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Abstract: In this article, we discuss the spectral properties of the general extended adjacency matrix
for chain graphs. In particular, we discuss the eigenvalues of the general extended adjacency matrix of
the chain graphs and obtain its general extended adjacency inertia. We obtain bounds for the largest
and the smallest general extended adjacency eigenvalues and characterize the extremal graphs. We
also obtain a lower bound for the spread of the general extended adjacency matrix. We characterize
chain graphs with all the general extended adjacency eigenvalues being simple and chain graphs that
are non-singular under the general extended adjacency matrix. Further, we determine the explicit
formula for the determinant and the trace of the square of the general extended adjacency matrix of
chain graphs. Finally, we discuss the energy of the general extended adjacency matrix and obtain
some bounds for it. We characterize the extremal chain graphs attaining these bounds.
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1. Introduction

Consider a simple graph, G, with vertex set V(G) = {v1, v2, . . . , vn}, edge set E(G),
and degree sequence {d1, d2, . . . , dn} (or dvi ). The number of elements in V(G) is order n
and that of E(G) is size m of G. If vertices u and v are adjacent, we write u ∼ v, otherwise
u ≁ v. If the degree of each vertex is the same, then G is said to be a regular graph. The
complete bipartite graph with partite sets m1 and n1 is denoted by Km1,n1 ; more graph
theoretic notations can be found in [1].

The adjacency matrix A(G) = (aij) of G is a square matrix of order n, where aij is
1 if vivj ∈ E(G), and 0 otherwise. The matrix A(G) is real and symmetric. We list its
eigenvalues in non-increasing order as λ1 ≥ λ2 ≥ · · · ≥ λn. The largest eigenvalue, λ1,
is known as the spectral radius of G. According to the Perron–Frobenius theorem, λ1 is
unique, and |λi| ≤ λ1 and its associated eigenvector state that X has positive entries. In
the literature, the trace norm |λ1|+ |λ2|+ · · ·+ |λn| of A(G) is studied under the name
energy, denoted by E(A(G)), and has its origin in theoretical chemistry, where it helps in
approximating the total π-electron energy of unsaturated hydrocarbons. There is a wealth
of literature data regarding energy, as well as the other spectral graph invariants associated
with the adjacency matrix A(G); see [2–5]. The details of the eigenvalues of the adjacency
matrix and Laplacian matrix and bounds on the energy, E(A(G)), are well studied in the
literature; see [6–43].

For a graph, G, a general vertex-degree-based topological index, ϕ, is defined as

ϕ(G) = ∑
uv∈E(G)

ϕdudv ,
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where ϕdudv is a function of vertex degrees satisfying the symmetric property ϕdudv =
ϕdvdu . For particular values of ϕdudv , we have well known topological indices, such as
the arithmetic–geometric index for ϕdudv = du+dv

2
√

dudv
, the general Randić index for ϕdudv =

(dudv)α (for α = − 1
2 , we obtain the ordinary Randić index R = ∑

uv∈E(G)

1√
dudv

), the

general Sombor index for ϕdudv =
(
d2

u + d2
v
)α (for α = 1

2 , we obtain the Sombor index

S = ∑
uv∈E(G)

√
d2

u + d2
v ), and several other indices, such as the first Zagreb index, the second

Zagreb index, the forgotten topological index, the harmonic index, the sum-connectivity
index, the geometric–arithmetic index, the atom–bond connectivity index, and all other
remaining degree-based indices.

The general adjacency matrix (Aϕ-matrix) associated with the topological index ϕ of
G is a real symmetric matrix, defined by

Aϕ(G) = (aϕ)ij =

{
ϕdudv if u ∼ v,
0 otherwise.

(1)

The set of all eigenvalues of Aϕ(G) is known as the general adjacency spectrum (Aϕ-
spectrum) of G and are denoted by λ1(Aϕ(G)) ≥ λ2(Aϕ(G)) ≥ · · · ≥ λn(Aϕ(G)), where
λ1(Aϕ(G)) is the general adjacency spectral radius of G. In addition, for a connected graph,
if ϕdudv > 0 whenever u ∼ v, then by the Perro–Frobenius theorem, λ1(Aϕ(G)) is unique
and its associated eigenvector has positive components. Also in this case, |λi(Aϕ(G))| ≤
λ1(Aϕ(G)), for i = 2, . . . , n − 1, n. The energy of general extended adjacency matrix Aϕ(G),
associated with the topological index ϕ, was introduced in [16] and is defined as

Eϕ(G) =
n

∑
i=1

|λi(Aϕ(G))|.

If ϕdudv = 1, when u ∼ v, then Aϕ(G) is the much studied adjacency matrix A(G) and

Eϕ(G) is the usual graph energy, E(G) =
n

∑
i=1

|λi|. If ϕdudv = du + dv, when u ∼ v, then

Aϕ(G) represents the first Zagreb matrix and Eϕ(G) represents the first Zagreb energy of
G. If ϕdudv = dudv, when u ∼ v, then Aϕ(G) represents the second Zagreb matrix and
Eϕ(G) represents the second Zagreb energy of G. If ϕdudv = 1√

dudv
, when u ∼ v, then

Aϕ(G) represents the Randić matrix and Eϕ(G) represents the Randić energy of G. If

ϕdudv = 1
2

(
du
dv

+ dv
du

)
, when u ∼ v, then Aϕ(G) represents the extended adjacency matrix

and Eϕ(G) represents the extended energy of G. If ϕdudv = 1√
du+dv

, when u ∼ v, then Aϕ(G)

represents the sum-connectivity matrix and Eϕ(G) represents the sum-connectivity energy

of G. If ϕdudv =
√

du+dv−2
dudv

, when u ∼ v, then Aϕ(G) represents the ABC-matrix and Eϕ(G)

represents the ABC-energy of G. If ϕdudv = 2
√

dudv
du+dv

, when u ∼ v, then Aϕ(G) represents the
geometric–arithmetic matrix and Eϕ(G) represents the geometric–arithmetic energy of G.
If ϕdudv = du+dv

2
√

dudv
, when u ∼ v, then Aϕ(G) represents the arithmetic–geometric matrix and

Eϕ(G) represents the arithmetic–geometric energy of G. If ϕdudv =
√

d2
u + d2

v, when u ∼ v,
then Aϕ(G) represents the Sombor matrix and Eϕ(G) represents the Sombor energy of G,
and so on.

The spectral properties of matrix Aϕ(G) have attracted much attention from re-
searchers and as such are one of the hot topics of spectral graph theory. More about
the Aϕ-matrix, including some recent results, can be found in [16,44–49].

Chain graphs are {2K2, C3, C5}-free graphs. The vertex set of any chain graph, say
G, consists of two color classes (or independent sets), each partitioned into h non-empty
cells V1, V2, . . . , Vh and U1, U2, . . . , Uh of sizes mi and ni, respectively. All vertices in Vi are
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joined by (cross) edges to all vertices in
⋃h−(i−1)

j=1 Vj for i = 1, 2, . . . , h. Therefore, if ui ∈ Ui+1

and uj ∈ Ui (vk ∈ Vt+1 and vl ∈ Vt ), then N(uj) ⊂ N(ui) (respectively, N(vk) ⊂ N(vl)).
From now onwards, we denote a chain graph by G(m1, m2, . . . , mh; n1, n2, . . . , nh) with
order n = ∑h

i=1 mi + ∑n
i=1 ni. For h = 1, we obtain the bipartite graph G(m1; n1) ∼= Km1,n1 .

Figure 1 represents a chain graph, G(2, 3, 2, 3; 3, 2, 3, 3), of order 21, where black cells
represent Vis and blue cells denote Uis. The dashed lines between two cells. Vi and Uj,
represent that each vertex of Vi is adjacent to every vertex of Uj.

Figure 1. Chain graph G(2, 3, 2, 3; 3, 2, 3, 3).

Chain graphs are not only important from an application point of view; they are also
among the class of graphs that attain the extremal value for various spectral graph invari-
ants. Hence, their spectral study forms a vital part of spectral graph theory. The spectral
properties of chain graphs are considered for various graph matrices by different authors.
For some recent papers on the spectral properties of chain graphs, we refer to [15,50,51]
and the references therein. Here, we aim to extend the spectral study of chain graphs to a
general extended adjacency matrix, Aϕ.

The rest of the paper is organized as follows. In Section 2, we discuss the general ex-
tended adjacency eigenvalues of chain graphs and obtain their general extended adjacency
inertia. We also obtain a lower bound for the spread of the general extended adjacency
matrix and characterize chain graphs with all the general extended adjacency eigenvalues
being simple and chain graphs that are non-singular under the general extended adjacency
matrix. In Section 3, we discuss the general extended adjacency energy of chain graphs and
obtain some sharp bounds. We characterize the chain graphs that attain these bounds. We
end the article with the conclusions.

2. General Extended Adjacency Eigenvalues of Chain Graphs

Any column vector X = (x1, x2, . . . , xn)T ∈ Rn can be regarded as a function defined
on V(G) that relates every vi to xi, that is, X(vi) = xi for all i = 1, 2, . . . , n.

A real number, λ, is the Aϕ-eigenvalue with its associated eigenvector X if and only if
X ̸= 0, and for every vi ∈ V(G) we have

λX(vi) = ∑
vj∈N(vi)

ϕdvi dvj
X(vj). (2)

Equation (2) is the (λ, X)-eigenequations for the Aϕ-matrix. The following result
provides information regarding some of the Aϕ-eigenvalues of a graph when the graph has
an independent set sharing the same neighborhood outside the independent set.

Theorem 1. Let G be a connected graph with vertex set V(G) = {v1, v2, . . . , vn} and let S =
{v1, v2, . . . , vα} be an independent subset of G, such that N(vi) = N(vj) for all i, j ∈ {1, 2, . . . , α},
then 0 is the eigenvalue of Aϕ(G) with a multiplicity of at least α − 1.

Proof. Since S is an independent set, where each vertex shares the same neighborhood
outside S, by first indexing the vertices in the independent set, the Aϕ-matrix of G can be
written as
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Aϕ(G) =

(
0α Bα×(n−α)

(Bα×(n−α))
T C(n−α)

)
,

where Bα×(n−α) represents the part of matrix Aϕ(G) that corresponds to edges having one
end in S and the other end in V(G) \ S and C(n−α) represents the part of matrix Aϕ(G) that
corresponds to edges having both the ends in V(G) \ S. For i = 2, 3, . . . , α, consider the
vectors given by

Xi−1 =
(
− 1, xi2, xi3, . . . , xip, 0, 0, 0, . . . , 0︸ ︷︷ ︸

n−p

)T

such that xij =

{
1 if i = j,
0 otherwise.

As the rows of Bα×(n−α) are identical, it is easy to verify that X1, X2, X3, . . . , Xα−1
are the eigenvectors of Aϕ(G) corresponding to the eigenvalue 0. From this, the result
follows.

The real sequence b
′
1 ≥ b

′
2 ≥ · · · ≥ b

′
m is said to interlace the real sequence b1 ≥ b2 ≥

· · · ≥ bn (m < n) if bi ≥ b
′
i ≥ bn−m+i for i = 1, 2, . . . , m, and the interlacing is said to be

tight if there exists a positive integer k ∈ [0, m], such that

bi = b′i for i = 1, 2, . . . , k and bn−m+i = b′i for k + 1 ≤ i ≤ m.

Consider a square matrix, M, of order n in block form:

M =


A1,1 A1,2 · · · A1,s−1 A1,s
A2,1 A2,2 · · · A2,s−1 A2,s

...
...

. . .
...

...
As−1,1 As−1,2 · · · As−1,s−1 As−1,s

As,1 As,2 · · · As,s−1 As,s

,

whose rows and columns are partitioned according to a partition π = {P1, P2, . . . , Ps} of
the index set I = {1, 2, . . . , n}. The quotient matrix Q = (qij)s×s (see [1]) is a square matrix
of order s, such that the (i, j)-th entry of Q is the average row sum of block Aij of M. The
partition, P, is said to be equitable (regular) if each block Ai,j of M has a constant row sum,
and in this case Q is called the equitable quotient matrix.

The following result provides the relation between the eigenvalues of M and the
eigenvalues of Q.

Theorem 2 ([1]). Let M be a real symmetric matrix of order n and Q be its quotient matrix of
order m (n > m). Then the following hold:

(i) If the partition π of I of matrix M is not equitable, then the eigenvalues of Q interlace the
eigenvalues of M, that is,
λi(M) ≥ λi(Q) ≥ λi+n−m(M), for i = 1, 2, . . . , m.

(ii) If the partition π of I of matrix M is equitable, then the spectrum of Q is contained in the
spectrum of M.

In the next result, we discuss the Aϕ-eigenvalues of chain graphs.

Theorem 3. Let G ∼= G(m1, . . . , mh; n1, . . . , nh) be the chain graph. Then G has the Aϕ-
eigenvalue 0 with multiplicity n − 2h; the remaining Aϕ-eigenvalues of G are the eigenvalues
of the matrix given in (4).

Proof. Labelling the vertices from Vis to Uis, the Aϕ matrix of G is
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(
0m1+m2+···+mh B

BT 0n1+n2+···+nh

)
, (3)

where 0 is a matrix of zeros and B is a matrix of order (m1 + m2 + · · ·+ mh)× (n1 + n2 +
· · ·+ nh), given by

B =



ϕd1ℓ1
Jm1×n1

ϕd1ℓ2
Jm1×n2 . . . ϕd1ℓh−1

Jm1×nh−1
ϕd1ℓh

Jm1×nh

ϕd2ℓ1
Jm2×n1

ϕd2ℓ2
Jm2×n2 . . . ϕd2ℓh−1

Jm2×nh−1
0m2×nh

ϕd3ℓ1
Jm3×n1

ϕd3ℓ2
Jm3×n2 . . . 0m3×nh−1

0m3×nh

.

.

.

.

.

.
. . .

.

.

.

.

.

.

ϕdh−1ℓ1
Jmh−1×n1

ϕdh−1ℓ2
Jmh−1×n2 . . . 0mh−1×nh−1

0mh−1×nh

ϕdhℓ1
Jmh×n1

0mh×n2 . . . 0mh×nh−1
0mh×nh


.

Since each Vi (respectively Ui) consists of independent vertices and share the common
neighborhood, by Theorem 1 it follows that G has the Aϕ-eigenvalue of 0 with multiplicity
n − 2h. For k = 2, 3, . . . , mi, ℓ = 2, 3, . . . , ni, the corresponding eigenvectors are

X1
k−1 =

(
− 1, xi2, xi3, . . . , xim1 , 0, 0, 0, . . . , 0︸ ︷︷ ︸

n−m1

)T

X2
k−1 =

(
0, 0, . . . , 0︸ ︷︷ ︸

m1

,−1, xi2, xi3, . . . , xim2 , 0, 0, 0, . . . , 0︸ ︷︷ ︸
n−m1−m2

)T

...

Xh−1
k−1 =

(
0, 0, 0, . . . , 0︸ ︷︷ ︸

n−∑h−2
i=1 mi

, ,−1, xi2, xi3, . . . , ximh−1
, 0, 0, . . . , 0︸ ︷︷ ︸

mh

, 0, 0, . . . , 0︸ ︷︷ ︸
∑h

i=1 ni

)T

Xh
k−1 =

(
0, 0, 0, . . . , 0︸ ︷︷ ︸

n−∑h−1
i=1 mi

, ,−1, xi2, xi3, . . . , ximh , 0, 0, . . . , 0︸ ︷︷ ︸
∑h

i=1 ni

)T

Y1
ℓ−1 =

(
0, 0, . . . , 0︸ ︷︷ ︸

∑h
i=1 mi

,−1, yi2, yi3, . . . , yin1 , 0, 0, . . . , 0︸ ︷︷ ︸
∑h

i=2 ni

)T

Y2
ℓ−1 =

(
0, 0, . . . , 0︸ ︷︷ ︸

∑h
i=1 mi

, 0, 0, 0, . . . , 0︸ ︷︷ ︸
n1

,−1, yi2, yi3, . . . , yin2 , 0, 0, 0, . . . , 0︸ ︷︷ ︸
∑h

i=3 ni

)T

...

Yh−1
ℓ−1 =

(
0, 0, . . . , 0︸ ︷︷ ︸

∑h
i=1 mi

, 0, 0, 0, . . . , 0︸ ︷︷ ︸
∑h−2

i=1 ni

,−1, yi2, yi3, . . . , yinh−1
, 0, 0, 0, . . . , 0︸ ︷︷ ︸

nh

)T

Yh
ℓ−1 =

(
0, 0, . . . , 0︸ ︷︷ ︸

∑h
i=1 mi

, 0, 0, 0, . . . , 0︸ ︷︷ ︸
∑h−1

i=1 ni

,−1, yi2, yi3, . . . , yinh

)T
,

where

xij =

{
1 if i = j
0 otherwise.

for i = 2, 3, . . . , mi, and j = 2, 3, . . . , mi,

and

yij =

{
1 if i = j
0 otherwise.

for i = 2, 3, . . . , ni, and j = 2, 3, . . . , ni.

The remaining 2h eigenvalues of Aϕ(G) are the eigenvalues of the following matrix:
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Q =



0 0 . . . 0 0 n1ϕd1ℓ1 n2ϕd1ℓ2 . . . nh−1ϕd1ℓh−1
nhϕd1ℓh

0 0 . . . 0 0 n1ϕd2ℓ1 n2ϕd2ℓ2 . . . nh−1ϕd2ℓh−1
0

...
...

. . .
...

...
...

...
. . .

...
...

0 0 . . . 0 0 n1ϕdh−1ℓ1 n2ϕdh−1ℓ2 . . . 0 0

0 0 . . . 0 0 n1ϕdhℓ1 0 . . . 0 0

m1ϕd1ℓ1 m2ϕd2ℓ1 . . . mh−1ϕdh−1ℓ1 mhϕdhℓ1 0 0 . . . 0 0

m1ϕd1ℓ2 m2ϕd2ℓ2 . . . mh−1ϕdh−1l2 0 0 0 . . . 0 0

...
...

. . .
...

...
...

...
. . .

...
...

m1ϕd1ℓh−1
m2ϕd2ℓh−1

0 0 0 0 0 . . . 0 0

m1ϕd1ℓh
0 0 0 0 0 0 . . . 0 0



. (4)

In general, it is not possible to find the eigenvalues of the matrix given in (2) explicitly,
as by definition of the quotient matrix, all the eigenvalues of Q are simple and it is hard to
locate them. However, we can still gain some information about them.

In the following results, we find the formula for the determinant of Q and the trace of
Q2, where Q is the quotient matrix defined in Theorem 3.

Theorem 4. The following holds for the quotient matrix given in (4).

(i) The determinant of the quotient matrix Q given in (2) is

det(Q) = (−1)h
h

∏
i=1

mini

(
ϕ2

diℓh−(i−1)

)
= (−1)h

h

∏
i=1

mini

(
ϕ2

dh−(i−1)ℓi

)
.

(ii) The trace of square of the quotient matrix Q2 is

tr(Q2) = 2
h

∑
j=1

h−(j−1)

∑
i=1

mjni

(
ϕ2

djℓi

)
.

Proof. For the sake of completeness, we denote matrix Q given in (4) by

Q(m1, m2, . . . , mh, n1, n2, . . . , nh).

Expanding det(Q) by the 2h-th row, there is only one non-zero cofactor,

det(Q(m1, m2, . . . , mh; n1, n2, . . . , nh−1)),

multiplied by the (2h, 1)-th entry of Q since the remaining entries of the 2h-th row are zeros.
Similarly, for the (2h − 1)-th row expansion of det(Q(m1, m2, . . . , mh; n1, n2, . . . , nh−1)),
there is only one non-zero cofactor, det(Q(m1, m2, . . . , mh; n1, n2, . . . , nh−2)), of order 2h − 2
multiplied by the (2h − 1, 2)-th entry of Q. Thus, we obtain

det(Q(m1, m2, . . . , mh, n1, n2, . . . , nh))

= (−1)m1ϕd1ℓh
m2ϕd2ℓh−1

det(Q(m1, m2, . . . , mh; n1, n2, . . . , nh−2)).

We continue the above procedure for det(Q(m1, m2, . . . , mh; n1, n2, . . . , nh−2)) from the
(2h − 2)-th row and then the (2h − 3)-th row of det(Q(m1, m2, . . . , mh, n1, n2, . . . , nh−2)),
and we obtain
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det(Q(m1, m2, . . . , mh, n1, n2, . . . , nh−2))

= (−1)m3ϕd3ℓh−2
m4ϕd4ℓh−3

det(Q(m1, m2, . . . , mh; n1, n2, . . . , nh−4)).

Continuing this process from the (2h − 4)-th row of det(Q(m1, m2, . . . , mh; n1, n2, . . . ,
nh−4)) and combining together, we obtain

det(Q(m1, m2, . . . , mh, n1, n2, . . . , nh))

= (−1)m1ϕd1ℓh
m2ϕd2ℓh−1

det(Q(m1, m2, . . . , mh, n1, n2, . . . , nh−2))

= (−1)2
4

∏
i=1

miϕdiℓh−(i−1)
det(Q(m1, m2, . . . , mh; n1, n2, . . . , nh−4))

...

= (−1)
h
2

h

∏
i=1

miϕdiℓh−(i−1)
det(Q(m1, m2, . . . , mh))

= (−1)
h
2 +1n1mhn2mh−1ϕ2

dhℓ1
ϕ2

dh−1ℓ2
·

h−2

∏
i=1

miϕdiℓh−(i−1)
det(Q(m1, m2, . . . , mh−2))

...

= (−1)
h
2 +

h−1
2

h−2

∏
i=1

mh−(i−1)niϕ
2
dh−(i−1)ℓi

·
h

∏
i=h−1

mh−(i−1)ϕdh−(i−1)ℓi det(Q(m1, m2)

= (−1)h
h

∏
i=1

miniϕdh−(i−1)ℓi = (−1)h
h

∏
i=1

miniϕdiℓh−(i−1)
.

In the second to last step,

det(Q(m1, m2) =

∣∣∣∣∣nh−1ϕd1lh−1
nhϕd1lh

nh−1ϕd2lh−1
0

∣∣∣∣∣
= −nhϕd1lh nh−1ϕd2lh−1

.

Clearly, the diagonal entries of Q2 are

d11 = m1

h

∑
i=1

niϕ
2
d1ℓi

, d22 = m2

h−1

∑
i=1

niϕ
2
d2ℓi

, . . . , d(h−1)(h−1) = mh−1

2

∑
i=1

niϕ
2
dh−1ℓi

,

dhh = mhn1ϕ2
dhℓ1

, d(h+1)(h+1) = n1

h

∑
i=1

miϕ
2
diℓ1

, d(h+2)(h+2) = n2

h−1

∑
i=1

miϕ
2
diℓ2

, . . . ,

d(2h−1)(2h−1) = nh−1

2

∑
i=1

miϕ
2
diℓh−1

, d(2h)(2h) = nhm1ϕ2
d1ℓh

.

Therefore, we have

tr(Q2) = 2

(
h

∑
i=1

m1niϕ
2
d1ℓi

+
h−1

∑
i=1

m2niϕ
2
d2ℓi

+ · · ·+ 2
2

∑
i=1

mh−1niϕ
2
dh−1ℓi

+ mhn1ϕ2
dhℓi

)

= 2
h

∑
j=1

h−(j−1)

∑
i=1

mjniϕ
2
djℓi

.
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For a bipartite graph with partite sets of cardinality a and b, the Aϕ-matrix can be
written as

Aϕ(G) =

(
0 B

BT 0

)
,

where B corresponds to edges between the partite sets. If λ is an eigenvalue of Aϕ(G) with
corresponding eigenvector X = (x1, x2)

T , then Aϕ(G)X = λX. Using this last equation, it
is easy to see that Aϕ(G)X′ = −ηX′, where X′ = (x1,−x2)

T . This shows that, for a bipartite
graph, if λ is an eigenvalue of Aϕ(G), then −λ is also an eigenvalue of Aϕ(G). Thus, we
conclude that the Aϕ-eigenvalues of a bipartite graph are symmetric about the origin.

The following corollary gives the number of positive eigenvalues (called positive
inertia), the number of eigenvalues equal to zero (called nullity), and the number of
negative eigenvalues (called negative inertia) of the Aϕ-matrix of chain graphs. Note that
the triplet (positive inertia, nullity, negative inertia ) is called the inertia of matrix Aϕ(G) or
the general extended adjacency inertia of G.

Corollary 1. The inertia of Aϕ(G(m1, . . . , mh; m1, . . . , mh)) is (h, n − 2h, h).

Proof. Since chain graphs are bipartite graphs, the result directly follows from Theorem 3
and the fact that the Aϕ-eigenvalues of bipartite graphs are symmetric about the origin.

It is well known that the eigenvalues of Q are simple, which is the same as saying that
the Aϕ-eigenvalues of G(1, 1, . . . , 1︸ ︷︷ ︸

h

; 1, 1, . . . , 1︸ ︷︷ ︸
h

) are simple. A natural question that arises

here is “What about the multiplicities of the Aϕ-eigenvalues when at least one mi ≥ 2
or ni ≥ 2?" In this regard, we have the following consequence from Theorem 3, which
characterizes all the chain graphs with all the general extended adjacency eigenvalues
as distinct:

Corollary 2. Let G ∼= G(m1, m2, . . . , mh; n1, n2, . . . , nh) be the chain graph of order n. Then, the
Aϕ-eigenvalues of G are simple if and only if exactly one among mi or one among ni is at most two,
for some i.

Proof. Since all the eigenvalues of Q in (4) are simple, by Theorem 1, 0 is the Aϕ-eigenvalue
of G with a multiplicity of one if and only if exactly one mi = 2 (or exactly one ni = 2) for
some i, as 0 cannot be the eigenvalue of Q, since det(Q) ̸= 0.

Based on Corollary 2, the following is a list of chain graphs with the simple Aϕ-
eigenvalues for h = 3:

T(1, 1, 1; 1, 1, 1), T(2, 1, 1; 1, 1, 1), T(1, 2, 1; 1, 1, 1), T(1, 1, 2; 1, 1, 1).

In the next result, we identify the non-singular chain graphs with respect to the general
extended adjacency matrix.

Corollary 3. Let G ∼= G(m1, m2, . . . , mh; n1, n2, . . . , nh) be the chain graph of order n. Then the
Aϕ-matrix of G is non-singular if and only if G ∼= G(1, 1, . . . , 1︸ ︷︷ ︸

h

; 1, 1, . . . , 1︸ ︷︷ ︸
h

).

Proof. Since the eigenvalues of Q are simple, the result holds for Aϕ(G) if m1 = m2 =
· · · = mh = n1 = · · · = nh = 1 and the determinant of Q is non-zero. Conversely, if at
least one mi (or ni) is of multiplicity greater or equal to two, then by Theorem 1, 0 is the
eigenvalue of Aϕ(G). Therefore, the Aϕ-matrix of G is not invertible. From this, the result
follows.
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As it is difficult to explicitly find the largest and the smallest eigenvalues of Q, in the
next result we establish the sharp bounds for them with the help of the interlacing property
of the quotient matrix.

Corollary 4. Let G ∼= G(m1, m2, . . . , mh; n1, n2, . . . , nh) be the chain graph of order n. Then,

λ1(G) ≥
√

σσ′

h
and λn(G) ≤ −

√
σσ′

h
,

where σ = ∑h
j=1 ∑

h−(j−1)
i=1 niϕdjℓi

and σ′ = ∑h
j=1 ∑

h−(j−1)
i=1 miϕdiℓj

. Equalities hold if and only if
h = 1, that is, G is the complete bipartite graph.

Proof. The quotient matrix given in (4) with partition {{1, 2, . . . , h}, {1, 2, . . . , h}} can be
written in block form as

0 0 . . . 0 0 n1ϕd1ℓ1
n2ϕd1ℓ2

. . . nh−1ϕd1ℓh−1
nhϕd1ℓh

0 0 . . . 0 0 n1ϕd2ℓ1
n2ϕd2ℓ2

. . . nh−1ϕd2ℓh−1
0

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

0 0 . . . 0 0 n1ϕdh−1ℓ1
n2ϕdh−1ℓ2

. . . 0 0

0 0 . . . 0 0 n1ϕdhℓ1
0 . . . 0 0

m1ϕd1ℓ1
m2ϕd2ℓ1

. . . mh−1ϕdh−1ℓ1
mhϕdhℓ1

0 0 . . . 0 0

m1ϕd1ℓ2
m2ϕd2ℓ2

. . . mh−1ϕdh−1ℓ2
0 0 0 . . . 0 0

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

m1ϕd1ℓh−1
m2ϕd2ℓh−1

0 0 0 0 0 . . . 0 0

m1ϕd1ℓh
0 0 0 0 0 0 . . . 0 0


and its quotient matrix is

Q∗ =

(
0 σ

h

σ′
h 0

)
, (5)

where σ = ∑h
j=1 rj, with r1 = ∑h

i=1 niϕd1ℓi
, r2 = ∑h−1

i=1 niϕd2ℓi
, . . . , rh−1 = ∑2

i=1 niϕdh−11ℓi
and

rh = n1ϕd1ℓi
, that is, σ = ∑h

j=1 ∑
h−(j−1)
i=1 niϕdjℓi

.

Likewise, σ′ = ∑h
j=1 r′j = ∑h

j=1 ∑
h−(j−1)
i=1 miϕdiℓj

. The eigenvalues of (5) are ξ1(Q∗) =
√

σσ′
h and ξ2(Q∗) = −

√
σσ′
h . By (i) of Theorem 2, we have

λ1(Q) ≥ ξ1(Q∗) ≥ λ2(Q) ≥ ξ2(Q∗) ≥ λ3(Q) ≥ λ4(Q) ≥ · · · ≥ λ2h(Q),

which in turn implies that

λ1(G) ≥
√

σσ′

h
and λn(G) ≤ −

√
σσ′

h
,

with equalities holding if and only if matrix Q∗ is an equitable quotient matrix, that is,
the non-zero block matrices of the above block matrix have constant row sums, that
is, r1 = r2 = · · · = rh and r′1 = r′2 = · · · = r′h. In such a situation, the partition
{{1, 2, . . . , h}, {1, 2, . . . , h}} is an equitable partition and Q∗ is an equitable quotient matrix
of Q. Hence, each eigenvalue of Q∗ is an eigenvalue of Q.

We will now discuss the equality case. If h = 1, then G ∼= Km1,n1 , and by Lemma 1, 0
is the eigenvalue of Aϕ(G) with multiplicity m1 + n1 − 2. The other two eigenvalues of
Aϕ(G) are the eigenvalues of the following equitable matrix:(

0 n1ϕd1l1

m1ϕd1l1 0

)
,
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and its eigenvalues are ±ϕd1ℓ1

√
m1n1. Therefore, we have λ1(G) = ϕd1ℓ1

√
m1n1 and

λn(G) = −ϕd1ℓ1

√
m1n1. Conversely, for r1 = r2 = · · · = rh to hold, it is clear from (4) that

m2 = m3 = · · · = mh = 0, which in turn implies that n2 = n3 = · · · = nh = 0. Thus, we are
left with G(m1; n1), which is the complete bipartite graph and Q∗ is an equitable quotient
matrix with σ = n1ϕd1ℓ1 and σ′ = m1ϕd1ℓ1 . Hence, λ1 =

√
σσ′ =

√
m1n1ϕd1ℓ1 = λ1(Km1,n1),

and likewise λn(Km1,n1) = −√
m1n1ϕd1ℓ1 .

The spread of a real symmetric matrix, M, with eigenvalues λ1(M) ≥ λ2(M) ≥ · · · ≥
λn(M) is defined as s(M) = λ1(M)− λn(M). Under this definition, the spread of Aϕ(G)
is defined as s(S(G)) = λ1 − λn, called the Aϕ-spread or the general extended adjacency
spread of G. With notations as in the above corollary, we have the following result for the
Aϕ-spread of a chain graph:

Corollary 5. The spread of the Aϕ-matrix of G ∼= G(m1, m2, . . . , mh; n1, n2, . . . , nh) is bounded
below by 2

h

√
σσ′, that is,

s(S(G)) ≥ 2
h

√
σσ′,

with equality holding if and only if G is the complete bipartite graph.

From Corollary 5, it follows that among all the chain graphs, the complete bipartite
graph attains the minimum value for the Aϕ-spread.

3. Energy of General Extended Adjacency Matrix

In this section, we discuss the energy of the general extended adjacency matrix of
a graph. We obtain some extremal results and characterize the graphs that attain the
extremal value.

Let {γ1, γ2, γ3, . . . , γn} be the set of positive real numbers and let Pk be the average of
products of the k-element subset of the set {γ1, γ2, γ3, . . . , γn}, that is,

P1 =
γ1 + γ2 + γ3 + · · ·+ γn

n
,

P2 =
1

n(n−1)
2

(
γ1γ2 + γ1γ3 + · · ·+ γ1γn + γ2γ3 + · · ·+ γn−1γn

)
,

...

Pn = γ1γ2 . . . γn.

The following Maclaurin symmetric mean inequality relates Pis among themselves.

Lemma 1 ([52]). For positive real numbers γ1, γ2, γ3, . . . , γn, we have the following chain of
inequalities,

P1 ≥ P
1
2

2 ≥ P
1
3

3 ≥ · · · ≥ P
1
n

n ,

with equalities holding if and only if γ1 = γ2 = · · · = γn.

The following result provides the estimates for the Aϕ-energy of a chain graph. More-
over, the extremal graphs attaining these estimates are characterized.

Theorem 5. Let G ∼= G(m1, . . . , mh; n1, . . . , nh) be a chain graph. Then the following holds:

(i)

Eϕ(G) ≥ 2

√√√√√ h

∑
j=1

h−(j−1)

∑
i=1

mjniϕ
2
djℓi

+ h(h − 1)

(
h

∏
i=1

miniϕ
2
diℓh−(i−1)

) 1
h

, (6)

with equality holding if and only if G ∼= G(m1; n1) = Km1,n1 .
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(ii)

Eϕ(G) ≤ 2

√√√√h
h

∑
j=1

h−(j−1)

∑
i=1

mjniϕ
2
diℓj

, (7)

with equality if and only if h = 1, that is, if and only if G ∼= Km1,n2 .

Proof. Let λ1 ≥ λ2 ≥ · · · ≥ λn be the general extended adjacency eigenvalues of G. Since
G is bipartite, its Aϕ-eigenvalues occur in pairs ±λi, so we have

Eϕ(G) = 2
(

λ1 + λ2 + · · ·+ λh

)
. (8)

In addition, let η1 ≥ η2 ≥ · · · ≥ η2h be the eigenvalues of matrix Q given by (4). Then,
from Corollary 4, we have

2h

∑
i=1

η2
i = tr(Q2) = 2

h

∑
j=1

h−(j−1)

∑
i=1

mjniϕ
2
djℓi

,

that is, the same as
h

∑
i=1

η2
i =

h

∑
j=1

h−(j−1)

∑
i=1

mjniϕ
2
djℓi

.

Again, by Corollary 4, we have

2h

∏
i=1

ηi = det(Q) = (−1)h
h

∏
i=1

miniϕ
2
diℓh−(i−1)

,

which is equivalent to
h

∏
i=1

ηi =

( h

∏
i=1

miniϕ
2
diℓh−(i−1)

) 1
2

. (9)

By applying Lemma 1, we have

1
h(h−1)

2
∑

1≤i<j≤h
ηiηj ≥

(
h

∏
i=1

ηi

) 2
h

, (10)

with equality if and only if η1 = η2 = · · · = ηh. By (9), the above expression can be
written as

2 ∑
1≤i<j≤h

ηiηj ≥ h(h − 1)

(
h

∏
i=1

miniϕ
2
diℓh−(i−1)

) 1
h

.

As the eigenvalues of Q are the eigenvalues of Aϕ(G) in some order, by (8) we have

Eϕ(G) = 2

√√√√( h

∑
i=1

λi

)2
= 2

√√√√ h

∑
i=1

λ2
i + 2 ∑

1≤i<j≤h
λiλj

≥ 2

√√√√√ h

∑
j=1

h−(j−1)

∑
i=1

mjniϕ
2
djℓi

+ h(h − 1)

(
h

∏
i=1

miniϕ
2
diℓh−(i−1)

) 1
h

.

This establishes the lower bound for Eϕ(G).
First, if h = 1, then G ∼= Km1,n1 and its Aϕ-spectrum is{

0[n−2], ±
√

m1n1ϕd1ℓ1

}
.
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Therefore, the Aϕ-energy of G is given by

Eϕ(G) = 2
√

m1n1ϕd1ℓ1 ,

giving that equality occurs in this case.
Conversely, equality holds in inequality (6) if and only if equality holds in (10), which

is so if and only if η1 = η2 = · · · = ηh. Since the Aϕ-eigenvalues of G are symmetric
about the origin, it follows that the rank of G is two, and so G has only three distinct
Aϕ-eigenvalues: λ1, 0, and −λ1. By Lemma 2.1 of [53], it follows that G is a complete
bipartite graph. This completes the proof of lower bound.

Again by Lemma 1 with γi = ηi and n = 2h, we have(
1
h

h

∑
i=1

ηi

)2

≥ 1
h(h−1)

2
∑

1≤i<j≤h
ηiηj, (11)

that is,

h(h − 1)

(
h

∑
i=1

ηi

)2

≥ 2h2 ∑
1≤i<j≤h

ηiηj = h2

( h

∑
i=1

ηi

)2

−
h

∑
i=1

η2
i

,

that is, (
h

∑
i=1

ηi

)2

≤ h
h

∑
i=1

η2
i .

As ηis are λis in some order, we have, by the Cauchy–Schwarz inequality:

Eϕ(G) ≤ 2

√√√√h
h

∑
i=1

λ2
i = 2

√√√√h
h

∑
j=1

h−(j−1)

∑
i=1

mjniϕ
2
diℓj

.

This proves the upper bound.
If equality holds, then equality holds in (11), and so η1 = η2 = · · · = ηh. Therefore,

using the fact that the Aϕ-spectrum of G is symmetric about the origin, it is implied that
−η1 = −η2 = · · · = −ηh. Thus, we conclude that G has three distinct Aϕ-eigenvalues,
namely, λ1 = η1, 0, and λn = −η1. Therefore, by Lemma 2.1 of [53], we conclude that
G is the complete bipartite graph. Conversely, it is easy to see that equality holds for
G ∼= Km1,n1 .

The following arithmetic–geometric mean inequality can be found in [54]:

Lemma 2. If y1, y2, . . . , yn are non-negative numbers, then

n

 1
n

n

∑
j=1

yj −
(

n

∏
j=1

yj

) 1
n
 ≤ n

n

∑
j=1

yj −
(

n

∑
j=1

√
yj

)2

≤ n(n − 1)

 1
n

n

∑
j=1

yj −
(

n

∏
j=1

yj

) 1
n
.

Moreover, equality occurs if and only if y1 = y2 = · · · = yn.

The next result provides another upper and lower bound for the general extended
energy of chain graphs.
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Theorem 6. Let G ∼= G(m1, . . . , mh; n1, . . . , nh) be a chain graph. Then,√√√√2
h

∑
j=1

h−(j−1)

∑
i=1

mjniϕ
2
djℓi

+ (2h − 1)Γ ≤ Eϕ(G)

≤

√√√√(2h − 1)
(

2
h

∑
j=1

h−(j−1)

∑
i=1

mjniϕ
2
djℓi

)
+ Γ,

where Γ = 2h
(

∏h
i=1 miniϕ

2
diℓh−(i−1)

) 1
h . Equality occurs on the left (right) hand side if and only if

G is a complete bipartite graph.

Proof. Let λ1 ≥ λ2 ≥ · · · ≥ λn be the Aϕ-eigenvalues of G. By Theorem 3, among the
Aϕ-eigenvalues of G only 2h eigenvalues are non-zero. Let η1 ≥ η2 ≥ · · · ≥ η2h be the
non-zero Aϕ-eigenvalues of G, then it is clear that these 2h eigenvalues are the eigenvalues
of the matrix Q given by (4). Setting n = 2h and yj = |ηj|2 = η2

j , for j = 1, 2, . . . , 2h in
Lemma 2, we have

β ≤ (n − 1)
2h

∑
j=1

η2
j −

( 2h

∑
j=1

ηj

)2
≤ (n − 2)β,

that is,

β ≤ (n − 1)
2h

∑
j=1

η2
j −

(
Eϕ(G)

)2
≤ (n − 2)β, (12)

where

β = 2h

[
1

2h

2h

∑
j=1

η2
j −

( 2h

∏
j=1

η2
j

) 1
2h

]

=
2h

∑
j=1

η2
j − 2h

(
det(Q)

) 1
h .

Using Theorem 4 and the value of β, from the left inequality of (12) we obtain(
Eϕ(G)

)2
≤ (2h − 1)

2h

∑
j=1

η2
j + 2h

(
det(Q)

) 1
h ,

that is,

Eϕ(G) ≤

√√√√(2h − 1)
(

2
h

∑
j=1

h−(j−1)

∑
i=1

mjniϕ
2
djℓi

)
+ Γ,

where Γ = 2h
(

∏h
i=1 miniϕ

2
diℓh−(i−1)

) 1
h . This proves the right-hand inequality.

Again using the value of β, it follows from the right-hand inequality of (12) that(
Eϕ(G)

)2
≥

2h

∑
j=1

η2
j + 2h(2h − 1)

(
det(Q)

) 1
h ,
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that is,

Eϕ(G) ≥

√√√√2
h

∑
j=1

h−(j−1)

∑
i=1

mjniϕ
2
djℓi

+ (2h − 1)Γ,

which proves the left-hand inequality.
Equality occurs in the left-hand inequality if and only if equality occurs in Lemma 2.

Since equality occurs in Lemma 2 if and only if y1 = y2 = · · · = yn, it follows that equality
occurs in the left-hand inequality if and only if η2

1 = η2
2 = · · · = η2

2h, that is, if and only if
|η1| = |η2| = · · · = |η2h|. Since G being a bipartite graph implies that its Aϕ-eigenvalues
are symmetric about the origin, it follows that there exists a positive integer, t, such that
η1 = · · · = ηt = k and ηt+1 = · · · = η2h = −k. This confirms that equality holds in
the left-hand inequality if and only if G has three distinct Aϕ-eigenvalues, namely η1, 0,
and−η1. Therefore, by Lemma 2.1 of [53] we arrive at G ∼= G(m1; n1). Similarly, we can
discuss the equality case for the right-hand inequality.

Conversely, if G is a complete bipartite graph then it is easy to verify that both the
inequalities occur as equalities. This completes the proof.

4. Concluding Remark

As mentioned in the introduction, for different choices of the function ϕ we have
different graph matrices that are well-studied in the literature concerning their spectral
properties. Therefore, the results obtained in Sections 2 and 3 for chain graphs are general
results from which we can obtain the corresponding results for the graph matrix, which we
arrive at when we fix a value for the function ϕ. In particular, if we take ϕdudv = 1 when
u ∼ v, then the results obtained in Sections 2 and 3 became the corresponding results for
the usual graph energy; if ϕdudv = du + dv when u ∼ v, then the results obtained in Sections
2 and 3 became the corresponding results for the first Zagreb energy; if ϕdudv = dudv
when u ∼ v, then the results obtained in Sections 2 and 3 became the corresponding
results for the second Zagreb energy; if ϕdudv = 1√

dudv
when u ∼ v, then the results

obtained in Sections 2 and 3 became the corresponding results for the Randić energy; if

ϕdudv = 1
2

(
du
dv

+ dv
du

)
when u ∼ v, then the results obtained in Sections 2 and 3 became

the corresponding results for the extended energy; if ϕdudv = 1√
du+dv

when u ∼ v, then
the results obtained in Sections 2 and 3 became the corresponding results for the sum-

connectivity energy; if ϕdudv =
√

du+dv−2
dudv

when u ∼ v, then the results obtained in Sections

2 and 3 became the corresponding results for the ABC-energy; if ϕdudv = 2
√

dudv
du+dv

when
u ∼ v, then the results obtained in Sections 2 and 3 became the corresponding results for
the geometric–arithmetic energy; if ϕdudv = du+dv

2
√

dudv
when u ∼ v, then the results obtained

in Sections 2 and 3 became the corresponding results for the arithmetic–geometric energy;
if ϕdudv =

√
d2

u + d2
v when u ∼ v, then the results obtained in Sections 2 and 3 became the

corresponding results for the Sombor energy of G, and so on.
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30. Milovanović, I.; Milovanović, E.; Gutman, I. Upper bounds for some graph energies. Appl. Math. Comput. 2016, 289, 435–443.

[CrossRef]
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