampling

MSC: 62D05

1. Introduction

In a socially and personally very sensitive survey, if you directly ask a question to the
respondents, they tend to refuse to answer or give a false answer. To solve this problem,
ref. [1] proposed a randomized response model (RRM) that could obtain sensitive informa-
tion while protecting the identity or confidentiality of the respondent through an indirect
response using a randomization device. Since then, many researchers have suggested
various randomized response models to improve the quality of estimation.

Subsequently, refs. [2–4] organized, summarized and systematized the randomized
response models, ref. [5] applied two-stage cluster sampling to a randomized response
model, and ref. [6] researched improving the practicality of randomized response model
by suggesting a randomized response model using PPS sampling. Meanwhile, the authors
of [7] suggested a unrelated question randomized response method to estimate the mean
number of participants with a rare sensitive attribute using Poisson distribution. Examples
of rare sensitive attributes include the proportion of people with AIDS who have persistent
relationships with strangers, the proportion of people who witnessed murders, and the
number of girls raped by their own fathers, etc. and examples of rare unrelated attributes
include the proportion of people born correctly at 12 o’clock, the proportion of babies
born blind, and the proportion of triplets delivered by women [8,9] suggested a stratified
two-stage randomized response models for estimating a rare sensitive attribute under
Poisson distribution.

Furthermore, ref. [10] proposed a partial randomized response model using Poisson
distribution, providing an alternative approach to estimating rare sensitive attributes
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through simple random estimation and stratified estimation. Their model demonstrated
higher efficiency compared to Suman and Singh’s model. However, this research also
faces limitations when applied to actual surveys if the population is clustered. Therefore,
when the population is clustered, it is expected that applying Narjis and Shabbir’s model,
which is more efficient than Suman and Singh’s model, could offer a practical solution for
estimating rare sensitive attributes in real surveys.

In this study, we proposed a method for estimating rare sensitive attributes when the
survey question is highly sensitive, and the population is composed of clusters with varying
sizes. We applied the probability proportional to the size sampling method, which assigns
sampling probabilities in proportion to the size of the clusters, to the partial randomized
response model of [10]. In Section 2, we first introduced the partial randomized response
model and proposed estimation methods using Probability Proportional to Size (PPS) with
replacement, PPS without replacement, and two-stage equal probability sampling. In
Section 3, we compared the efficiency of the estimation methods, and finally, in Section 4,
we presented conclusions and implications of the study.

2. PPS Estimation for a Rare Sensitive Attribute by Partial Randomized
Response Model

In Section 2, when the survey questions are very sensitive and the population is
composed of N clusters that each contains Mi(i = 1, 2, · · · , N) sub-units, a two-stage
selection method is used, in which n clusters are selected with PPS or with equal probability
from the population, and then mi(i = 1, 2, · · · , n) survey units are selected through simple
random sampling in each selected cluster, which is applied to the partial randomized
response model using the Poisson distribution proposed by [10] to deal with the method of
estimating a rare sensitive attribute.

In Section 2.1, we reviewed Narjis and Shabbir’s Partial randomized response model
and then we considered the sampling method for the clusters via PPS sampling with
replacements in Section 2.2. Clusters by PPS sampling without replacement are considered
in Section 2.3, and clusters by equal probability sampling are examined in Section 2.4.

2.1. Narjis, Shabbir’s Partial Randomized Response Model

In the partial randomized response model, a sample of size n is selected via simple
random sampling with replacement from the population. An individual is selected from
the sample using two randomization devices (R1, R2) and is requested to report his/her
response as per following outcomes of the devices.

The first-stage randomization device R1 consists of the following statements:

(1) I have the sensitive attribute A with probability T.
(2) Go to the randomization device R2 with probability T.

The second-stage randomization device R2 consists of the following statements:

(1) I have the sensitive attribute A.
(2) Forced to say No.
(3) Draw one more card.

With probabilities P1, P2 and P3 respectively, ∑3
i=1 Pi = 1.

If the statement (3) appears on the card of the respondent, then it is necessary to carry
out the process without replacing the card. In the second draw, if statement (3) reappears,
then the respondent is suggested to report his/her actual status. The respondent should
answer the question with s “Yes” (or “No”), if his/her actual status matches (un-matches)
with the statement on the card.

The probability of getting a “Yes” from the respondent is given by:

l0 = Tπ + (1 − T)
[

P1π

(
1 + P3

k
k − 1

)
+ P2

3
k

k − 1
π

]
(1)

where k is the total number of cards in the randomization device R2 .
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As before, assuming that n → ∞ and θ0 → 0, then nθ0 = λ0 (finite). Equation (1) can
be rewritten as

λ0 = Tλ + (1 − T)

[
P1λ

(
1 + P3

k
k − 1

)
+ P2

3
k

k − 1
λ

]
(2)

Let y1, y2, · · · , yn be a random sample of n observations from the Poisson distribution
with parameter λ0.

The maximum-likelihood estimator of λ0 is given by:

λ̂p =

1
n ∑n

j=1 yi

T + (1 − T)

[
P1 + P3

(
k

k − 1

)
(P1 + P3)

] (3)

The variance of the estimator λ̂p is given by:

V
(
λ̂p
)
=

λ

n

[
T + (1 − T)

{
P1 + P3

(
k

k − 1

)
(P1 + P3)

}] (4)

2.2. Estimation by PPS When PSUs Are Selected with Replacement

Suppose n primary sampling units (PSUs) of size Mi(i = 1, 2, · · · , n) have been
selected from the population of N clusters with selection probability φi with replacement
and the secondary sampling units (SSUs) of mi(i = 1, 2, · · · , n) size are selected from each
chosen primary unit using SRSWR. We apply the two-stage sampling procedure to Narjis
and Shabbir’s partial randomized response model to estimate a rare sensitive attribute.
Each person selected via the two-stage sampling procedure is requested to answer “Yes” or
“No” using Narjis and Shabbir’s randomization device such as Tables 1 and 2 for each First
and Second randomization device in ith cluster.

If Question 3 in randomization device R2i appears on the card of the respondent, then
it is necessary to select a card repeatedly in R2i without replacing the card. In the second
draw, if Question 3 reappears, then the respondent is suggested to report his/her “Yes” or
“No”, according to his/her true response to the sensitive question.

Table 1. First stage randomization device R1i.

Question Selection Probability

Question1 Do you have a rare sensitive
attribute Ai?

Ti

Question2 Go to randomization
device R2i.

1 − Ti

Table 2. Second stage randomization device R2i.

Question Selection Probability

Question1 Do you have a rare sensitive
attribute Ai?

Pi1

Question2 Answer to “No”. Pi2
Question3 Draw one more card Pi3

From First and Second randomization devices, Ti is the selection probability of a rare
sensitive question in randomization device R1i for the ith cluster, πi is the population
proportion of a rare sensitive attribute for the i th cluster, and Pi1 is the selection probability
of a rare sensitive question in randomization device R2i for the ith cluster. And Pi2 is the
selection probability of the forced answer “No” in randomization device R2i, Pi3 is the
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selection probability of the statement “Draw one more cards” in randomization device R2i
for the i th cluster, and ki is the number of cards in the card deck of randomization device
R2i for the ith cluster.

The probability of answering “Yes” from the respondent in cluster i is given by

li0 = Tiπi + (1 − Ti)

[
Pi1πi

(
1 + Pi3

ki
ki − 1

)
+ P2

i3
ki

ki − 1
πi

]
(5)

To clarify the response process, we presented a flow chart for the probability of
answering “Yes” for i th cluster in Figure 1.

Figure 1. Response flow using partial randomization device for the ith cluster.

Since the attribute Ai in cluster i is very rare in the population, if we assume mi → ∞
and li0 → 0, then mili0 = λi0(finite).

Let yi1, yi2, · · · , yimi be a random sample of mi observations from the Poisson distri-
bution with parameter λi0 in cluster i, then the estimator λ̂i of λi, the parameter of a rare
sensitive attribute of cluster i, is given by

λ̂i =

1
mi

∑mi
j=1 yij

Ti + (1 − Ti)

[
Pi1 + Pi3

(
ki

ki − 1

)
(Pi1 + Pi3)

] (6)

When respondents are selected via simple random sampling with replacement from
the ith cluster, which was selected with replacement using sampling probability φi for the
estimator λ̂ppzwr of λ, the parameter of a rare sensitive attribute is given by:

λ̂ppzwr =
1

nM0

n

∑
i=1

Miλ̂i
φi

(7)

where M0 = ∑N
i=1 Mi.

Theorem 1. The estimator λ̂ppzwr is an unbiased estimator of the parameter λ.

Proof. Since yij ∼ iid Po(λi0) for each cluster and

λi0 = Tiλi + (1 − Ti)

[
Pi1λi

(
1 + Pi3

ki
ki − 1

)
+ P2

i3
ki

ki − 1
λi

]
.



Mathematics 2024, 12, 196 5 of 11

We have

E1E2
(
λ̂ppzwr

)
= E1E2

[
1

nM0

n
∑

i=1

Mi λ̂i
φi

]
= E1

[
1

nM0

n
∑

i=1

MiE2(λ̂i)
φi

]
,

where

E2(λ̂i) = E2


1

mi

mi
∑

j=1
yij

Ti + (1 − Ti)

(
Pi1 + Pi3

(
ki

ki − 1

)
(Pi1 + Pi3)

)


=
λi0

Ti + (1 − Ti)

[
Pi1 + Pi3

(
ki

ki − 1

)
(Pi1 + Pi3)

]
= λi,

we can obtain

E1E2
(
λ̂ppzwr

)
= E1

[
1

nM0

n
∑

i=1

Miλi
φi

]
= 1

nM0

N
∑

i=1
φi

Miλi
φi

= λ.

Theorem 2. The variance of λ̂ppzwr is given by

V(λ̂ppzwr) = 1
nM2

0

N
∑

i=1
φi

[
Miλi

φi
− M0λ

]2

+ 1
nM2

0

N
∑

i=1

M2
i

mi φi

λi

Ti + (1 − Ti)

[
Pi1 + Pi3

(
ki

ki − 1

)
(Pi1 + Pi3)

] (8)

Proof. By [11], we have

V(λ̂ppzwr) = V1E2(λ̂ppzwr) + E1V2(λ̂ppzwr),

where

V1E2(λ̂ppzwr) = V1E2

[
1

nM0

n
∑

i=1

Mi λ̂i
φi

]
= V1

[
1

nM0

n
∑

i=1

Miλi
φi

]
= 1

nM2
0

N
∑

i=1
φi

[
Miλi

φi
− M0λ

]2

and



Mathematics 2024, 12, 196 6 of 11

E1V2(λ̂ppzwr) = E1V2

[
1

nM0

n
∑

i=1

Mi λ̂i
φi

]

= E1

 1
(nM0)2

n
∑

i=1

M2
i

φ2
i

V2

 1
mi

mi
∑

j=1
yij

Ti+(1−Ti)
{

Pi1+Pi3

(
ki

ki−1

)
(Pi1+Pi3)

}



= E1

 1
(nM0)2

n
∑

i=1

M2
i

φ2
i

1
m2

i

mi
∑

j=1
V2(yij){

Ti+(1−Ti)
(

Pi1+Pi3

(
ki

ki−1

)
(Pi1+Pi3)

)}2

.

Because yij ∼ iid Po(λi0), we have

E1V2(λ̂ppzwr) = E1

 1
(nM0)2

n
∑

i=1

M2
i

φ2
i

1
m2

i

mi
∑

j=1
λi0{

Ti+(1−Ti)
(

Pi1+Pi3

(
ki

ki−1

)
(Pi1+Pi3)

)}2



= E1

 1
(nM0)2

n
∑

i=1

M2
i

φ2
i mi

λi0{
Ti+(1−Ti)

(
Pi1+Pi3

(
ki

ki−1

)
(Pi1+Pi3)

)}2


= E1

[
1

(nM0)2

n
∑

i=1

M2
i

φ2
i mi

λi

Ti+(1−Ti)
[

Pi1+Pi3

(
ki

ki−1

)
(Pi1+Pi3)

]
]

= 1
nM2

0

N
∑

i=1

M2
i

φi
1

mi

λi

Ti+(1−Ti)
[

Pi1+Pi3

(
ki

ki−1

)
(Pi1+Pi3)

] .

Thus, we determine the variance of λ̂ppzwr as shown in (8).

Also, the estimator of V(λ̂ppzwr) is given by

V̂(λ̂ppzwr) =
1

n(n − 1)M2
0

n

∑
i=1

(
Miλ̂i

φi
− λ̂ppzwr

)2

. (9)

On the other hand, when the sampling probabilities of n PSUs are proportional to
each cluster size Mi, then φi = Mi/M0, which is called PPS sampling. When a sample of
n PSUs are selected via PPS sampling with replacement and mi SSUs are selected using
simple random sampling with replacement from each PSU, the estimator λ̂ppzwr of λ is
as follows

λ̂ppswr =
1
n

n

∑
i=1

λ̂i. (10)

And the variance of λ̂ppswr and its estimator are, respectively,

V(λ̂ppswr) =
1

nM0

N
∑

i=1
Mi(λi − λ)2

+
1

nM0

N
∑

i=1

Mi
mi

λi

Ti + (1 − Ti)

[
Pi1 + Pi3

(
ki

ki − 1

)
(Pi1 + Pi3)

], (11)

and

V̂(λ̂ppswr) =
1

n(n − 1)

n

∑
i=1

(
λ̂i −

λ̂ppswr

M0

)2

. (12)
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2.3. Estimation by PPS When PSUs Are Selected without Replacement

Suppose n PSUs of size Mi(i = 1, 2, · · · , n) have been selected from the population
of N clusters with selection probability ϕi without replacement and the SSUs of size mi
are selected from each chosen primary unit via SRSWR. We apply the two-stage sampling
procedure to Narjis and Shabbir’s RRT to estimate a rare sensitive attribute.

The estimator λ̂ppswor of λ, the parameter of a rare sensitive attribute obtained using
the above sampling procedure is given by

λ̂ppswor =
1

M0

n

∑
i=1

Miλ̂i

ϕi
. (13)

where ϕi is the inclusion probability of survey unit i.
And the variance of λ̂ppswor is given by:

V
(
λ̂ppswor

)
= 1

M2
0

N
∑

i=1

N
∑
j>i

(ϕiϕj − ϕij)
[

Miλi
ϕi

− Mjλj
ϕj

]2

+ 1
M2

0

N
∑

i=1

M2
i

miϕi

λi

Ti + (1 − Ti)

[
Pi1 + Pi3

(
ki

ki − 1

)
(Pi1 + Pi3)

], (14)

where ϕij is the joint inclusion probability of survey units i and j.
Also, the estimator of V(λ̂ppswor) is given by

V̂(λ̂ppswor) = 1
M2

0

n
∑

i=1

n
∑
j>i

(
ϕiϕj − ϕij

ϕij

)(
Mi λ̂i

ϕi
− Mjλ̂j

ϕj

)2

+ 1
M2

0

n
∑

i=1

M2
0

ϕi(mi−1)
λ̂i

Ti+(1−Ti)
[

Pi1+Pi3

(
ki

ki−1

)
(Pi1+Pi3)

] (15)

2.4. Estimation via Two-Stage Equal Probability Sampling

Suppose n PSUs of size Mi(i = 1, 2, · · · , n) have been selected from the population
of N clusters by SRSWR and the SSUs of size mi are selected again from each chosen PSU
via SRSWR. We consider the two-stage equal probability sampling procedure for Narjis
and Shabbir’s RRT for estimating a rare sensitive attribute. The estimator λ̂wr of λ, the
parameter of a rare sensitive attribute, obtained using the above procedure is given by

λ̂wr =
1

nM

n

∑
i=1

Miλ̂i, (16)

where M = M0/N.

V
(
λ̂wr
)

= 1
nM2

1
(N−1)

N
∑

i=1
(Miλi − Mλ)

2

+ 1
nM2

N
∑

i=1

M2
i

mi

λi

Ti + (1 − Ti)

[
Pi1 + Pi3

(
ki

ki − 1

)
(Pi1 + Pi3)

], (17)

and
V̂(λ̂wr) =

1
n(n − 1)

n

∑
i=1

(NMiλ̂i − λ̂wr)
2, (18)

where M = M0/N.

3. Efficiency Comparisons for the PPS vs. Equal Probability Sampling

Narjis and Shabbir’s RRT model was developed under the assumption of simple
random sampling and stratified random sampling, and the efficiency thereof was compared
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with that of the estimators [9]. Therefore, it is reasonable to compare the existing estimator
with the estimator proposed in this paper using Narjis and Shabbir’s model. However,
in the case of cluster sampling, the increase in variance compared to that obtained using
simple random sampling or stratified sampling has already been dealt with in the typical
sampling textbooks, so in this paper, as described above, when the population consists of
N clusters, we consider the case the PPS with replacement estimator and two-stage equal
probability estimator.

Now, the difference between the variance (17) of two-stage equal probability sam-
pling and the variance (11) of PPS with replacement sampling is given as follows under
N − 1 ≒ N

V(λ̂wr)− V(λ̂ppswr) = 1
nNM̄2

[
N
∑

i=1
(Mi − M)2λ2

i + M
{

N
∑

i=1
(Mi − M)(λ2

i − λ2)

}
+

N
∑

i=1

(Mi−M̄)2

mi

λi

Ti+(1−Ti)
[

Pi1+Pi3

(
ki

ki−1

)
(Pi1+Pi3)

]
+ M̄

N
∑

i=1

(Mi−M̄)
mi

λi

Ti+(1−Ti)
[

Pi1+Pi3

(
ki

ki−1

)
(Pi1+Pi3)

]
]

.

(19)

In (19), if Mi = M̄ = M0/N then V(λ̂wr) = V(λ̂ppswr). In other words, if the cluster
sizes are equal, the selection probability of PPS sampling with replacement becomes 1/N
and is equal to that of two-stage equal probability sampling with replacement. Hence, they
have the same efficiency.

If each cluster size Mi is unequal, the values ∑N
i=1(Mi − M̄)2λ2

i of first term of the right-
hand side in (19) are much increased, and the values ∑N

i=1(Mi − M̄)(λ2
i − λ2) of the second

term of the right-hand side in (19) have relatively small ones. Hence, the estimation using
PPS sampling with replacement is more efficient than that of two-stage equal probability
sampling with replacement.

We tabulate to summarize the relationship for each estimator in a cluster sampling
design as follows.

Now, we compare the efficiency by calculating relative efficiencies (RE) between
different sampling methods, such as simple random sampling with replacement (:ppzwr),
PPS sampling with replacement (:ppswr) and two-stage equal probability sampling with
replacement (:wr) according to varying parameter combinations by numerical example.

RE1 =
V(λ̂wr)

V(λ̂ppzwr)
, RE2 =

V(λ̂ppzwr)

V(λ̂ppswr)
, RE3 =

V(λ̂wr)

V(λ̂ppswr)
. (20)

The values of RE1 greater than one means that unequal probability sampling with
replacement (:ppzwr) is more efficient than two-stage equal probability sampling with re-
placement (:wr), RE2 greater than one means that PPS sampling with replacement (:ppswr)
is more efficient than unequal probability sampling with replacement(:ppzwr), and RE3
greater than one means that PPS sampling with replacement (:ppswr) is more efficient than
two-stage equal probability sampling with replacement(:wr).

In calculating REs, we set parameters for ith cluster (i = 1, 2, 3, 4) as follows.

M0 = 10,000; M1 = 1000; M2 = 2000; M3 = 3000; M4 = 4000,
m0 = 1000; m1 = 100; m2 = 200; m3 = 300; m4 = 400,
λ = 1.25, 1.5, 2.0, 2.25;
λ1 = 0.5, λ2 = 1.0, λ3 = 1.5, λ4 = 2.0;
k1 = k2 = k3 = k4 = 15, 75;
Pi1, Pi2 = 1−Pi1

3 , Pi3 = 1 − Pi1 − Pi2.

We also assume the selection probabilities for ith cluster as follows.

T1 = T2 = T3 = T4;
P11 = P12 = P13 = P21 = P22 = P23 = P31 = P32 = P33 = P41 = P42 = P43,



Mathematics 2024, 12, 196 9 of 11

varying from 0.2 to 0.8 by 0.2.
In order to compare the efficiency of the proposed estimators from numerical examples,

we summarized the relative efficiencies according to various parameter values with their
mean values.

From Table 3, it can be seen that for all the parametric combinations, the mean values
of RE1 are greater than one, which indicates that the unequal probability sampling with
replacement estimator λ̂ppzwr is more efficient than the two-stage estimator, λ̂wr, as the
sensitive attribute value λ decreases, and in contrast, if sensitive attribute λ increases,
then the efficiency of λ̂ppzwr decreases. In addition, the variation in RE1 with respect to ki
indicates that the RE1 increases as the values of selection probability Ti increase.

Table 3. The relationship between different estimators for cluster sampling.

Pi = Mi/M0 Mi = M = M0/N

λ̂ppzwr λ̂ppzwr =λ̂ppswr
λ̂ppswr λ̂ppswr =λ̂wr
λ̂ppswor
λ̂wr

As shown in Table 4, the probability proportional to size estimator, λ̂ppswr, is more
efficient than the unequal probability sampling with replacement estimator, λ̂ppzwr. As
the sensitive attribute value λ increases, and in contrast, as λ decreases, the probability
proportional estimator decreases in efficiency.

As shown in Table 5, the probability proportional to size estimator, λ̂ppswr, is more
efficient than the two-stage sampling with replacement estimator, λ̂wr. As the sensitive
attribute value λ decreases, and in contrast, as λ decreases, the probability proportional
estimator decreases in efficiency.

In summary, an examination of the efficiency of a partial randomized response model
for rare sensitive attributes based on a cluster sampling design with numerical examples
shows the following trends:

(1) Between ppzwr and wr, efficiency decreases as a rare sensitive attribute λ increases
(refer to Table 4).

(2) Between ppswr and ppzwr, efficiency increases as λ increases, and efficiency is rela-
tively low at specific values of λ (refer to Table 5).

(3) Between ppswr and wr, efficiency increases as λ decreases, similar to the relation
between ppswr and ppzwr, where efficiency sharply increases at specific values of λ
(refer to Table 6).

(4) The number of cards ki does not significantly impact efficiency.

Table 4. The mean values of RE1 for λppzwr vs. λwr.

ki = 15 ki = 75

Ti Ti

λ λi Pi 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

1.25 0.5 0.2 5.1216 5.1218 5.1219 5.122 5.1216 5.1217 5.1219 5.122
1 0.4 5.1218 5.1219 5.1219 5.122 5.1218 5.1218 5.1219 5.122

1.5 0.6 5.1219 5.1219 5.122 5.122 5.1219 5.1219 5.122 5.122
2 0.8 5.122 5.122 5.122 5.122 5.122 5.122 5.122 5.122

1.5 0.5 0.2 2.5931 2.5931 2.5931 2.5931 2.5931 2.5932 2.5932 2.5932
1 0.4 2.5931 2.5931 2.5931 2.5931 2.5932 2.5932 2.5932 2.5932

1.5 0.6 2.5931 2.5931 2.5931 2.5931 2.5932 2.5932 2.5932 2.5932
2 0.8 2.5931 2.5931 2.5931 2.5931 2.5932 2.5932 2.5932 2.5932
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Table 4. Cont.

ki = 15 ki = 75

Ti Ti

λ λi Pi 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

2 0.5 0.2 1.2366 1.2366 1.2366 1.2366 1.2367 1.2367 1.2367 1.2367
1 0.4 1.2366 1.2366 1.2366 1.2366 1.2367 1.2367 1.2367 1.2367

1.5 0.6 1.2366 1.2366 1.2366 1.2366 1.2367 1.2367 1.2367 1.2367
2 0.8 1.2366 1.2366 1.2366 1.2366 1.2367 1.2367 1.2367 1.2367

2.25 0.5 0.2 1.0524 1.0524 1.0524 1.0524 1.0525 1.0525 1.0524 1.0524
1 0.4 1.0524 1.0524 1.0524 1.0524 1.0525 1.0524 1.0524 1.0524

1.5 0.6 1.0524 1.0524 1.0524 1.0524 1.0524 1.0524 1.0524 1.0524
2 0.8 1.0524 1.0524 1.0524 1.0524 1.0524 1.0524 1.0524 1.0524

Table 5. The mean values of RE2 for λppswr vs. λppzwr.

ki = 15 ki = 75

Ti Ti

λ λi Pi 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

1.25 0.5 0.2 1.1104 1.1106 1.1107 1.1109 1.1102 1.1104 1.1106 1.1107
1 0.4 1.1106 1.1107 1.1108 1.1109 1.1105 1.1106 1.1107 1.1108

1.5 0.6 1.1108 1.1109 1.1109 1.111 1.1106 1.1107 1.1108 1.1108
2 0.8 1.1109 1.1109 1.111 1.111 1.1108 1.1108 1.1108 1.1108

1.5 0.5 0.2 2.6033 2.604 2.6045 2.605 2.6027 2.6034 2.604 2.6045
1 0.4 2.6041 2.6045 2.6048 2.6051 2.6036 2.604 2.6043 2.6046

1.5 0.6 2.6047 2.6049 2.6051 2.6052 2.6042 2.6044 2.6046 2.6047
2 0.8 2.6051 2.6052 2.6052 2.6053 2.6046 2.6047 2.6047 2.6048

2 0.5 0.2 3.2936 3.2941 3.2944 3.2947 3.2932 3.2937 3.2941 3.2944
1 0.4 3.2942 3.2944 3.2946 3.2948 3.2938 3.2941 3.2943 3.2945

1.5 0.6 3.2946 3.2947 3.2948 3.2949 3.2942 3.2943 3.2945 3.2946
2 0.8 3.2948 3.2948 3.2949 3.2949 3.2945 3.2945 3.2946 3.2946

2.25 0.5 0.2 2.876 2.8762 2.8764 2.8766 2.8758 2.876 2.8762 2.8764
1 0.4 2.8763 2.8764 2.8765 2.8766 2.8761 2.8762 2.8763 2.8764

1.5 0.6 2.8765 2.8765 2.8766 2.8767 2.8763 2.8764 2.8764 2.8765
2 0.8 2.8766 2.8766 2.8767 2.8767 2.8764 2.8765 2.8765 2.8765

Table 6. The mean values of RE3 for λppswr vs. λwr.

ki = 15 ki = 75

Ti Ti

λ λi Pi 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

1.25 0.5 0.2 5.6869 5.6881 5.6891 5.6899 5.6859 5.6872 5.6883 5.6891
1 0.4 5.6884 5.6891 5.6896 5.6901 5.6875 5.6882 5.6888 5.6894

1.5 0.6 5.6894 5.6897 5.69 5.6903 5.6886 5.689 5.6893 5.6896
2 0.8 5.6901 5.6902 5.6903 5.6905 5.6893 5.6895 5.6896 5.6897

1.5 0.5 0.2 6.7506 6.7524 6.7538 6.7551 6.7491 6.751 6.7526 6.7539
1 0.4 6.7529 6.7538 6.7547 6.7554 6.7515 6.7525 6.7535 6.7543

1.5 0.6 6.7544 6.7548 6.7553 6.7557 6.7531 6.7536 6.7541 6.7546
2 0.8 6.7554 6.7556 6.7557 6.7559 6.7542 6.7544 6.7546 6.7548

2 0.5 0.2 4.0731 4.0736 4.074 4.0744 4.0726 4.0732 4.0737 4.0741
1 0.4 4.0737 4.074 4.0742 4.0745 4.0733 4.0737 4.0739 4.0742

1.5 0.6 4.0742 4.0743 4.0744 4.0745 4.0738 4.074 4.0741 4.0743
2 0.8 4.0745 4.0745 4.0746 4.0746 4.0741 4.0742 4.0743 4.0743
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Table 6. Cont.

ki = 15 ki = 75

Ti Ti

λ λi Pi 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

2.25 0.5 0.2 3.0268 3.027 3.0272 3.0274 3.0266 3.0269 3.0271 3.0273
1 0.4 3.0271 3.0272 3.0273 3.0274 3.0269 3.0271 3.0272 3.0273

1.5 0.6 3.0273 3.0273 3.0274 3.0275 3.0271 3.0272 3.0273 3.0273
2 0.8 3.0274 3.0274 3.0275 3.0275 3.0273 3.0273 3.0273 3.0274

4. Conclusions

In this paper, when the population is composed of several different and sensitive
clusters, we suggest a randomized method for efficiently estimating a rare sensitive attribute
by applying the PPS sampling method to the partial randomized response model of [10].
And by applying PPS sampling and two-stage equal probability sampling, estimators for
a rare and sensitive attribute and its variance and variance estimates are obtained. We
compare the efficiency between the estimators of the rare sensitive attribute, one obtained
using the PPS with replacement sampling method and the other obtained using the two-
stage equal probability sampling with replacement method when the cluster sizes are
different. As a result, it was confirmed that the estimation obtained using the PPS sampling
with replacement is more efficient than the estimation obtained based on the two-stage
equal probability sampling with replacement when the cluster sizes are different from
each other.
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