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Abstract: Various discrete lifetime distributions have been observed in real data analysis. Numerous
discrete models have been derived from a continuous distribution using the survival discretization
method, owing to its simplicity and appealing formulation. This study focuses on the discrete analog
of the newly generalized Rayleigh distribution. Both classical and Bayesian statistical inferences are
performed to evaluate the efficacy of the new discrete model, particularly in terms of relative bias,
mean square error, and coverage probability. Additionally, the study explores different important
submodels and limiting behavior for the new discrete distribution. Various statistical functions have
been examined, including moments, stress–strength, mean residual lifetime, mean past time, and
order statistics. Finally, two real data examples are employed to evaluate the new discrete model.
Simulations and numerical analyses play a pivotal role in facilitating statistical estimation and data
modeling. The study concludes that the discrete generalized Rayleigh distribution presents a notably
appealing alternative to other competing discrete distributions.

Keywords: generalized Rayleigh; maximum likelihood estimation; Bayes estimation; reliability;
simulation analysis; Monte Carlo Markov chain; goodness-of-fit measures
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1. Introduction

As each day passes, the volume of data in our world increases exponentially, necessi-
tating the development of new statistical distributions to better characterize the features
of many phenomena and experiments. While a great deal of lifetime data appear to be
continuous, they are originally discrete. This discrepancy ensures the need for more appro-
priate methods to generate discrete distributions that more accurately represent the data in
the experiment. Discrete distributions are frequently employed in statistical modeling for
several reasons.

Discrete distributions are used to model data that can only take on a finite or countably
infinite number of values, such as counts, proportions, and binary outcomes, for example,
the number of customers in a store, the number of heads in a coin flip, or the number of
defective items in a production line. Discrete distributions are often easy to understand
and interpret as they model data that take on a limited number of values. The probability
mass function (pmf ) or probability generating function (pgf ) of a discrete distribution is a
simple function that provides the probability of each possible outcome. Also, many discrete
distributions have closed-form expressions for their pmf or pgf, which makes it easy to
work with them mathematically. This allows for efficient computation of probabilities and
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moments without the need for integration. Furthermore, discrete distributions can be used
to model a wide variety of real-world phenomena, such as the distribution of species in
an ecosystem, the distribution of genetic variations in a population, or the distribution of
traffic on a road network.

Recently, many discrete distributions have been considered, particularly in medicine,
engineering, reliability, survival analysis, and more. For more descriptions and applications
of discrete distributions, refer to [1–9]. Hence, many authors have conducted much work
to originate and develop discrete models from different aspects.

The characterization of continuous random variables can be performed either by
their probability density function, cumulative distribution function, moments, moment-
generating function, hazard rate functions, or others. Different discretization methods
appeared in the literature to create an appropriate discrete distribution based on the
underlying continuous model.

By deriving discrete analogs or counterparts of well-known continuous distributions,
statisticians can better tailor their models to the specific nature of the data. Usually, creating
a discrete analog from a continuous distribution is based on the principle of preserving one
or more characteristic properties of the continuous one. Consequently, different ways to
discretize a continuous distribution appear in the literature depending on the property the
researcher intends to preserve; for example, Lai [10] used the survival and the hazard rate
preservation methods to create discrete distributions from different continuous ones. Haj
Ahmad and Almetwally [11] used the survival, hazard rate, and probability distribution
function preservation methods to discretize the generalized Pareto distribution.

The benefit of using the survival discretization method is that it can maintain the
statistical properties of the original distribution, including median and percentiles, in addi-
tion to the overall shape of the distribution. A drawback of this method is that it can be
computationally intensive and may require numerical methods for complex distributions.

For the hazard preservation method, the main benefit is that it preserves the hazard
function of the continuous distribution. This is important in applications like reliability
analysis where the failure rate is a key parameter. On the other hand, mathematical
complexity can be viewed using this method, especially for continuous distributions
with nonlinear hazard functions. This complexity can increase computational time and
resource requirements. Another drawback of the hazard preservation method is that it
only preserves the hazard function, but other characteristics of the distribution (like mean,
variance, or skewness) may not be as accurately retained. For more details about other
discretization methods and their properties, one may refer to [12,13] who provided a review
of several discretization methods.

From the previous research work, it is evident that the results look appealing and
motivational to continue creating new discrete distributions to model new data.

In the present study, we obtain a discrete analog of the continuous new generalized
Rayleigh distribution (NGRD) using the survival discretization method that depends on
the survival function. See for example [6,7], in which the survival discretization approach
was used to obtain the discrete normal and discrete Rayleigh distributions, respectively.
Using the same approach, more discrete distributions have been introduced and studied;
see for example [14–23].

Still, there is an enduring need to create and develop more discrete models and to
generate new ones because of modeling and fitting real data, which appear and spread
constantly in human life. The efficiency in discretization methods refers to the ability of
a method to produce accurate and useful discretized versions of continuous data with
minimal loss of information. Also, discrete distributions derived from continuous ones
can inherit their flexibility and adaptability. This allows statisticians to model a wider
range of data characteristics, such as skewness or kurtosis, which might be difficult with
standard discrete distributions. In statistical methodology, continuous distributions may
have characteristics that are missing in the discrete space; hence, creating discrete analogs
can fill these gaps, providing new tools for data analysis.
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The suggested discrete model with three parameters offers an immense degree of
fitness to skewed, symmetric, monotone, and inverse J-shape types of data. Therefore, some
statistical functions and properties are achieved, in addition to observing the submodels
and limiting behavior of the proposed discrete distribution. Examining statistical inference
is crucial; therefore, point and interval estimation for the unknown parameters using the
maximum likelihood estimator and the Bayesian method is performed.

Simulation analysis via numerical techniques such as Monte Carlo simulation is
employed to evaluate the estimators using the maximum likelihood and the Bayesian
estimation methods to compare the performance of these two methods. The efficiency
is assessed using the relative bias, the mean squared error, and the coverage probability
of the confidence intervals. Two real datasets are analyzed to emphasize the empirical
validation of the new model, where several goodness-of-fit measures are employed. The
first example is related to the industrial field, where several strikes that occurred in coal
mining in the UK were recorded over four weeks. Modeling and predicting the number
of strikes will save human lives and money. The second example is related to the number
of fires that occurred in Greece’s forests in the year 1998 during the summer months. The
main purposes of this study are, first, to introduce new discrete analogs of the continuous
NGRD and evaluate some of its important statistical functions, second, to perform the
inferential statistics related to the new distributions’ parameters and compare the results,
and, third, to assess the efficiency of the new discrete distribution by modeling real data
examples and comparing the goodness-of-fit measures with other discrete distributions
that were studied earlier in the literature.

The originality of this work emanates from the basis of exploring the creation of a new
discrete analog from less commonly used continuous distributions and investigating their
properties, potential applications, and how they compare to existing distributions. Also,
it focuses on specific application areas, such as the industrial, engineering, and reliability
fields. To our knowledge, no previous work has studied the discrete new generalized
Rayleigh distribution and employed it to model real-life data examples from different
scientific fields.

The authors’ contributions to this study can be summarized as follows:
• Development of a New Discrete Model: Creation of a discrete analog of the contin-

uous new generalized Rayleigh distribution (NGRD) using the survival discretiza-
tion method.

• Statistical Functions and Properties: Achievement of various statistical functions and
properties of the proposed discrete distribution, including observing its submodels
and limiting behavior.

• Statistical Inference Examination: Conducting point and interval estimation for the
unknown parameters using both the maximum likelihood estimator (MLE) and the
Bayesian method.

• Simulation Analysis for Estimator Evaluation: Implementation of numerical tech-
niques such as Monte Carlo simulation to evaluate the estimators derived from MLE
and Bayesian estimation methods through relative bias, mean squared error, and cov-
erage probability of confidence intervals

• Empirical Validation via Real Data Analysis: Analyzing two real datasets to validate
the new model empirically, including modeling industrial and environmental phe-
nomena.

• Comparison with other Distributions: Comparing the goodness of fit of the new
model with other discrete distributions previously studied in the literature.

The remaining parts of this work are organized as follows: Section 2 describes the new
generalized Rayleigh distribution. The discretization methods are presented in Section 3,
along with some statistical functions. In Section 4, the maximum likelihood and the
Bayesian inference are presented. In Section 5, simulation analysis and the tabulated results
are carried out. Some real data examples are provided in Section 6. Finally, conclusions are
remarked on in Section 7.
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2. Model Description

The Rayleigh distribution (RD) is a continuous distribution that has much practical
importance; hence, many of its statistical characteristics, inference, and reliability analysis
have been studied by several authors, and numerous extended forms of the Rayleigh
distribution have been proposed. For example, Ref. [24] applied the inverse Rayleigh to the
failure times data. Ref. [25] introduced the transmuted Rayleigh and used it to model the
amount of nicotine in the blood. In [26], the authors studied the beta-generalized Rayleigh
distribution and its application. Ref. [27] obtained the transmuted inverse Rayleigh distri-
bution to lifetime data. Ref. [28] obtained a new modified Rayleigh distribution named the
Kumaraswamy generalized Rayleigh distribution with application to real data. For more
information, refer to [29–31]. In this work, we are interested in studying a new form of the
Rayleigh distribution called a new generalized Rayleigh distribution (NGR), which was
first introduced by Shen et al. [32]. It has three parameters and it was shown that the NGR
is suitable for modeling large data values rather than small data values. However, as a
continuous distribution, it is restricted from describing discrete data forms. Discretizing
the NGR distribution is our goal; therefore, it yields a subsequent distribution that accom-
modates the countable data while retaining the influential tail modeling characteristics of
the NGR. In this study, we carry out a discrete version of the NGR and use it to model
real data.

The probability density function (pdf ) and the survival function (S) of the continuous
NGR are provided respectively as:

f (x; α, β, θ) =
2αβθ(α − 1)xe−θx2

(1 − e−θx2
)

β−1[
α −

(
1 − e−θx2

)β
]2 , x > 0, (1)

and

S(x; α, β, θ) =
α[1 −

(
1 − e−θx2

)β
]

α −
(

1 − e−θx2
)β

, (2)

in which the parameters α > 1, β > 0, θ > 0.
The hazard rate function is

h(x; α, β, θ) =
2βθ(α − 1)xe−θx2

(1 − e−θx2
)

β−1[
1 −

(
1 − e−θx2

)β
][

α −
(

1 − e−θx2
)β

]2 . (3)

To identify submodels or special distributions that arise from this general form, we can
consider different values or limits of parameters α, β, and θ. Here are some special cases:

1. Standard Rayleigh Distribution: When θ = 1 and β = 1, the term (1 − e−x2
) simpli-

fies to the CDF of the standard Rayleigh distribution. This is observed if the parameter
α also approaches infinity, which simplifies the formula to 1 − e−x2

, the CDF of the
standard Rayleigh distribution.

2. Exponential Distribution: If β approaches infinity, the term Λ = (1 − e−θx2
)β can

approach an exponential-like behavior for small values of x, depending on how θ
is defined.

3. Modified Rayleigh Distribution: For specific fixed values of α and β, you can obtain
various forms of modified Rayleigh distributions, where the behavior is measured by
the degree of skewness and kurtosis determined by these parameters.

4. Weibull-like Distribution: By interchanging between θ and β, especially when β is not
equal to 1, the distribution can possess Weibull-like properties.
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By discretizing the continuous range of x, discrete versions of this distribution can be
derived, which may be useful for certain types of count data or integer-valued measurements.

Since our goal in this work is to define a new discrete NGR distribution, we gener-
ate a discrete analog based on the survival discretization method, which is denoted by
DNGR. The pmf and cumulative distribution function (CDF) are obtained. Furthermore,
the moments, stress–strength function, the mean residual, and mean past lifetimes, order
statistics, and L-moments are obtained. All these statistical functions are used for studying
the features of the DNGR.

3. The Discrete New Generalized Rayleigh Distribution

Roy and Gupta [3,4] defined the probability mass function (pmf ) for a discrete distri-
bution using the survival function and it was expressed as follows:

P(X = k) = S(k)− S(k+1), k= 0, 1, 2, . . . (4)

where S(x) is the survival function provided by Equation (2); hence, the pmf of the discrete
analog of NGR distribution, namely DNGR, is written as

P(X = k) =
α[1 − Λ(k; θ, β)]

α − Λ(k; θ, β)
− α[1 − Λ(k + 1; θ, β)]

α − Λ(k + 1; θ, β)
, (5)

where Λ(k; θ, β) =
(

1 − e−θk2
)β

.
The CDF of the DNGR distribution can be written as

P(X<k) = F(k+1) = 1 − α[1 − Λ(k + 1; θ, β)]

α − Λ(k + 1; θ, β)
. (6)

The quantile function with given values of parameters as α, β, and θ of the DNGR
distribution is provided by

xi =

√√√√−1
θ

ln

[
1 −

(
αq

α + q − 1

)1/β
]
− 1; q = [0, 1], i = 1, . . . , n. (7)

The hazard rate function (HRF) of the DNGR distribution is provided by

hDNGR1(k) =
[1 − Λ(k; θ, β)][α − Λ(k + 1; θ, β)]

[α − Λ(k; θ, β)][1 − Λ(k + 1; θ, β)]
− 1. (8)

We also observe that the reversed hazard rate function for the DNGR of this distribu-
tion is provided by

rDNGR(k; α, β, θ) =
f (k; α, β, θ)

F(k + 1; α, β, θ)
, (9)

rDNGR(k; α, β, θ) =

[
α[1 − Λ(k; θ, β)]

α − Λ(k; θ, β)
− α[1 − Λ(k + 1; θ, β)]

α − Λ(k + 1; θ, β)

]
×
[

α − Λ(k + 1; θ, β)

(α − Λ(k + 1; θ, β))− α[1 − Λ(k + 1; θ, β)]

] (10)

In Figure 1, the bar charts represent each parameter α, θ, and β that has a specific role
in the behavior of the pmf, and their effects are observable when we fix one and vary the
others. An explanation of the effect of each parameter based on the plots is as follows:

1. Effect of α when θ and β are changeable:
When α is fixed, the variations in θ and β create different trends in the probability
values. Higher values of θ tend to stretch the curve horizontally, meaning, for a
given α, as θ increases, the decrease in probability values with increasing k is less
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steep. Higher values of β tend to amplify the curve vertically, making the probability
have fewer values for higher k values. The reaction between θ and β at a fixed α
demonstrates that θ affects the spread of the distribution, while β affects the sharpness
of the probability decrease.

2. Effect of θ when α and β are changeable:
With θ fixed, the changes in α and β show distinct patterns. An increase in α generally
results in higher probability values across all k. This is because a higher α relative
to Λ(k; θ, β) increases the numerator and decreases the denominator of the function
P(X = k), resulting in a larger overall value. The effect of β at a fixed θ is similar to its
effect when α is fixed; it controls the sharpness of the decrease in probability values.
Higher β values cause a quicker decline in probability as k increases.

3. Fixing β and varying α and θ, we can see that
As α increases, for a fixed β, the overall probability values increase, similar to when θ
is fixed. The role of θ here is nuanced; for lower values of k, the impact of changing θ is
minimal, but, as k increases, higher θ values preserve higher probabilities, indicating
a wider spread in the distribution. From the above explanations, it is clear that α
primarily scales the probability values, β determines the rate at which the probability
values decline as k increases (sharpness of the distribution), and θ controls the spread
or dispersion of the distribution across k values. The combination of these three
parameters can thus shape the function’s distribution in various ways, and each has a
distinctive role in the form of the probability curve.

(a)

(b)

Figure 1. Cont.
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(c)

Figure 1. The pmf bar charts for the DNGR, (a) when α = 2, (b) when β = 2, and (c) when θ = 1.

In Figure 2, the plots represent the HRF of the DNGR distribution for various com-
binations of parameters α, θ, and β. Each subplot corresponds to a different set of these
parameters. The values of k range from 1 to 10. The curves are increasing for different
values of the parameters; we can realize the effect of increasing the parameter θ while
keeping other parameters fixed by going steeply to the left. For the effect of β, assuming
other parameters are fixed, it can be figured by increasing in a slower mode when k takes
small values. Finally, the effect of increasing the values of α while fixing the remaining
parameters is going to the left more steeply.

The limiting behavior of DNGR for different choices in parameter values at the bound-
ary points includes

limk→∞ p(k) = 0, limk→0 p(k) = 0,
limα→1 p(k) = 0, limα→∞ p(k) = Λ(k + 1; θ, β)− Λ(k; θ, β),
limθ→0 p(k) = 0, limθ→∞ p(k) = 0,
limβ→0 p(k) = 0, and limβ→∞ p(k) = 0.

From the above limiting behavior of the DNGR, some submodels and special cases
can be derived, such as

1. Discrete standard Rayleigh Distribution: When θ = 1 and β = 1, and α approaches
infinity, the pmf simplifies to (1 − e−(x+1)2

)− (1 − e−x2
), which represents the pmf

of the discrete Rayleigh distribution created from applying the survival discretiza-
tion method.

2. Discrete Exponential-like Distribution: For large values of β and specific values of
θ, the DNGR distribution might possess characteristics similar to an exponential
distribution for smaller values of k, where the exponential decay behavior is more
evident, since the term Λ = (1 − e−θk2

)β has a decaying form and can be considered
as exponential-like function.

3. Discrete Uniform Distribution: If the parameters α, β, and θ are chosen such that the
pmf becomes constant for all k within a certain range, the DNGR distribution could
approximate a discrete uniform distribution.

4. Geometric-like Distribution: By adjusting θ and β, you might be able to create a
distribution that behaves like the geometric distribution, especially if the probability
of larger k values decays like the geometric series.

These possible submodels and special cases demonstrate the versatility and adaptabil-
ity of the DNGR distribution. The ability to derive such a variety of distributions from a
single distribution highlights the potential utility of the DNGR distribution in modeling
a wide range of discrete data scenarios. Each submodel or special case would be suited
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to different types of data and could provide unique insights depending on the context of
the analysis.

Figure 2. The HRF of the DNGR distribution.

3.1. Moments

Assume a non-negative random variable k ∼ DNGR(α, β, θ). The sth moment, say ψ‘
s,

can be expressed as follows

ψ′
s =

∞

∑
k=0

ks f (k; α, β, θ),

and then

ψ′
s =

∞

∑
k=0

ks
[

α[1 − Λ(k; θ, β)]

α − Λ(k; θ, β)
− α[1 − Λ(k + 1; θ, β)]

α − Λ(k + 1; θ, β)

]
. (11)
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It is impossible to write an exact form of the sth moment; hence, R programming
with version (4.3.0) is helpful, and the moment is evaluated numerically. Equation (11) is
convergent for α > 1, β > 0 , and θ > 0 .

Table 1 explores some functions like the minimum, mean, variance, maximum, skew-
ness (SK), and kurtosis (Kt) for different values of α, β, and θ. In addition, the DNGR
distribution is appropriate for modeling both over- and under-dispersed data since, in this
model, the variance can be smaller than the mean, which is the case with some standard
classical discrete distributions, in addition to the positive and negative skewness values,
which show that this distribution can be skewed to the right or left. Also, a very small skew
value that tends to zero indicates a symmetry possible curve for the pmf. A higher kurtosis
means more of the variation is due to infrequent extreme deviations as opposed to frequent
modestly sized deviations. By varying θ, α, and β, one can realize the distribution changes.
For instance, with θ = 0.8 and α = 0.5, β changing from 0.84 to 2.73 drastically increases the
kurtosis, indicating a heavier tail.

Table 1. Summary of descriptive statistics for the DNGR distribution.

θ α β Minimum Mean Variance Maximum SK Kt

0.8

1.05 0.3 0 1.5140 0.4643 3 −0.0700 1.2956

1.05 1.2 0 1.9760 0.3338 4 −0.0563 1.3066

1.05 2.5 0 2.1890 0.3176 4 −0.0479 1.3039

1.05 3 1 2.2420 0.3137 4 −0.0461 1.3030

2.2 0.3 0 0.6480 0.4305 3 0.1245 1.1141

2.2 1.2 0 1.2470 0.3664 3 0.0229 1.2125

2.2 2.5 0 1.5330 0.3252 3 0.0203 1.2296

2.2 3 0 1.6020 0.3179 3 0.0212 1.2320

3 0.3 0 0.5810 0.4098 3 0.1629 1.1205

3 1.2 0 1.1880 0.3570 3 0.0373 1.2097

3 2.5 0 1.4770 0.3178 3 0.0320 1.2281

3 3 0 1.5450 0.3163 3 0.0325 1.2307

1.5

1.05 0.3 0 1.0800 0.2799 3 −0.0699 1.2957

1.05 1.2 0 1.4600 0.2827 3 −0.0564 1.3066

1.05 2.5 0 1.6570 0.2396 3 −0.0481 1.3039

1.05 3 0 1.7020 0.2214 3 −0.0461 1.3031

2.2 0.3 0 0.4520 0.2860 2 0.1244 1.1142

2.2 1.2 0 0.9210 0.2190 2 0.0229 1.2125

2.2 2.5 0 1.1120 0.1616 2 0.0203 1.2295

2.2 3 0 1.1510 0.1624 2 0.0213 1.2321

3 0.3 0 0.4010 0.2725 2 0.1629 1.1205

3 1.2 0 0.8800 0.2258 2 0.0374 1.2096

3 2.5 0 1.0830 0.1503 2 0.0321 1.2280

3 3 0 1.1210 0.1485 2 0.0325 1.2306
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Table 1. Cont.

θ α β Minimum Mean Variance Maximum SK Kt

3

1.05 0.3 0 0.8230 0.1598 2 −0.0700 1.2956

1.05 1.2 0 0.9890 0.0689 2 −0.0563 1.3067

1.05 2.5 0 1.0460 0.0680 2 −0.0480 1.3040

1.05 3 0 1.0610 0.0734 2 −0.0459 1.3031

2.2 0.3 0 0.2800 0.2038 2 0.1245 1.1143

2.2 1.2 0 0.6820 0.2231 2 0.0229 1.2123

2.2 2.5 0 0.8840 0.1127 2 0.0203 1.2296

2.2 3 0 0.9200 0.0857 2 0.0210 1.2320

3 0.3 0 0.2420 0.1856 2 0.1628 1.1204

3 1.2 0 0.6360 0.2357 2 0.0374 1.2097

3 2.5 0 0.8590 0.1292 2 0.0321 1.2280

3 3 0 0.9020 0.0985 2 0.0325 1.2307

3.2. Stress–Strength Analysis

The stress–strength (reliability) analysis is an important tool in mechanical design.
The idea relies on the probability of failure that is obtained from the probability of r
exceeding r∗. Assume that both r and r∗ are in the positive domain. The expected
reliability (R∗) can be calculated by

R∗ = P[Kr ≤ Kr∗ ] =
∞

∑
k=0

fKr (k)RKr∗ (k), (12)

in which Kr ∼ DNGR(α1, β1, θ1) and Kr∗ ∼ DNGR(α2, β2, θ2), and then R∗ can be ex-
pressed as follows

R∗ =
∞

∑
k=0

[
α1[1 − Λ1(k; θ1, β1)]

α1 − Λ1(k; θ1, β1)
− α1[1 − Λ1(k + 1; θ1, β1)]

α1 − Λ1(k + 1; θ1, β1)

][
α2[1 − Λ2(k; θ2, β2)]

α2 − Λ2(k; θ2, β2)

]
,

where Λ1(k; θ1, β1) =
(

1 − e−θ1k2
)β1

and Λ2(k; θ2, β2) =
(

1 − e−θ2k2
)β2

.
We cannot obtain a closed form for the above equation; consequently, simulation anal-

ysis is utilized to obtain a numerical solution. In Section 6, numerical analysis is performed
to obtain the value of the stress–strength function under two real data applications.

3.3. The Mean Residual and the Mean Past Lifetimes

In reliability and survival analysis, many lifetime measures have been discussed in the
literature. They were defined to study the aging behavior of the experimental units. One of
these measures is the mean residual lifetime (MRL), which is a helpful tool in determining
burn-in and maintenance policies. For discrete distributions, the MRL is defined as follows:

ζ(i) = E(k − i | k ≥ i) =
1

S(i)

l

∑
j=i+1

S(j); i ∈ N, (13)

where 0 < l < ∞.
If the random variable k follows the DNGR distribution with parameters α, β, and θ,

which is denoted by k ∼ DNGR(α, β, θ), then the MRL is expressed as

ζ(i) =
α − Λ(i; θ, β)

α[1 − Λ(i; θ, β)]

l

∑
j=i+1

α[1 − Λ(j; θ, β)]

α − Λ(j; θ, β)
. (14)
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The mean past lifetime (MPL) is another important measure in reliability analysis.
The MPL measures the time elapsed after the failure of K units given that the system has
failed sometime earlier to i. In the discrete case, the MPL is defined as follows

ζ∗(i) = E(i − k|k < i) =
1

F(i − 1)

i

∑
m=1

F(m − 1); i ∈ N− {0}, (15)

where ζ∗(0) = 0; see [33].
Then,

ζ∗(i) =
[

1 − α − Λ(i; θ, β)

α[1 − Λ(i; θ, β)]

]−1 i

∑
m=1

[
1 − α[1 − Λ(m − 1; θ, β)]

α − Λ(m − 1; θ, β)

]
. (16)

3.4. Order Statistics

Let K1, K2, . . . , Kn be a random sample with the DNGR distribution and
K1:n, K2:n, . . . , Kn:n denote the corresponding order statistics. Then, the CDF of ith order
statistics at the value k can be written as follows

Fi:n(k; α, β, θ) =
n

∑
i=1

(
n
m

)
[Fi(k; α, β, θ)]m[1 − Fi(k; α, β, θ)]n−m. (17)

By using the negative binomial theorem, then

Fi:n(k; α, β, θ) =
n

∑
i=1

n−m

∑
j=1

(
n
m

)(
n − m

j

)
(−1)

j

[Fi(k; α, β, θ)]m+j. (18)

Therefore,

Fi:n(k; α, β, θ) =
n

∑
i=1

n−m

∑
j=1

(
n
m

)(
n − m

j

)
(−1)

j[
1 − α[1 − Λ(k; θ, β)]

α − Λ(k; θ, β)

]m+j
. (19)

Consequently, the pmf of the ith order statistic under the DNGR can be derived and
expressed as follows

fi:n(k; α, β, θ) =
n

∑
i=1

n−m

∑
j=1

(
n
m

)(
n − m

j

)
(−1)

j [
α[1 − Λ(k; θ, β)]

α − Λ(k; θ, β)
− α[1 − Λ(k + 1; θ, β)]

α − Λ(k + 1; θ, β)

]m+j
.

So, the υth moments of ki:n can be written as follows

E(Kν
i:n) =

∞

∑
k=0

n

∑
i=1

n−m

∑
j=1

(
n
m

)(
n − m

j

)
(−1)

j

kν

[
α[1 − Λ(k; θ, β)]

α − Λ(k; θ, β)
− α[1 − Λ(k + 1; θ, β)]

α − Λ(k + 1; θ, β)

]m+j
.

4. Estimation

Two estimation methods are considered in this work: frequentist maximum likelihood
estimation (MLE) and the Bayesian estimation method. Simulation analysis and numerical
techniques are performed in Section 5 to assess the performance of these estimation methods.

4.1. Maximum Likelihood Estimation

In this section, we use the maximum likelihood estimation MLE method to estimate
the unknown parameters of the DNGR distributions. To evaluate the required estimators,
numerical techniques are used, such as the well-known Newton–Raphson technique.
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Let x1, . . . , xn be a random sample following the DNGR, and then, from pmf in Equa-
tion (5), the log-likelihood function is written as

ℓ(α, β, θ) = ∑n
k=1 log(α(α − 1)) + log(Λ(xk+1; θ, β)− Λ(xk; θ, β))

−log(α − Λ(xk; θ, β)) − log(α − Λ(xk+1; θ, β))
(20)

The MLEs for α, β, and θ are obtained by finding the partial derivatives of ℓ(α, β, θ)
for α, β, and θ, then equating the three equations to zero and solving numerically.

∂ℓ(α, β, θ)

∂α
=

n

∑
k=1

2α − 1
α(α − 1)

− 1
α − Λ(xk; θ, β)

− 1
α − Λ(xk+1; θ, β)

= 0, (21)

∂ℓ(α, β, θ)

∂β
=

n

∑
k=1

Λβ(xk+1; θ, β)− Λβ(xk; θ, β)

Λ(xk+1; θ, β)− Λ(xk; θ, β)
+

Λβ(xk; θ, β)

α − Λ(xk; θ, β)
+

Λβ(xk+1; θ, β)

α − Λ(xk+1; θ, β)
= 0 (22)

and

∂ℓ(α, β, θ)

∂θ
=

n

∑
k=1

Λθ(xk+1; θ, β)− Λθ(xk; θ, β)

Λ(xk+1; θ, β)− Λ(xk; θ, β)
+

Λθ(xk; θ, β)

α − Λ(xk; θ, β)
+

Λθ(xk+1; θ, β)

α − Λ(xk+1; θ, β)
= 0. (23)

Such that Λβ(xk; θ, β) = ∂Λ(xk ;θ,β)
∂β = Λ(xk; θ, β)log(1 − e−θxk

2
) and Λθ(xk; θ, β) =

∂Λ(xk ;θ,β)
∂θ = βxk

2e−θxk
2
Λ(xk; θ, β − 1). To solve the system of nonlinear Equations (21)–(23),

only numerical methods are helpful. Many numerical techniques were used in the literature;
here, we use the Newton–Raphson method, and all results are illustrated in Section 5.

4.2. Bayesian Inference

The Bayesian estimation method is used in this section to estimate the unknown
parameters of the DNGR. The basic assumption of the Bayesian method is that the model
parameters are considered random variables that follow a distribution known as the prior
distribution. Since prior information is usually only available, we must specify a suitable
prior option. We choose the gamma conjugate prior distribution for the parameters α, β,
and θ. It is defined by assuming gamma distributions for α, β, and θ.

Therefore, the prior distributions for α, β, and θ can be written as

π1(α) =
b1

a1

Γ(a1)
αa1−1e−b1α,

π2(β) =
b2

a2

Γ(a2)
βa2−1e−b2β

and

π3(θ) =
b3

a3

Γ(a3)
θa3−1e−b3θ

where a1, a2, a3, b1, b2, and b3 are nonnegative hyper parameters of the assumed distributions.
Hence, the joint prior for α, β, and θ is

π(α, β, θ) ∝ αa1−1βa2−1θa3−1e
−(b1α+b2β+b3θ)

. (24)

The joint posterior of α, β, and θ given the data is defined as

π∗(α, β, θ | x) =
1
k

L(x | α, β, θ)π(α, β, θ), (25)

where L(x | α, β, θ) is the likelihood function of the DNGRD and K =
∫ ∫ ∫

L(x |
α, β, θ)π(α, β, θ)dαdβdθ.
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The DNGRD parameters are estimated using a symmetric squared error (SE) loss
function. A simulation study is used to investigate the performance of the estimators using
the aforementioned loss function. As criteria for the superiority of the estimation methods,
the bias, the mean square error (MSE), the average length (AL) of the confidence intervals,
and the coverage probability (CP) are computed.

Under the SE loss function, Bayes estimation for the parameters α, β, and θ is defined
as the mean or expected value regarding the joint posterior, provided as

α̂SE =
1
k

∫∫∫
αL(x | α, β, θ)π(α, β, θ)dαdθ (26)

β̂SE =
1
k

∫∫∫
βL(x | α, β, θ)π(α, β, θ)dαdθ (27)

θ̂SE =
1
k

∫∫∫
θL(x | α, β, θ)π(α, β, θ)dαdθ (28)

To evaluate the expected values and triple integration in Equations (26)–(28) , nu-
merical methods are required. We choose to use the Markov chain Monte Carlo (MCMC)
technique via the Gibbs sampling method and by developing appropriate R code. The joint
posterior density is

π∗(α, β, θ|x) = 1
K

n

∏
i=1

[
[1 − Λ(i; θ, β)]

α − Λ(i; θ, β)
− [1 − Λ(i + 1; θ, β)]

α − Λ(i + 1; θ, β)

]
αa1 βa2−1θa3−1e

−(b1α+b2β+b3θ)
(29)

Bayes estimation for parameters α, β, and θ under SE loss function is performed
respectively using Equations (26)–(28) and the posterior density Equation (29).

The estimators are numerically evaluated simulations using R codes under the SE loss
function, and their results are summarized and presented in Tables 2 and 3.

Table 2. MLE and Bayes for parameters of DNGR distribution: α = 1.5.

α = 1.5 MLE Bayesian

θ β n RB MSE Lower Upper CP RB MSE Lower Upper

0.8 0.5

30

α 0.3587 1.5243 0.2760 4.8362 96.4% −0.0637 0.1796 1.1698 1.6971

θ 0.1163 0.3028 0.3278 1.4583 94.8% −0.0900 0.1096 0.5657 0.8743

β 2.8414 1.6217 0.3864 3.4549 97.4% 0.2762 0.1846 0.4248 0.8864

70
α 0.1490 1.4933 0.3716 4.8186 96.2% −0.1036 0.2005 1.1424 1.5800

θ 0.0150 0.1898 0.4403 1.1837 94.0% −0.0572 0.0651 0.6586 0.8455

β 1.4425 1.5862 0.8267 3.6157 96.0% 0.3645 0.2151 0.4609 0.9003

100

α 0.2670 1.2867 0.4987 4.2996 96.6% −0.0749 0.1473 1.2081 1.5686

θ 0.0141 0.1323 0.5527 1.0698 94.8% −0.0573 0.0556 0.6889 0.8096

β 0.9287 1.0745 0.9939 3.2935 96.2% 0.2963 0.1636 0.5165 0.7786

200

α 0.2572 1.0381 0.5976 4.0743 93.4% −0.0433 0.0803 1.3303 1.5184

θ −0.0401 0.1044 0.5730 0.9629 95.0% −0.0446 0.0400 0.7257 0.7991

β 0.8044 0.9101 1.4005 3.6436 93.2% 0.1773 0.0955 0.5222 0.6549
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Table 2. Cont.

α = 1.5 MLE Bayesian

θ β n RB MSE Lower Upper CP RB MSE Lower Upper

0.8 2

30

α −0.2630 0.4948 0.5194 1.6917 96.4% −0.0723 0.1817 1.1206 1.6439

θ 0.1964 0.2533 0.5674 1.3469 95.0% −0.1627 0.1504 0.5360 0.8156

β 0.1821 0.6169 1.3875 3.3410 95.4% 0.0193 0.1575 1.7350 2.3384

70

α −0.2876 0.4697 0.7042 1.4329 98.2% −0.0650 0.1782 1.1407 1.6102

θ 0.1781 0.2057 0.6514 1.2336 95.4% −0.1452 0.1284 0.5898 0.8055

β 0.1783 0.6075 1.3907 3.2658 97.6% 0.0268 0.1401 1.8049 2.2871

100

α −0.2344 0.4531 0.8432 1.4810 99.8% −0.0867 0.1618 1.1862 1.5461

θ 0.1899 0.1968 0.7066 1.1973 95.4% −0.1317 0.1115 0.6174 0.7637

β 0.1585 0.5414 1.4561 3.1780 96.6% 0.0243 0.0945 1.8941 2.2078

200

α −0.2144 0.3822 0.8523 1.4703 99.6% −0.0418 0.0796 1.3468 1.5366

θ 0.1631 0.1540 0.7699 1.0910 94.8% −0.1128 0.0931 0.6638 0.7529

β 0.1403 0.5402 1.3709 3.0190 98.4% 0.0133 0.0482 1.9454 2.0992

1.3

0.5

30

α −0.0161 1.8375 0.1289 5.0806 95.2% −0.0893 0.2022 1.1191 1.6715

θ 0.2417 0.5574 0.7108 2.5176 97.0% −0.0770 0.1671 0.9649 1.5162

β 2.9986 1.9656 0.1495 4.4932 95.4% 0.2996 0.1973 0.4097 0.8957

70

α −0.0127 1.8093 0.2549 4.9173 96.0% −0.1216 0.2207 1.1361 1.5891

θ 0.2073 0.4650 0.8261 2.3130 96.8% −0.0716 0.1243 1.0573 1.3653

β 1.0203 1.8424 0.2329 4.2970 96.0% 0.4009 0.2295 0.4769 0.9082

100

α −0.0157 1.2760 0.2963 3.5147 95.8% −0.0973 0.1743 1.1848 1.5360

θ 0.1764 0.4309 0.8514 2.2450 97.2% −0.0625 0.1035 1.0952 1.3359

β 0.9256 0.9678 0.5612 3.8173 96.2% 0.3340 0.1821 0.5292 0.8175

200

α −0.0142 0.9294 0.3171 3.0604 96.4% −0.0507 0.0912 1.3314 1.5228

θ 0.0813 0.3153 0.8228 1.9886 98.0% −0.0378 0.0594 1.1915 1.3146

β 0.5671 0.6315 0.6249 3.0816 99.2% 0.1931 0.1029 0.5286 0.6659

2

30

α −0.3113 0.6551 0.1315 1.9347 99.4% −0.1012 0.2185 1.0986 1.6487

θ 0.1534 0.3004 1.0585 1.9403 93.6% −0.1306 0.2070 0.9252 1.3786

β 0.1334 0.7466 0.8986 3.6349 98.4% 0.0235 0.1570 1.7458 2.3302

70

α −0.3117 0.6555 0.1310 1.9338 99.4% −0.1027 0.2185 1.0986 1.6487

θ 0.1526 0.2934 1.0744 1.9225 93.8% −0.1263 0.2067 0.9265 1.3857

β 0.1323 0.7438 0.9007 3.6028 98.4% 0.0216 0.1529 1.7548 2.3035

100

α −0.3207 0.4811 1.0057 1.0321 93.8% −0.0914 0.2108 1.1902 1.4334

θ 0.1929 0.2756 1.3192 1.7823 100.0% −0.1151 0.1656 1.0148 1.2705

β 0.0887 0.1776 1.9162 2.1927 100.0% 0.0154 0.0757 1.9316 2.1534

200

α −0.3188 0.4782 1.0096 1.0341 93.3% −0.0538 0.0946 1.3235 1.5159

θ 0.1594 0.2403 1.3682 1.7462 94.7% −0.0763 0.1043 1.1427 1.2673

β 0.0809 0.1683 1.9258 2.1821 95.9% 0.0140 0.0496 1.9582 2.1127
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Table 3. MLE and Bayes for parameters of DNGR distribution: α = 3.

α = 3 MLE Bayesian

θ β RB MSE Lower Upper CP RB MSE Lower Upper

1.3

0.5

30
α 0.1917 2.0185 0.2210 7.3712 96.2% −0.0038 0.1558 2.6689 3.2541

θ 0.5325 1.0676 0.3977 3.5868 93.2% −0.0696 0.1621 0.9486 1.4541

β 9.3388 5.0389 1.4536 8.8852 96.4% 0.4023 0.2277 0.5010 0.8988

70
α 0.3736 1.8015 1.3537 6.8878 92.6% −0.0071 0.1313 2.7384 3.2252

θ 0.3598 0.6399 0.9110 2.6245 95.2% −0.0784 0.1300 1.0446 1.3579

β 9.7520 5.4079 0.7873 9.9648 96.4% 0.5596 0.2929 0.6081 0.9368

100
α 0.3083 2.0838 0.2612 7.5884 95.4% −0.0040 0.0897 2.8073 3.1475

θ 0.3510 0.5847 1.0390 2.4735 96.2% −0.0627 0.1003 1.1033 1.3265

β 9.7169 5.4798 0.3857 10.3312 93.6% 0.4114 0.2145 0.5799 0.8143

200
α 0.8118 3.5689 0.3173 10.5536 95.8% −0.0021 0.0452 2.9092 3.0800

θ 0.3223 0.4785 1.2655 2.1725 95.8% −0.0367 0.0585 1.1795 1.3146

β 9.6584 5.0771 2.2548 8.4036 96.0% 0.2381 0.1241 0.5548 0.6959

0.9

30
α −0.1503 1.6360 0.5364 5.6349 95.6% −0.0038 0.1618 2.6992 3.3379

θ 0.3752 0.8357 0.4565 3.1191 97.8% −0.1104 0.1934 0.9110 1.3977

β 6.1647 6.2502 0.8019 5.0945 97.0% 0.1488 0.1888 0.7805 1.3184

70
α −0.1584 1.0898 0.6006 4.4492 97.6% −0.0134 0.1395 2.7034 3.2184

θ 0.1830 0.4443 0.8017 2.2740 93.0% −0.1119 0.1694 0.9717 1.2952

β 5.3507 5.0649 2.6369 4.7944 97.8% 0.1222 0.1722 0.8992 1.2938

100
α 0.1317 2.0370 0.6525 4.3156 94.2% −0.0031 0.0883 2.8246 3.1589

θ 0.2120 0.4331 0.9200 2.2311 92.0% −0.0901 0.1313 1.0629 1.2857

β 6.4228 6.0394 3.2486 4.1124 96.4% 0.1633 0.1653 0.8964 1.1761

200
α 0.1701 1.6929 0.3436 3.6772 94.2% −0.0031 0.0461 2.8961 3.0742

θ 0.1568 0.2695 1.1578 1.8498 95.0% −0.0485 0.0704 1.1800 1.3009

β 6.7695 6.3441 3.5224 3.8463 97.2% 0.0836 0.0848 0.9010 1.0514

2

0.5

30
α −0.1881 0.6957 1.6375 3.2338 95.6% −0.0047 0.1551 2.6721 3.2679

θ −0.0411 0.5058 0.9386 2.8969 90.0% −0.0553 0.1959 1.5765 2.2175

β 4.5180 2.5199 0.5683 4.9497 96.8% 0.2992 0.1983 0.3997 0.9025

70
α −0.2116 0.8253 1.3305 3.3996 100.0% −0.0067 0.1355 2.6983 3.2384

θ −0.0649 0.6639 0.5929 3.1475 97.2% −0.0726 0.1869 1.6464 2.0764

β 4.1615 2.3945 0.2558 4.9057 100.0% 0.4675 0.2563 0.5129 0.9282

100
α −0.2105 0.8825 1.1588 3.5784 100.0% −0.0039 0.0929 2.8218 3.1785

θ −0.0837 0.6576 0.5849 3.0803 100.0% −0.0565 0.1382 1.7356 2.0397

β 3.8575 2.2378 0.2023 4.6552 100.0% 0.3167 0.1723 0.5349 0.7985

200
α −0.0747 0.3607 2.2214 3.3303 92.6% −0.0021 0.0450 2.9162 3.0799

θ −0.2174 0.5774 0.8199 2.3105 95.2% −0.0275 0.0695 1.8580 2.0248

β 3.0823 1.7603 0.3725 3.7098 95.4% 0.1803 0.0975 0.5084 0.6579

1.1

30
α −0.4095 1.4678 0.1957 3.3470 99.6% −0.0073 0.1620 2.6815 3.2895

θ −0.0105 0.6870 0.6319 3.3262 100.0% −0.0911 0.2397 1.5140 2.1195

β 2.5931 3.5294 0.1257 8.0306 99.6% 0.1034 0.1881 0.9228 1.5108

70
α −0.3289 1.1819 0.7368 3.2901 100.0% −0.0127 0.1424 2.6825 3.1929

θ −0.1004 0.6782 0.5283 3.0700 100.0% −0.0941 0.2211 1.5755 1.9901

β 2.3766 2.7979 1.7584 5.6701 97.8% 0.1644 0.2140 1.0552 1.4943

100
α −0.2776 0.9788 1.1578 3.1769 92.8% −0.0075 0.0892 2.8212 3.1590

θ −0.1742 0.6667 0.5362 2.7671 93.0% −0.0655 0.1549 1.7024 2.0002

β 2.3582 2.7976 1.6383 5.7497 98.2% 0.1111 0.1451 1.0470 1.3534

200
α −0.2445 0.8234 1.5320 3.0013 93.8% −0.0041 0.0453 2.8966 3.0706

θ −0.2436 0.5653 0.9504 2.0750 97.4% −0.0367 0.0844 1.8520 2.0008

β 2.2435 2.5427 2.3663 4.7694 96.6% 0.0569 0.0753 1.0850 1.2456
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5. Simulation Analysis

In this section, Monte Carlo simulations are performed to assess the effectiveness of
the suggested estimators for the parameters α, θ, and β that were established in Section 4.1.
We will sum up by providing the simulation scenario. The findings of the simulation are
then offered for debate.

5.1. Simulation Scenario

In this subsection, several Monte Carlo simulation studies are carried out to assess the
effectiveness of the acquired maximum likelihood estimates and Bayesian estimation of
α, θ, and β. Now, we suggest the following steps to gather a sample from the DNGR model:

• Set α, θ, and β to their actual values as shown:
In Table 2: α = 1.5, θ = 0.8, β = 0.5, α = 1.5, θ = 0.8, β = 2, α = 1.5, θ = 1.3, β = 0.5,
α = 1.5, θ = 1.3, β = 2.
In Table 3: α = 3, θ = 1.3, β = 0.5, α = 3, θ = 1.3, β = 0.9, α = 3, θ = 2, β = 0.5,
α = 3, θ = 2, β = 1.1.

• Specific values for n (total test units) should be determined as 30, 70, 100, 200.
• Generate a uniform random variable within the range of 0 to 1. Utilize the quantile

function described in Equation (7) to produce a random sample from the DNGR(α, θ, β)
distribution. Afterwards, round the quantity of samples to the nearest whole number.

• Compute the MLEs and 100(1 − γ)% via ‘maxLik’ package in R program with version
number (4.3.0), with Fisher information matrix (Hessian matrix).

• Use ‘coda’ package in R program with version number (4.3.0), to obtain the Bayes’
inferences by running the MCMC sampler 12,000 times and 2000 is burn-in.

• Repeat the above steps 5000 times.
• The relative bias (RB), mean squared error (MSE), average lower, average upper,

and coverage probability (CP) of the parameter are specifically determined for each
group (n, or actual value of the parameter). For more details about comparing in-
terval estimates, we discuss using the CP requirement in our evaluations. R 4.2.2
programming language is used to carry out all numerical analyses. In Tables 2 and 3,
respectively, all numerical findings for α, β, and θ are obtained and presented.

5.2. Simulation Conclusion

The performance of the suggested point and interval estimate algorithms is the main
topic of this subsection. We can infer the following facts from Tables 2 and 3:

• The acquired estimates of the unknown parameters α, θ, and β generally perform well
in terms of lowest MSE, RB, and difference between upper and lower values with CP.

• The MSE, RB, and CI of α, θ, and β tend to decline as n rises. This result supports the
associated estimates’ consistency property of DNGR distribution when the necessary
sample size is raised.

• As the true value of β increases, for each setting, the MSE, RB, and CL measures
of unknown parameters α and β decrease, while they increase regarding unknown
parameter θ.

• The MSE, RB, and CL measures of all unknown parameters α, θ, and β increase for
each set as the true value of θ grows.

• For CI of Bayesian, the credible interval decreases when the sample size increases.
• Almost always, and regardless of sample size, Bayesian estimation based on the SE

loss function yields the minimal RB and MSE values.

6. Real Data Examples

This section presents the analysis of two applications using different real datasets.
The main goals of this section are

• Examine the usefulness and applicability of the proposed model to real phenomena;
• Show the applicability of the inferential results to a real practical situation;
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• Evaluate whether the proposed model is a better choice than the other seven models.

Data I: The first dataset includes the number of strikes that occurred in the UK coal
mining industry over four consecutive week periods between 1948 and 1959. It was derived
from Kendall [34]. An empirical model was used to analyze this example by Ridout and
Besbeas [35] and is presented in Table 4.

Table 4. Data I: The number of strikes and their frequency that occurred in the UK coal mining
industry.

data 0 1 2 3 4 or more

Freq 46 76 24 9 1

Data II: The number of fires that occurred in Greece between 1 July and 31 August,
1998. We only take into account fires in forest districts. These data have a sample size of
124. The minimum value is 0, the first quartile is 2, the median value is 4, the mean value is
5.065, the third quartile’s maximum value is 8, and the variance value is 18.256. The data
are as follows: 2, 4, 4, 3, 3, 1, 2, 4, 3, 1, 1, 0, 5, 5, 0, 3, 1, 1, 0, 1, 0, 2, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 4, 2, 2, 1, 2, 1, 2, 0, 2, 2, 1, 0, 3, 2, 1, 2, 2, 7, 3, 5, 2, 5, 4, 5, 6, 5, 4, 3, 8, 4, 3, 8, 4, 4, 3, 10, 5, 4, 5,
12, 3, 8, 12, 10, 11, 6, 1, 8, 9, 12, 9, 4, 8, 12, 11, 8, 6, 4, 7, 9, 15, 12, 15, 15, 12, 9, 16, 7, 11, 9, 11, 6,
5, 20, 9, 8, 8, 5, 7, 10, 6, 6, 5, 5, 15, 6, 8, 5, 6. These data were discussed by [36].

Based on the first and second datasets, the DNGRD probability model is contrasted and
compared with the other seven competing models to show the reliability and superiority of
the proposed model, including Poisson, binomial, geometric, discrete Burr (DB) by [37],
discrete Marshall–Olkin Lomax (DMOL) by [38], new discrete Lindley (NDL) by [39],
and discrete odd perks exponential (DOPE) by [40] distributions. To specify the best
model, several criteria are used, namely: Akaike (AIC = 2p − 2l̂), where p is the length
of the model parameter and l̂ is log-likelihood value, consistent Akaike (CAIC = −2l̂ +

2np
n−p−1 ), Bayesian (BIC = −2l̂ + p ln(n)), and Hannan–Quinn (HQIC = −2l̂ + p ln(ln(n))
information criteria. Along with these, the X2 − square statistic and its p-value are taken
into account. If a probability model distribution has the highest p-value and the lowest
values for all other metrics, it is obvious that it will provide the best fit for a particular
collection of data. The maximum likelihood estimates (with their standard errors (St.Es)),
as well as the fitted model selection criteria, are shown in Tables 5 and 6 using the R
programming language and the ’bbmle’ package in R program with version number (4.3.0),
that was recommended.

To compare the performance and efficiency of the DNGR distribution with other
distributions listed in Table 5, using measures of goodness of fit and p-values, we can
proceed as follows:

1-DNGR versus DOPE:
DNGR shows a better fit with a lower AIC, CAIC, BIC, and HQIC. The chi-squared

value is lower for DNGR, indicating a better fit. DNGR has a higher p-value, suggesting a
better fit to the data than DOPE.

2-DNGR versus Binomial/Poisson:
DNGR has a higher p-value than both binomial and Poisson distributions, indicating a

more suitable model for the data. The information criteria (AIC, CAIC, HQIC) for DNGR are
lower compared to binomial and Poisson, suggesting a better fit than binomial and Poisson.

3-DNGR versus DMOL:
DNGR and DMOL have comparable p-values, but DNGR shows better performance

in terms of information criteria.
4-DNGR versus DB:
DNGR has a higher p-value than DB, indicating that DNGR shows slightly better

performance in terms of information criteria.
5-DNGR versus Geometric/NDL:
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DNGR outperforms both geometric and NDL distributions in terms of p-value, in-
dicating a significantly better fit. DNGR has lower information criteria values, further
suggesting its superiority in model fitting. Overall, DNGR appears to offer a more efficient
and suitable fit for Data I compared to the other listed distributions.

Table 5. MLE estimates and different measures of fit for Data I.

Estimators SE AIC CAIC BIC HQIC X2 p-Value

DNGR

α 33.0996 13.6357

382.7571 382.9150 391.9067 386.4733 3.6721 0.4522θ 0.3343 0.0434

β 0.9276 0.1425

DOPE

α 39.3584 3.5957

387.5354 387.6933 396.6850 391.2516 5.2373 0.2638θ 0.2757 0.0264

β 3.1307 0.5099

Binomial θ 0.9937 0.1315 386.1302 386.1562 389.1801 387.3689 10.1078 0.0387

Poision θ 0.9936 0.0798 386.1302 386.1562 389.1801 387.3689 9.8986 0.0422

DB
α 4.6524 0.6986

388.4190 388.4974 394.5187 390.8964 5.4076 0.2480
β 0.5940 0.0448

DMOL

α 21.1960 7.5845

386.4288 386.5867 395.5784 390.1450 3.9771 0.4091θ 1.8892 0.3088

β 0.0028 0.0009

Geometric θ 0.5017 0.0284 433.1343 433.1603 436.1842 434.3731 50.7984 0.0000

NDL θ 0.5017 0.0284 433.1343 433.1603 436.1842 434.3731 50.7984 0.0000

Table 6. MLE estimates and different measures for Data II.

Estimators SE AIC CAIC BIC HQIC X2 p-Value

DNGRD

α 12.5091 2.5308

668.4150 668.6150 676.8759 671.8520 22.8025 0.2986θ 0.0122 0.0027

β 0.4495 0.1299

DOPE

α 44.2111 9.3605

685.1374 685.3374 693.5983 688.5744 32.6330 0.0370θ 0.0134 0.0017

β 0.7291 0.0844

Binomial θ 0.9608 0.2622 821.7835 821.8163 824.6038 822.9292 12776.3387 0.0000

Poision θ 5.0645 0.2021 821.7835 821.8163 824.6038 822.9292 26469.5465 0.0000

DB
α 2.5385 0.4910

748.2257 748.3249 753.8663 750.5170 91.3536 0.0000
β 0.7611 0.0425

DMOL

α 4.6349 1.8610

674.2602 674.4602 682.7210 677.6972 25.0095 0.2011θ 13.0180 3.2683

β 0.0031 0.0018

Geometric θ 0.1649 0.0135 675.3352 675.3679 678.1554 676.4808 27.5152 0.1214

NDL θ 0.1649 0.0135 675.3352 675.3679 678.1554 676.4808 27.5152 0.1214

Figures 3–5 confirm these results for Data I (the black point refer to data; the pink
point refer to DNGR distribution). Additionally, it is evident from Data II in Table 6 that the
DNGR distribution is the best distribution among all the examined models in terms of the P-
value, whereas Figures 6–8 confirm these results for Data II. Figure 3 confirms the results of
MLE fitting and demonstrates the existence, uniqueness, and maximum point of likelihood
value of the likelihood estimates for Data I. Figure 4 regarding associated empirical CDF
and estimated CDF plot illustrates the connection between observed cumulative probability
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and observation through a visual plot and also Q–Q plot for Data I. Figure 5 highlights
estimated frequency by using PMF for each comparative model for Data I. Table 7 indicates
survival and hazard rate functions for DNGR distribution with different values of Data
I, noting that the survival value decreased when the values of Data I increased, while the
hazard rate value increased when the values x of Data I increased.

Figure 6 confirms the results of MLE fitting and demonstrates the existence, unique-
ness, and maximum point of likelihood value of the likelihood estimates for Data II. Figure 7
regarding associated empirical CDF and estimated CDF plot illustrates the connection be-
tween observed cumulative probability and observation through a visual plot and Q–Q
plot for Data II. Figure 8 highlights estimated frequency by using PMF for each compar-
ative model for Data II. Table 8 indicates survival and hazard rate functions for DNGR
distribution with different values of Data II, noting that the survival values decreased when
the values of Data II increased, while the hazard rate value increased when the values x of
Data II increased.
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Figure 3. Likelihood profile (blue line) with the maximum likelihood estimation (red dot): Data I.
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Figure 4. Estimated CDF and Q–Q plot of DNGR by using MLE: Data I.

Table 7. Survival and hazard rate functions for DNGR distribution with different values of Data I.

x S (x; 33.0994, 0.3343, 0.9275) h (x; 33.0994, 0.3343, 0.9275)

0 0.6952 0.4383

1 0.2518 1.7607

2 0.0472 4.3343

3 0.0045 9.3889

4 0.0002 19.2691
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Figure 7. Estimated PMF of each comparative model by using MLE: Data II.

Table 8. Survival and hazard rate functions for DNGR distribution with different values of Data II.

x S (x; 12.5091, 0.0122, 0.4495) h (x; 12.5091, 0.0122, 0.4495)

0 0.8721 0.1466

2 0.6577 0.1572

4 0.4725 0.1879

5 0.3919 0.2059

8 0.2023 0.2686

20 0.0023 0.6490
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Figure 8. Likelihood profile (blue line) with the maximum likelihood estimation (red dot): Data II.

7. Conclusions

In this study, the authors successfully developed a novel discrete analog from the
continuous generalized Rayleigh distribution denoted by DNGR through the application
of the survival discretization method. Several key attributes of the DNGR model were
studied, such as its unimodal probability mass function, which exhibits varying degrees
of symmetry and skewness based on parameter selection. Comprehensive statistical
measures for DNGR were derived, including moments, stress–strength function, moment-
generating function, and mean residual and mean past lifetimes. The potential submodels
and special cases derived from the DNGR demonstrate the versatility and adaptability of
the DNGR distribution, which can be suitable for modeling different types of data and
could provide unique insights depending on the context of the analysis. Furthermore,
the practical applicability of the work was enhanced by conducting detailed simulation
analyses and presenting the results in tabular form. Point and interval estimation using
both the maximum likelihood and the Bayesian methods were obtained, supplementing
these with simulation analyses executed using R code. This was complemented by a
numerical analysis aimed at evaluating the estimation methods for DNGR’s unknown
parameters and assessing the efficiency of these methods. A significant aspect of their
contribution is the application of the DNGR model to real-world data. Two real data
examples were selected, one from the industrial sector concerning UK coal mining strikes
and another focusing on environmental issues related to fires in Greece. Their analysis
revealed that the DNGR model outperformed seven competitive discrete distributions in
various goodness-of-fit measures, demonstrating its superior ability to model the given
datasets effectively. This finding was further illustrated through detailed tables and figures
showcasing the properties and efficiency of the new model. As a pathway for future
work, the authors suggest exploring alternative discretization methods to assess their
performance and applicability to a broader range of real-life data scenarios.
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