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Abstract

:

Various discrete lifetime distributions have been observed in real data analysis. Numerous discrete models have been derived from a continuous distribution using the survival discretization method, owing to its simplicity and appealing formulation. This study focuses on the discrete analog of the newly generalized Rayleigh distribution. Both classical and Bayesian statistical inferences are performed to evaluate the efficacy of the new discrete model, particularly in terms of relative bias, mean square error, and coverage probability. Additionally, the study explores different important submodels and limiting behavior for the new discrete distribution. Various statistical functions have been examined, including moments, stress–strength, mean residual lifetime, mean past time, and order statistics. Finally, two real data examples are employed to evaluate the new discrete model. Simulations and numerical analyses play a pivotal role in facilitating statistical estimation and data modeling. The study concludes that the discrete generalized Rayleigh distribution presents a notably appealing alternative to other competing discrete distributions.
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1. Introduction


As each day passes, the volume of data in our world increases exponentially, necessitating the development of new statistical distributions to better characterize the features of many phenomena and experiments. While a great deal of lifetime data appear to be continuous, they are originally discrete. This discrepancy ensures the need for more appropriate methods to generate discrete distributions that more accurately represent the data in the experiment. Discrete distributions are frequently employed in statistical modeling for several reasons.



Discrete distributions are used to model data that can only take on a finite or countably infinite number of values, such as counts, proportions, and binary outcomes, for example, the number of customers in a store, the number of heads in a coin flip, or the number of defective items in a production line. Discrete distributions are often easy to understand and interpret as they model data that take on a limited number of values. The probability mass function (pmf) or probability generating function (pgf) of a discrete distribution is a simple function that provides the probability of each possible outcome. Also, many discrete distributions have closed-form expressions for their pmf or pgf, which makes it easy to work with them mathematically. This allows for efficient computation of probabilities and moments without the need for integration. Furthermore, discrete distributions can be used to model a wide variety of real-world phenomena, such as the distribution of species in an ecosystem, the distribution of genetic variations in a population, or the distribution of traffic on a road network.



Recently, many discrete distributions have been considered, particularly in medicine, engineering, reliability, survival analysis, and more. For more descriptions and applications of discrete distributions, refer to [1,2,3,4,5,6,7,8,9]. Hence, many authors have conducted much work to originate and develop discrete models from different aspects.



The characterization of continuous random variables can be performed either by their probability density function, cumulative distribution function, moments, moment-generating function, hazard rate functions, or others. Different discretization methods appeared in the literature to create an appropriate discrete distribution based on the underlying continuous model.



By deriving discrete analogs or counterparts of well-known continuous distributions, statisticians can better tailor their models to the specific nature of the data. Usually, creating a discrete analog from a continuous distribution is based on the principle of preserving one or more characteristic properties of the continuous one. Consequently, different ways to discretize a continuous distribution appear in the literature depending on the property the researcher intends to preserve; for example, Lai [10] used the survival and the hazard rate preservation methods to create discrete distributions from different continuous ones. Haj Ahmad and Almetwally [11] used the survival, hazard rate, and probability distribution function preservation methods to discretize the generalized Pareto distribution.



The benefit of using the survival discretization method is that it can maintain the statistical properties of the original distribution, including median and percentiles, in addition to the overall shape of the distribution. A drawback of this method is that it can be computationally intensive and may require numerical methods for complex distributions.



For the hazard preservation method, the main benefit is that it preserves the hazard function of the continuous distribution. This is important in applications like reliability analysis where the failure rate is a key parameter. On the other hand, mathematical complexity can be viewed using this method, especially for continuous distributions with nonlinear hazard functions. This complexity can increase computational time and resource requirements. Another drawback of the hazard preservation method is that it only preserves the hazard function, but other characteristics of the distribution (like mean, variance, or skewness) may not be as accurately retained. For more details about other discretization methods and their properties, one may refer to [12,13] who provided a review of several discretization methods.



From the previous research work, it is evident that the results look appealing and motivational to continue creating new discrete distributions to model new data.



In the present study, we obtain a discrete analog of the continuous new generalized Rayleigh distribution (NGRD) using the survival discretization method that depends on the survival function. See for example [6,7], in which the survival discretization approach was used to obtain the discrete normal and discrete Rayleigh distributions, respectively. Using the same approach, more discrete distributions have been introduced and studied; see for example [14,15,16,17,18,19,20,21,22,23].



Still, there is an enduring need to create and develop more discrete models and to generate new ones because of modeling and fitting real data, which appear and spread constantly in human life. The efficiency in discretization methods refers to the ability of a method to produce accurate and useful discretized versions of continuous data with minimal loss of information. Also, discrete distributions derived from continuous ones can inherit their flexibility and adaptability. This allows statisticians to model a wider range of data characteristics, such as skewness or kurtosis, which might be difficult with standard discrete distributions. In statistical methodology, continuous distributions may have characteristics that are missing in the discrete space; hence, creating discrete analogs can fill these gaps, providing new tools for data analysis.



The suggested discrete model with three parameters offers an immense degree of fitness to skewed, symmetric, monotone, and inverse J-shape types of data. Therefore, some statistical functions and properties are achieved, in addition to observing the submodels and limiting behavior of the proposed discrete distribution. Examining statistical inference is crucial; therefore, point and interval estimation for the unknown parameters using the maximum likelihood estimator and the Bayesian method is performed.



Simulation analysis via numerical techniques such as Monte Carlo simulation is employed to evaluate the estimators using the maximum likelihood and the Bayesian estimation methods to compare the performance of these two methods. The efficiency is assessed using the relative bias, the mean squared error, and the coverage probability of the confidence intervals. Two real datasets are analyzed to emphasize the empirical validation of the new model, where several goodness-of-fit measures are employed. The first example is related to the industrial field, where several strikes that occurred in coal mining in the UK were recorded over four weeks. Modeling and predicting the number of strikes will save human lives and money. The second example is related to the number of fires that occurred in Greece’s forests in the year 1998 during the summer months. The main purposes of this study are, first, to introduce new discrete analogs of the continuous NGRD and evaluate some of its important statistical functions, second, to perform the inferential statistics related to the new distributions’ parameters and compare the results, and, third, to assess the efficiency of the new discrete distribution by modeling real data examples and comparing the goodness-of-fit measures with other discrete distributions that were studied earlier in the literature.



The originality of this work emanates from the basis of exploring the creation of a new discrete analog from less commonly used continuous distributions and investigating their properties, potential applications, and how they compare to existing distributions. Also, it focuses on specific application areas, such as the industrial, engineering, and reliability fields. To our knowledge, no previous work has studied the discrete new generalized Rayleigh distribution and employed it to model real-life data examples from different scientific fields.



The authors’ contributions to this study can be summarized as follows:




	
Development of a New Discrete Model: Creation of a discrete analog of the continuous new generalized Rayleigh distribution (NGRD) using the survival discretization method.



	
Statistical Functions and Properties: Achievement of various statistical functions and properties of the proposed discrete distribution, including observing its submodels and limiting behavior.



	
Statistical Inference Examination: Conducting point and interval estimation for the unknown parameters using both the maximum likelihood estimator (MLE) and the Bayesian method.



	
Simulation Analysis for Estimator Evaluation: Implementation of numerical techniques such as Monte Carlo simulation to evaluate the estimators derived from MLE and Bayesian estimation methods through relative bias, mean squared error, and coverage probability of confidence intervals



	
Empirical Validation via Real Data Analysis: Analyzing two real datasets to validate the new model empirically, including modeling industrial and environmental phenomena.



	
Comparison with other Distributions: Comparing the goodness of fit of the new model with other discrete distributions previously studied in the literature.








The remaining parts of this work are organized as follows: Section 2 describes the new generalized Rayleigh distribution. The discretization methods are presented in Section 3, along with some statistical functions. In Section 4, the maximum likelihood and the Bayesian inference are presented. In Section 5, simulation analysis and the tabulated results are carried out. Some real data examples are provided in Section 6. Finally, conclusions are remarked on in Section 7.




2. Model Description


The Rayleigh distribution (RD) is a continuous distribution that has much practical importance; hence, many of its statistical characteristics, inference, and reliability analysis have been studied by several authors, and numerous extended forms of the Rayleigh distribution have been proposed. For example, Ref. [24] applied the inverse Rayleigh to the failure times data. Ref. [25] introduced the transmuted Rayleigh and used it to model the amount of nicotine in the blood. In [26], the authors studied the beta-generalized Rayleigh distribution and its application. Ref. [27] obtained the transmuted inverse Rayleigh distribution to lifetime data. Ref. [28] obtained a new modified Rayleigh distribution named the Kumaraswamy generalized Rayleigh distribution with application to real data. For more information, refer to [29,30,31]. In this work, we are interested in studying a new form of the Rayleigh distribution called a new generalized Rayleigh distribution (NGR), which was first introduced by Shen et al. [32]. It has three parameters and it was shown that the NGR is suitable for modeling large data values rather than small data values. However, as a continuous distribution, it is restricted from describing discrete data forms. Discretizing the NGR distribution is our goal; therefore, it yields a subsequent distribution that accommodates the countable data while retaining the influential tail modeling characteristics of the NGR. In this study, we carry out a discrete version of the NGR and use it to model real data.



The probability density function (pdf) and the survival function (S) of the continuous NGR are provided respectively as:


  f  x ; α , β , θ  =   2 α β θ  α − 1  x  e  − θ  x 2      ( 1 −  e  − θ  x 2    )   β − 1       α −    1 −  e  − θ  x 2      β    2   ,     x > 0 ,  



(1)




and


  S  x ; α , β , θ  =   α [ 1 −    1 −  e  − θ  x 2      β  ]   α −    1 −  e  − θ  x 2      β     ,  



(2)




in which the parameters   α > 1 ,  β > 0 ,  θ > 0  .



The hazard rate function is


  h  x ; α , β , θ  =   2 β θ  α − 1  x  e  − θ  x 2      ( 1 −  e  − θ  x 2    )   β − 1      1 −    1 −  e  − θ  x 2      β      α −    1 −  e  − θ  x 2      β    2    .  



(3)







To identify submodels or special distributions that arise from this general form, we can consider different values or limits of parameters  α ,  β , and  θ . Here are some special cases:




	
Standard Rayleigh Distribution: When   θ = 1   and   β = 1  , the term   ( 1 −  e  −  x 2    )   simplifies to the CDF of the standard Rayleigh distribution. This is observed if the parameter  α  also approaches infinity, which simplifies the formula to   1 −  e  −  x 2     , the CDF of the standard Rayleigh distribution.



	
Exponential Distribution: If  β  approaches infinity, the term  Λ  =    ( 1 −  e  − θ  x 2    )  β   can approach an exponential-like behavior for small values of x, depending on how  θ  is defined.



	
Modified Rayleigh Distribution: For specific fixed values of  α  and  β , you can obtain various forms of modified Rayleigh distributions, where the behavior is measured by the degree of skewness and kurtosis determined by these parameters.



	
Weibull-like Distribution: By interchanging between  θ  and  β , especially when  β  is not equal to 1, the distribution can possess Weibull-like properties.








By discretizing the continuous range of x, discrete versions of this distribution can be derived, which may be useful for certain types of count data or integer-valued measurements.



Since our goal in this work is to define a new discrete NGR distribution, we generate a discrete analog based on the survival discretization method, which is denoted by DNGR. The pmf and cumulative distribution function (CDF) are obtained. Furthermore, the moments, stress–strength function, the mean residual, and mean past lifetimes, order statistics, and L-moments are obtained. All these statistical functions are used for studying the features of the DNGR.




3. The Discrete New Generalized Rayleigh Distribution


Roy and Gupta [3,4] defined the probability mass function (pmf) for a discrete distribution using the survival function and it was expressed as follows:


  P  X = k  = S  k  − S  k + 1  ,          k = 0 , 1 , 2 , …  



(4)




where   S  x     is the survival function provided by Equation (2); hence, the pmf of the discrete analog of NGR distribution, namely DNGR, is written as


  P  X = k  =   α [ 1 − Λ  k ; θ , β  ]   α − Λ  k ; θ , β    −   α  1 − Λ  k + 1 ; θ , β     α − Λ  k + 1 ; θ , β    ,  



(5)




where   Λ  k ; θ , β  =    1 −  e  − θ  k 2      β   .



The CDF of the DNGR distribution can be written as


  P  X < k  = F  k + 1  = 1 −   α  1 − Λ  k + 1 ; θ , β     α − Λ  k + 1 ; θ , β    .  



(6)







The quantile function with given values of parameters as   α , β  , and  θ  of the DNGR distribution is provided by


   x i  =     − 1  θ  ln  1 −     α q   α + q − 1     1 / β      − 1 ;     q =  [ 0 , 1 ]  ,   i = 1 , … , n .  



(7)







The hazard rate function (HRF) of the DNGR distribution is provided by


   h  DNGR 1    k  =    1 − Λ  k ; θ , β    α − Λ  k + 1 ; θ , β      α − Λ  k ; θ , β    1 − Λ  k + 1 ; θ , β     − 1 .  



(8)







We also observe that the reversed hazard rate function for the DNGR of this distribution is provided by


     r   D N G R    k ; α , β , θ  =   f  k ; α , β , θ    F  k + 1 ; α , β , θ    ,  



(9)






        r   D N G R    k ; α , β , θ  =    α  1 − Λ  k ; θ , β     α − Λ  k ; θ , β    −   α  1 − Λ  k + 1 ; θ , β     α − Λ  k + 1 ; θ , β           ×    α − Λ  k + 1 ; θ , β     α − Λ  k + 1 ; θ , β   − α  1 − Λ  k + 1 ; θ , β          



(10)







In Figure 1, the bar charts represent each parameter   α , θ , and  β   that has a specific role in the behavior of the pmf, and their effects are observable when we fix one and vary the others. An explanation of the effect of each parameter based on the plots is as follows:




	1.

	
Effect of  α  when  θ  and  β  are changeable:



When  α  is fixed, the variations in  θ  and  β  create different trends in the probability values. Higher values of  θ  tend to stretch the curve horizontally, meaning, for a given  α , as  θ  increases, the decrease in probability values with increasing k is less steep. Higher values of  β  tend to amplify the curve vertically, making the probability have fewer values for higher k values. The reaction between  θ  and  β  at a fixed  α  demonstrates that  θ  affects the spread of the distribution, while  β  affects the sharpness of the probability decrease.




	2.

	
Effect of  θ  when  α  and  β  are changeable:



With  θ  fixed, the changes in  α  and  β  show distinct patterns. An increase in  α  generally results in higher probability values across all k. This is because a higher  α  relative to  Λ (k;  θ , β ) increases the numerator and decreases the denominator of the function   P ( X = k )  , resulting in a larger overall value. The effect of  β  at a fixed  θ  is similar to its effect when  α  is fixed; it controls the sharpness of the decrease in probability values. Higher  β  values cause a quicker decline in probability as k increases.




	3.

	
Fixing  β  and varying  α  and  θ , we can see that



As  α  increases, for a fixed  β , the overall probability values increase, similar to when  θ  is fixed. The role of  θ  here is nuanced; for lower values of k, the impact of changing  θ  is minimal, but, as k increases, higher  θ  values preserve higher probabilities, indicating a wider spread in the distribution. From the above explanations, it is clear that  α  primarily scales the probability values,  β  determines the rate at which the probability values decline as k increases (sharpness of the distribution), and  θ  controls the spread or dispersion of the distribution across k values. The combination of these three parameters can thus shape the function’s distribution in various ways, and each has a distinctive role in the form of the probability curve.









In Figure 2, the plots represent the HRF of the DNGR distribution for various combinations of parameters   α , θ , and  β  . Each subplot corresponds to a different set of these parameters. The values of k range from 1 to 10. The curves are increasing for different values of the parameters; we can realize the effect of increasing the parameter  θ  while keeping other parameters fixed by going steeply to the left. For the effect of  β , assuming other parameters are fixed, it can be figured by increasing in a slower mode when k takes small values. Finally, the effect of increasing the values of  α  while fixing the remaining parameters is going to the left more steeply.



The limiting behavior of DNGR for different choices in parameter values at the boundary points includes



   lim  k → ∞   p  k  = 0  ,    lim  k → 0   p  k  = 0  ,



   lim  α → 1   p  k  = 0  ,    lim  α → ∞   p  k  = Λ  k + 1 ; θ , β  − Λ  k ; θ , β   ,



   lim  θ → 0   p  k  = 0 ,      lim  θ → ∞   p  k  = 0  ,



   lim  β → 0   p  k  = 0 ,    and    lim  β → ∞   p  k  = 0  .



From the above limiting behavior of the DNGR, some submodels and special cases can be derived, such as



	
Discrete standard Rayleigh Distribution: When   θ = 1   and   β = 1  , and  α  approaches infinity, the pmf simplifies to    ( 1 −  e  −   ( x + 1 )  2    )  −  ( 1 −  e  −  x 2    )   , which represents the pmf of the discrete Rayleigh distribution created from applying the survival discretization method.



	
Discrete Exponential-like Distribution: For large values of  β  and specific values of  θ , the DNGR distribution might possess characteristics similar to an exponential distribution for smaller values of k, where the exponential decay behavior is more evident, since the term  Λ  =    ( 1 −  e  − θ  k 2    )  β   has a decaying form and can be considered as exponential-like function.



	
Discrete Uniform Distribution: If the parameters  α ,  β , and  θ  are chosen such that the pmf becomes constant for all k within a certain range, the DNGR distribution could approximate a discrete uniform distribution.



	
Geometric-like Distribution: By adjusting  θ  and  β , you might be able to create a distribution that behaves like the geometric distribution, especially if the probability of larger k values decays like the geometric series.






These possible submodels and special cases demonstrate the versatility and adaptability of the DNGR distribution. The ability to derive such a variety of distributions from a single distribution highlights the potential utility of the DNGR distribution in modeling a wide range of discrete data scenarios. Each submodel or special case would be suited to different types of data and could provide unique insights depending on the context of the analysis.



3.1. Moments


Assume a non-negative random variable   k ∼ D N G R  α , β , θ   . The   s  t h    moment, say    ψ  s ′  , can be expressed as follows


    ψ  s ′  =  ∑  k = 0  ∞   k s   f  k ; α , β , θ  ,  








and then


    ψ  s ′  =  ∑  k = 0  ∞    k s     α  1 − Λ  k ; θ , β     α − Λ  k ; θ , β    −   α  1 − Λ  k + 1 ; θ , β     α − Λ  k + 1 ; θ , β      .  



(11)







It is impossible to write an exact form of the   s  t h    moment; hence, R programming with version (4.3.0) is helpful, and the moment is evaluated numerically. Equation (11) is convergent for   α > 1 ,  β > 0   , and   θ > 0   .



Table 1 explores some functions like the minimum, mean, variance, maximum, skewness (SK), and kurtosis (Kt) for different values of   α ,  β  , and  θ . In addition, the DNGR distribution is appropriate for modeling both over- and under-dispersed data since, in this model, the variance can be smaller than the mean, which is the case with some standard classical discrete distributions, in addition to the positive and negative skewness values, which show that this distribution can be skewed to the right or left. Also, a very small skew value that tends to zero indicates a symmetry possible curve for the pmf. A higher kurtosis means more of the variation is due to infrequent extreme deviations as opposed to frequent modestly sized deviations. By varying  θ ,  α , and  β , one can realize the distribution changes. For instance, with  θ  = 0.8 and  α  = 0.5,  β  changing from 0.84 to 2.73 drastically increases the kurtosis, indicating a heavier tail.




3.2. Stress–Strength Analysis


The stress–strength (reliability) analysis is an important tool in mechanical design. The idea relies on the probability of failure that is obtained from the probability of   r    exceeding   r *  . Assume that both   r    and   r *   are in the positive domain. The expected reliability (  R *  ) can be calculated by


        R *  = P   K r  ≤  K  r *    =  ∑  k = 0  ∞    f  K r    k   R  K  r *     k   ,  



(12)




in which    K r  ∼ D N G R   α 1  ,  β 1  ,  θ 1     and    K  r *   ∼ D N G R   α 2  ,  β 2  ,  θ 2    , and then   R *   can be expressed as follows


   R *  =  ∑  k = 0  ∞       α 1   1 −  Λ 1   k ;  θ 1  ,  β 1       α 1  −  Λ 1   k ;  θ 1  ,  β 1     −    α 1   1 −  Λ 1   k + 1 ;  θ 1  ,  β 1       α 1  −  Λ 1   k + 1 ;  θ 1  ,  β 1          α 2   1 −  Λ 2   k ;  θ 2  ,  β 2       α 2  −  Λ 2   k ;  θ 2  ,  β 2       ,  








where    Λ 1   k ;  θ 1  ,  β 1   =    1 −  e  −  θ 1   k 2       β 1     and    Λ 2   k ;  θ 2  ,  β 2   =    1 −  e  −  θ 2   k 2       β 2    .



We cannot obtain a closed form for the above equation; consequently, simulation analysis is utilized to obtain a numerical solution. In Section 6, numerical analysis is performed to obtain the value of the stress–strength function under two real data applications.




3.3. The Mean Residual and the Mean Past Lifetimes


In reliability and survival analysis, many lifetime measures have been discussed in the literature. They were defined to study the aging behavior of the experimental units. One of these measures is the mean residual lifetime (MRL), which is a helpful tool in determining burn-in and maintenance policies. For discrete distributions, the MRL is defined as follows:


  ζ  i  = E  k − i     k − i k ≥ i      k ≥ i  =  1  S  i     ∑  j = i + 1  l   S  j   ;   i ∈ N ,  



(13)




where   0 < l < ∞ .   



If the random variable k follows the DNGR distribution with parameters   α , β  , and  θ , which is denoted by   k ∼ D N G R  α , β , θ   , then the MRL is expressed as


  ζ  i  =   α − Λ  i ; θ , β    α  1 − Λ  i ; θ , β      ∑  j = i + 1  l    α  1 − Λ  j ; θ , β     α − Λ  j ; θ , β    .  



(14)







The mean past lifetime (MPL) is another important measure in reliability analysis. The MPL measures the time elapsed after the failure of   K    units given that the system has failed sometime earlier to i. In the discrete case, the MPL is defined as follows


    ζ  *   i  = E  i − k | k < i  =  1  F  i − 1     ∑  m = 1  i   F  m − 1   ; i ∈ N −  0  ,  



(15)




where     ζ  *   0  = 0  ; see [33].



Then,


    ζ  *   i  =    1 −   α − Λ  i ; θ , β    α  1 − Λ  i ; θ , β        − 1    ∑  m = 1  i   1 −   α  1 − Λ  m − 1 ; θ , β     α − Λ  m − 1 ; θ , β     .  



(16)








3.4. Order Statistics


Let    K 1  ,  K 2  , … ,  K n    be a random sample with the DNGR distribution and    K  1 : n   ,  K  2 : n   , … ,  K  n : n     denote the corresponding order statistics. Then, the CDF of   i  t h    order statistics at the value k can be written as follows


   F  i : n    k ; α , β , θ  =  ∑  i = 1  n      n     m         F i   k ; α , β , θ    m     1 −  F i   k ; α , β , θ     n − m   .  



(17)







By using the negative binomial theorem, then


   F  i : n    k ; α , β , θ  =  ∑  i = 1  n    ∑  j = 1   n − m       n     m             n − m      j      − 1   j      F i   k ; α , β , θ     m + j   .  



(18)







Therefore,


   F  i : n    k ; α , β , θ  =  ∑  i = 1  n    ∑  j = 1   n − m       n     m             n − m      j      − 1   j     1 −   α  1 − Λ  k ; θ , β     α − Λ  k ; θ , β       m + j    .  



(19)







Consequently, the pmf of the   i  t h    order statistic under the DNGR can be derived and expressed as follows


    f  i : n    k ; α , β , θ  =  ∑  i = 1  n    ∑  j = 1   n − m       n     m             n − m      j      − 1   j        α  1 − Λ  k ; θ , β     α − Λ  k ; θ , β    −   α  1 − Λ  k + 1 ; θ , β     α − Λ  k + 1 ; θ , β       m + j   .  











So, the    υ   t h    moments of   k  i : n    can be written as follows


  E  (  K  i : n  ν  )  =  ∑  k = 0  ∞    ∑  i = 1  n    ∑  j = 1   n − m       n     m             n − m      j      − 1   j   k ν       α  1 − Λ  k ; θ , β     α − Λ  k ; θ , β    −   α  1 − Λ  k + 1 ; θ , β     α − Λ  k + 1 ; θ , β       m + j    .  













4. Estimation


Two estimation methods are considered in this work: frequentist maximum likelihood estimation (MLE) and the Bayesian estimation method. Simulation analysis and numerical techniques are performed in Section 5 to assess the performance of these estimation methods.



4.1. Maximum Likelihood Estimation


In this section, we use the maximum likelihood estimation MLE method to estimate the unknown parameters of the DNGR distributions. To evaluate the required estimators, numerical techniques are used, such as the well-known Newton–Raphson technique.



Let    x 1  , … ,  x n    be a random sample following the DNGR, and then, from pmf in Equation (5), the log-likelihood function is written as


     ℓ  α , β ,  θ  =  ∑  k = 1  n   log  α  α − 1     +  log  Λ   x  k + 1   ; θ , β  − Λ   x k  ; θ , β           −  log  α − Λ   x k  ; θ , β     −  log  α − Λ   x  k + 1   ; θ , β         



(20)







The MLEs for   α ,  β  , and  θ  are obtained by finding the partial derivatives of   ℓ  α , β , θ    for   α , β  , and  θ , then equating the three equations to zero and solving numerically.


    ∂ ℓ  α , β , θ    ∂ α   =  ∑  k = 1  n    2 α − 1   α  α − 1    −  1  α − Λ   x k  ; θ , β    −  1  α − Λ   x  k + 1   ; θ , β    = 0 ,  



(21)






    ∂ ℓ  α , β , θ    ∂ β   =  ∑  k = 1  n     Λ β    x  k + 1   ; θ , β  −  Λ β    x k  ; θ , β    Λ   x  k + 1   ; θ , β  − Λ   x k  ; θ , β    +    Λ β    x k  ; θ , β    α − Λ   x k  ; θ , β    +    Λ β    x  k + 1   ; θ , β    α − Λ   x  k + 1   ; θ , β    = 0  



(22)




and


    ∂ ℓ  α , β , θ    ∂ θ   =  ∑  k = 1  n     Λ θ    x  k + 1   ; θ , β  −  Λ θ    x k  ; θ , β    Λ   x  k + 1   ; θ , β  − Λ   x k  ; θ , β    +    Λ θ    x k  ; θ , β    α − Λ   x k  ; θ , β    +    Λ θ    x  k + 1   ; θ , β    α − Λ   x  k + 1   ; θ , β    = 0 .  



(23)







Such that    Λ β    x k  ; θ , β  =   ∂ Λ   x k  ; θ , β    ∂ β   = Λ   x k  ; θ , β  log  ( 1 −  e  − θ    x k   2    )    and    Λ θ    x k  ; θ , β  =   ∂ Λ   x k  ; θ , β    ∂ θ   =  β    x k   2   e  − θ    x k   2    Λ   x k  ; θ , β − 1   . To solve the system of nonlinear Equations (21)–(23), only numerical methods are helpful. Many numerical techniques were used in the literature; here, we use the Newton–Raphson method, and all results are illustrated in Section 5.




4.2. Bayesian Inference


The Bayesian estimation method is used in this section to estimate the unknown parameters of the DNGR. The basic assumption of the Bayesian method is that the model parameters are considered random variables that follow a distribution known as the prior distribution. Since prior information is usually only available, we must specify a suitable prior option. We choose the gamma conjugate prior distribution for the parameters   α ,  β  , and  θ . It is defined by assuming gamma distributions for   α ,   β  , and  θ .



Therefore, the prior distributions for   α , β  , and  θ  can be written as


   π 1   ( α )  =     b 1    a 1    Γ (  a 1  )    α   a 1  − 1    e  −  b 1  α   ,    










   π 2   ( β )  =     b 2    a 2    Γ (  a 2  )     β    a 2  − 1    e  −  b 2  β    








and


   π 3   ( θ )  =     b 3    a 3    Γ (  a 3  )     θ    a 3  − 1    e  −  b 3  θ    








where    a 1  ,  a 2  ,  a 3  ,  b 1  ,  b 2   , and   b 3   are nonnegative hyper parameters of the assumed distributions.



Hence, the joint prior for   α , β  , and  θ  is


  π  ( α , β , θ )  ∝   α    a 1  − 1       β    a 2  − 1     θ    a 3  − 1   e   −   ( b  1  α +  b 2  β +  b 3   θ )    .  



(24)







The joint posterior of   α , β  , and  θ  given the data is defined as


   π *   α ,  β ,  θ ∣ x  =  1 k  L  (  x ̲  ∣  α ,  β ,  θ  )  π  ( α ,  β ,  θ )  ,  



(25)




where   L (  x ̲  ∣  α ,  β ,  θ  )   is the likelihood function of the DNGRD and   K = ∫ ∫ ∫ L  (  x ̲  ∣  α ,  β ,  θ  )  π  ( α ,  β ,  θ )  d α d β d θ  .



The DNGRD parameters are estimated using a symmetric squared error (SE) loss function. A simulation study is used to investigate the performance of the estimators using the aforementioned loss function. As criteria for the superiority of the estimation methods, the bias, the mean square error (MSE), the average length (AL) of the confidence intervals, and the coverage probability (CP) are computed.



Under the SE loss function, Bayes estimation for the parameters  α ,  β , and  θ  is defined as the mean or expected value regarding the joint posterior, provided as


    α ^   S E   =  1 k     ∫   ∫   ∫     α L  (  x ̲  ∣  α ,  β ,  θ  )  π  ( α , β , θ )  d α d θ   



(26)






    β ^   S E   =  1 k     ∫   ∫   ∫     β L  (  x ̲  ∣  α ,  β ,  θ  )  π  ( α , β , θ )  d α d θ   



(27)






    θ ^   S E   =  1 k     ∫   ∫   ∫     θ L  (  x ̲  ∣  α ,  β ,  θ  )  π  ( α , β , θ )  d α d θ   



(28)







To evaluate the expected values and triple integration in Equations (26)–(28), numerical methods are required. We choose to use the Markov chain Monte Carlo (MCMC) technique via the Gibbs sampling method and by developing appropriate R code. The joint posterior density is


   π *   ( α , β ,  θ ∣  x ̲  )  =  1 K   ∏  i = 1  n     [ 1 − Λ  i ; θ , β  ]   α − Λ  i ; θ , β    −   1 − Λ  i + 1 ; θ , β    α − Λ  i + 1 ; θ , β       α   a 1       β    a 2  − 1     θ    a 3  − 1   e   −   ( b  1  α +  b 2  β +  b 3   θ )     



(29)







Bayes estimation for parameters  α ,   β ,    and  θ  under SE loss function is performed respectively using Equations (26)–(28) and the posterior density Equation (29).



The estimators are numerically evaluated simulations using R codes under the SE loss function, and their results are summarized and presented in Table 2 and Table 3.





5. Simulation Analysis


In this section, Monte Carlo simulations are performed to assess the effectiveness of the suggested estimators for the parameters   α , θ  , and  β  that were established in Section 4.1. We will sum up by providing the simulation scenario. The findings of the simulation are then offered for debate.



5.1. Simulation Scenario


In this subsection, several Monte Carlo simulation studies are carried out to assess the effectiveness of the acquired maximum likelihood estimates and Bayesian estimation of   α , θ  , and  β . Now, we suggest the following steps to gather a sample from the DNGR model:




	
Set   α , θ  , and  β  to their actual values as shown:



In Table 2:   α = 1.5 , θ = 0.8 , β = 0.5  ,   α = 1.5 , θ = 0.8 , β = 2  ,   α = 1.5 , θ = 1.3 , β = 0.5  ,   α = 1.5 , θ = 1.3 , β = 2  .



In Table 3:   α = 3 , θ = 1.3 , β = 0.5  ,   α = 3 , θ = 1.3 , β = 0.9  ,   α = 3 , θ = 2 , β = 0.5  ,   α = 3 , θ = 2 , β = 1.1  .



	
Specific values for n (total test units) should be determined as 30, 70, 100, 200.



	
Generate a uniform random variable within the range of 0 to 1. Utilize the quantile function described in Equation (7) to produce a random sample from the DNGR   ( α , θ , β )   distribution. Afterwards, round the quantity of samples to the nearest whole number.



	
Compute the MLEs and   100 ( 1 − γ )  % via ‘maxLik’ package in R program with version number (4.3.0), with Fisher information matrix (Hessian matrix).



	
Use ‘coda’ package in R program with version number (4.3.0), to obtain the Bayes’ inferences by running the MCMC sampler 12,000 times and 2000 is burn-in.



	
Repeat the above steps 5000 times.



	
The relative bias (RB), mean squared error (MSE), average lower, average upper, and coverage probability (CP) of the parameter are specifically determined for each group (n, or actual value of the parameter). For more details about comparing interval estimates, we discuss using the CP requirement in our evaluations. R 4.2.2 programming language is used to carry out all numerical analyses. In Table 2 and Table 3, respectively, all numerical findings for   α , β  , and  θ  are obtained and presented.









5.2. Simulation Conclusion


The performance of the suggested point and interval estimate algorithms is the main topic of this subsection. We can infer the following facts from Table 2 and Table 3:




	
The acquired estimates of the unknown parameters   α , θ  , and  β  generally perform well in terms of lowest MSE, RB, and difference between upper and lower values with CP.



	
The MSE, RB, and CI of   α , θ  , and  β  tend to decline as n rises. This result supports the associated estimates’ consistency property of DNGR distribution when the necessary sample size is raised.



	
As the true value of  β  increases, for each setting, the MSE, RB, and CL measures of unknown parameters  α  and  β  decrease, while they increase regarding unknown parameter  θ .



	
The MSE, RB, and CL measures of all unknown parameters   α , θ  , and  β  increase for each set as the true value of  θ  grows.



	
For CI of Bayesian, the credible interval decreases when the sample size increases.



	
Almost always, and regardless of sample size, Bayesian estimation based on the SE loss function yields the minimal RB and MSE values.










6. Real Data Examples


This section presents the analysis of two applications using different real datasets. The main goals of this section are



	
Examine the usefulness and applicability of the proposed model to real phenomena;



	
Show the applicability of the inferential results to a real practical situation;



	
Evaluate whether the proposed model is a better choice than the other seven models.






Data I: The first dataset includes the number of strikes that occurred in the UK coal mining industry over four consecutive week periods between 1948 and 1959. It was derived from Kendall [34]. An empirical model was used to analyze this example by Ridout and Besbeas [35] and is presented in Table 4.



Data II: The number of fires that occurred in Greece between 1 July and 31 August, 1998. We only take into account fires in forest districts. These data have a sample size of 124. The minimum value is 0, the first quartile is 2, the median value is 4, the mean value is 5.065, the third quartile’s maximum value is 8, and the variance value is 18.256. The data are as follows: 2, 4, 4, 3, 3, 1, 2, 4, 3, 1, 1, 0, 5, 5, 0, 3, 1, 1, 0, 1, 0, 2, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 2, 2, 1, 2, 1, 2, 0, 2, 2, 1, 0, 3, 2, 1, 2, 2, 7, 3, 5, 2, 5, 4, 5, 6, 5, 4, 3, 8, 4, 3, 8, 4, 4, 3, 10, 5, 4, 5, 12, 3, 8, 12, 10, 11, 6, 1, 8, 9, 12, 9, 4, 8, 12, 11, 8, 6, 4, 7, 9, 15, 12, 15, 15, 12, 9, 16, 7, 11, 9, 11, 6, 5, 20, 9, 8, 8, 5, 7, 10, 6, 6, 5, 5, 15, 6, 8, 5, 6. These data were discussed by [36].



Based on the first and second datasets, the DNGRD probability model is contrasted and compared with the other seven competing models to show the reliability and superiority of the proposed model, including Poisson, binomial, geometric, discrete Burr (DB) by [37], discrete Marshall–Olkin Lomax (DMOL) by [38], new discrete Lindley (NDL) by [39], and discrete odd perks exponential (DOPE) by [40] distributions. To specify the best model, several criteria are used, namely: Akaike   ( A I C = 2 p − 2  l ^  )  , where p is the length of the model parameter and   l ^   is log-likelihood value, consistent Akaike   ( C A I C = − 2  l ^  +   2 n p   n − p − 1   )  , Bayesian   ( B I C = − 2  l ^  + p ln  ( n )  )  , and Hannan–Quinn   ( H Q I C = − 2  l ^  + p ln  ( ln  ( n )  )    information criteria. Along with these, the    X 2  − s q u a r e   statistic and its p-value are taken into account. If a probability model distribution has the highest p-value and the lowest values for all other metrics, it is obvious that it will provide the best fit for a particular collection of data. The maximum likelihood estimates (with their standard errors (St.Es)), as well as the fitted model selection criteria, are shown in Table 5 and Table 6 using the R programming language and the ’bbmle’ package in R program with version number (4.3.0), that was recommended.



To compare the performance and efficiency of the DNGR distribution with other distributions listed in Table 5, using measures of goodness of fit and p-values, we can proceed as follows:



1-DNGR versus DOPE:



DNGR shows a better fit with a lower   A I C  ,   C A I C  ,   B I C  , and   H Q I C  . The chi-squared value is lower for DNGR, indicating a better fit. DNGR has a higher p-value, suggesting a better fit to the data than DOPE.



2-DNGR versus Binomial/Poisson:



DNGR has a higher p-value than both binomial and Poisson distributions, indicating a more suitable model for the data. The information criteria (AIC, CAIC, HQIC) for DNGR are lower compared to binomial and Poisson, suggesting a better fit than binomial and Poisson.



3-DNGR versus DMOL:



DNGR and DMOL have comparable p-values, but DNGR shows better performance in terms of information criteria.



4-DNGR versus DB:



DNGR has a higher p-value than DB, indicating that DNGR shows slightly better performance in terms of information criteria.



5-DNGR versus Geometric/NDL:



DNGR outperforms both geometric and NDL distributions in terms of p-value, indicating a significantly better fit. DNGR has lower information criteria values, further suggesting its superiority in model fitting. Overall, DNGR appears to offer a more efficient and suitable fit for Data I compared to the other listed distributions.



Figure 3, Figure 4 and Figure 5 confirm these results for Data I (the black point refer to data; the pink point refer to DNGR distribution). Additionally, it is evident from Data II in Table 6 that the DNGR distribution is the best distribution among all the examined models in terms of the P-value, whereas Figure 6, Figure 7 and Figure 8 confirm these results for Data II. Figure 3 confirms the results of MLE fitting and demonstrates the existence, uniqueness, and maximum point of likelihood value of the likelihood estimates for Data I. Figure 4 regarding associated empirical CDF and estimated CDF plot illustrates the connection between observed cumulative probability and observation through a visual plot and also Q–Q plot for Data I. Figure 5 highlights estimated frequency by using PMF for each comparative model for Data I. Table 7 indicates survival and hazard rate functions for DNGR distribution with different values of Data I, noting that the survival value decreased when the values of Data I increased, while the hazard rate value increased when the values x of Data I increased.



Figure 6 confirms the results of MLE fitting and demonstrates the existence, uniqueness, and maximum point of likelihood value of the likelihood estimates for Data II. Figure 7 regarding associated empirical CDF and estimated CDF plot illustrates the connection between observed cumulative probability and observation through a visual plot and Q–Q plot for Data II. Figure 8 highlights estimated frequency by using PMF for each comparative model for Data II. Table 8 indicates survival and hazard rate functions for DNGR distribution with different values of Data II, noting that the survival values decreased when the values of Data II increased, while the hazard rate value increased when the values x of Data II increased.




7. Conclusions


In this study, the authors successfully developed a novel discrete analog from the continuous generalized Rayleigh distribution denoted by DNGR through the application of the survival discretization method. Several key attributes of the DNGR model were studied, such as its unimodal probability mass function, which exhibits varying degrees of symmetry and skewness based on parameter selection. Comprehensive statistical measures for DNGR were derived, including moments, stress–strength function, moment-generating function, and mean residual and mean past lifetimes. The potential submodels and special cases derived from the DNGR demonstrate the versatility and adaptability of the DNGR distribution, which can be suitable for modeling different types of data and could provide unique insights depending on the context of the analysis. Furthermore, the practical applicability of the work was enhanced by conducting detailed simulation analyses and presenting the results in tabular form. Point and interval estimation using both the maximum likelihood and the Bayesian methods were obtained, supplementing these with simulation analyses executed using R code. This was complemented by a numerical analysis aimed at evaluating the estimation methods for DNGR’s unknown parameters and assessing the efficiency of these methods. A significant aspect of their contribution is the application of the DNGR model to real-world data. Two real data examples were selected, one from the industrial sector concerning UK coal mining strikes and another focusing on environmental issues related to fires in Greece. Their analysis revealed that the DNGR model outperformed seven competitive discrete distributions in various goodness-of-fit measures, demonstrating its superior ability to model the given datasets effectively. This finding was further illustrated through detailed tables and figures showcasing the properties and efficiency of the new model. As a pathway for future work, the authors suggest exploring alternative discretization methods to assess their performance and applicability to a broader range of real-life data scenarios.
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Figure 1. The pmf bar charts for the DNGR, (a) when   α = 2  , (b) when   β = 2  , and (c) when   θ = 1  . 
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Figure 2. The HRF of the DNGR distribution. 
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Figure 3. Likelihood profile (blue line) with the maximum likelihood estimation (red dot): Data I. 
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Figure 4. Estimated CDF and Q–Q plot of DNGR by using MLE: Data I. 






Figure 4. Estimated CDF and Q–Q plot of DNGR by using MLE: Data I.



[image: Mathematics 12 00183 g004]







[image: Mathematics 12 00183 g005] 





Figure 5. Estimated PMF of each comparative model by using MLE: Data I. 
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Figure 6. Estimated CDF and Q–Q plot of DNGR by using MLE: Data II. 
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Figure 7. Estimated PMF of each comparative model by using MLE: Data II. 
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Figure 8. Likelihood profile (blue line) with the maximum likelihood estimation (red dot): Data II. 






Figure 8. Likelihood profile (blue line) with the maximum likelihood estimation (red dot): Data II.



[image: Mathematics 12 00183 g008]







 





Table 1. Summary of descriptive statistics for the DNGR distribution.
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   θ   

	
   α   

	
   β   

	
Minimum

	
Mean

	
Variance

	
Maximum

	
SK

	
Kt






	
0.8

	
1.05

	
0.3

	
0

	
1.5140

	
0.4643

	
3

	
−0.0700

	
1.2956




	
1.05

	
1.2

	
0

	
1.9760

	
0.3338

	
4

	
−0.0563

	
1.3066




	
1.05

	
2.5

	
0

	
2.1890

	
0.3176

	
4

	
−0.0479

	
1.3039




	
1.05

	
3

	
1

	
2.2420

	
0.3137

	
4

	
−0.0461

	
1.3030




	
2.2

	
0.3

	
0

	
0.6480

	
0.4305

	
3

	
0.1245

	
1.1141




	
2.2

	
1.2

	
0

	
1.2470

	
0.3664

	
3

	
0.0229

	
1.2125




	
2.2

	
2.5

	
0

	
1.5330

	
0.3252

	
3

	
0.0203

	
1.2296




	
2.2

	
3

	
0

	
1.6020

	
0.3179

	
3

	
0.0212

	
1.2320




	
3

	
0.3

	
0

	
0.5810

	
0.4098

	
3

	
0.1629

	
1.1205




	
3

	
1.2

	
0

	
1.1880

	
0.3570

	
3

	
0.0373

	
1.2097




	
3

	
2.5

	
0

	
1.4770

	
0.3178

	
3

	
0.0320

	
1.2281




	
3

	
3

	
0

	
1.5450

	
0.3163

	
3

	
0.0325

	
1.2307




	
1.5

	
1.05

	
0.3

	
0

	
1.0800

	
0.2799

	
3

	
−0.0699

	
1.2957




	
1.05

	
1.2

	
0

	
1.4600

	
0.2827

	
3

	
−0.0564

	
1.3066




	
1.05

	
2.5

	
0

	
1.6570

	
0.2396

	
3

	
−0.0481

	
1.3039




	
1.05

	
3

	
0

	
1.7020

	
0.2214

	
3

	
−0.0461

	
1.3031




	
2.2

	
0.3

	
0

	
0.4520

	
0.2860

	
2

	
0.1244

	
1.1142




	
2.2

	
1.2

	
0

	
0.9210

	
0.2190

	
2

	
0.0229

	
1.2125




	
2.2

	
2.5

	
0

	
1.1120

	
0.1616

	
2

	
0.0203

	
1.2295




	
2.2

	
3

	
0

	
1.1510

	
0.1624

	
2

	
0.0213

	
1.2321




	
3

	
0.3

	
0

	
0.4010

	
0.2725

	
2

	
0.1629

	
1.1205




	
3

	
1.2

	
0

	
0.8800

	
0.2258

	
2

	
0.0374

	
1.2096




	
3

	
2.5

	
0

	
1.0830

	
0.1503

	
2

	
0.0321

	
1.2280




	
3

	
3

	
0

	
1.1210

	
0.1485

	
2

	
0.0325

	
1.2306




	
3

	
1.05

	
0.3

	
0

	
0.8230

	
0.1598

	
2

	
−0.0700

	
1.2956




	
1.05

	
1.2

	
0

	
0.9890

	
0.0689

	
2

	
−0.0563

	
1.3067




	
1.05

	
2.5

	
0

	
1.0460

	
0.0680

	
2

	
−0.0480

	
1.3040




	
1.05

	
3

	
0

	
1.0610

	
0.0734

	
2

	
−0.0459

	
1.3031




	
2.2

	
0.3

	
0

	
0.2800

	
0.2038

	
2

	
0.1245

	
1.1143




	
2.2

	
1.2

	
0

	
0.6820

	
0.2231

	
2

	
0.0229

	
1.2123




	
2.2

	
2.5

	
0

	
0.8840

	
0.1127

	
2

	
0.0203

	
1.2296




	
2.2

	
3

	
0

	
0.9200

	
0.0857

	
2

	
0.0210

	
1.2320




	
3

	
0.3

	
0

	
0.2420

	
0.1856

	
2

	
0.1628

	
1.1204




	
3

	
1.2

	
0

	
0.6360

	
0.2357

	
2

	
0.0374

	
1.2097




	
3

	
2.5

	
0

	
0.8590

	
0.1292

	
2

	
0.0321

	
1.2280




	
3

	
3

	
0

	
0.9020

	
0.0985

	
2

	
0.0325

	
1.2307











 





Table 2. MLE and Bayes for parameters of DNGR distribution:   α = 1.5  .






Table 2. MLE and Bayes for parameters of DNGR distribution:   α = 1.5  .





	
    α = 1.5    

	

	
MLE

	
Bayesian




	
  θ  

	
  β  

	
n

	

	
RB

	
MSE

	
Lower

	
Upper

	
CP

	
RB

	
MSE

	
Lower

	
Upper






	
0.8

	
0.5

	
30

	
  α  

	
0.3587

	
1.5243

	
0.2760

	
4.8362

	
96.4%

	
−0.0637

	
0.1796

	
1.1698

	
1.6971




	
  θ  

	
0.1163

	
0.3028

	
0.3278

	
1.4583

	
94.8%

	
−0.0900

	
0.1096

	
0.5657

	
0.8743




	
  β  

	
2.8414

	
1.6217

	
0.3864

	
3.4549

	
97.4%

	
0.2762

	
0.1846

	
0.4248

	
0.8864




	
70

	
  α  

	
0.1490

	
1.4933

	
0.3716

	
4.8186

	
96.2%

	
−0.1036

	
0.2005

	
1.1424

	
1.5800




	
  θ  

	
0.0150

	
0.1898

	
0.4403

	
1.1837

	
94.0%

	
−0.0572

	
0.0651

	
0.6586

	
0.8455




	
  β  

	
1.4425

	
1.5862

	
0.8267

	
3.6157

	
96.0%

	
0.3645

	
0.2151

	
0.4609

	
0.9003




	
100

	
  α  

	
0.2670

	
1.2867

	
0.4987

	
4.2996

	
96.6%

	
−0.0749

	
0.1473

	
1.2081

	
1.5686




	
  θ  

	
0.0141

	
0.1323

	
0.5527

	
1.0698

	
94.8%

	
−0.0573

	
0.0556

	
0.6889

	
0.8096




	
  β  

	
0.9287

	
1.0745

	
0.9939

	
3.2935

	
96.2%

	
0.2963

	
0.1636

	
0.5165

	
0.7786




	
200

	
  α  

	
0.2572

	
1.0381

	
0.5976

	
4.0743

	
93.4%

	
−0.0433

	
0.0803

	
1.3303

	
1.5184




	
  θ  

	
−0.0401

	
0.1044

	
0.5730

	
0.9629

	
95.0%

	
−0.0446

	
0.0400

	
0.7257

	
0.7991




	
  β  

	
0.8044

	
0.9101

	
1.4005

	
3.6436

	
93.2%

	
0.1773

	
0.0955

	
0.5222

	
0.6549




	
0.8

	
2

	
30

	
  α  

	
−0.2630

	
0.4948

	
0.5194

	
1.6917

	
96.4%

	
−0.0723

	
0.1817

	
1.1206

	
1.6439




	
  θ  

	
0.1964

	
0.2533

	
0.5674

	
1.3469

	
95.0%

	
−0.1627

	
0.1504

	
0.5360

	
0.8156




	
  β  

	
0.1821

	
0.6169

	
1.3875

	
3.3410

	
95.4%

	
0.0193

	
0.1575

	
1.7350

	
2.3384




	
70

	
  α  

	
−0.2876

	
0.4697

	
0.7042

	
1.4329

	
98.2%

	
−0.0650

	
0.1782

	
1.1407

	
1.6102




	
  θ  

	
0.1781

	
0.2057

	
0.6514

	
1.2336

	
95.4%

	
−0.1452

	
0.1284

	
0.5898

	
0.8055




	
  β  

	
0.1783

	
0.6075

	
1.3907

	
3.2658

	
97.6%

	
0.0268

	
0.1401

	
1.8049

	
2.2871




	
100

	
  α  

	
−0.2344

	
0.4531

	
0.8432

	
1.4810

	
99.8%

	
−0.0867

	
0.1618

	
1.1862

	
1.5461




	
  θ  

	
0.1899

	
0.1968

	
0.7066

	
1.1973

	
95.4%

	
−0.1317

	
0.1115

	
0.6174

	
0.7637




	
  β  

	
0.1585

	
0.5414

	
1.4561

	
3.1780

	
96.6%

	
0.0243

	
0.0945

	
1.8941

	
2.2078




	
200

	
  α  

	
−0.2144

	
0.3822

	
0.8523

	
1.4703

	
99.6%

	
−0.0418

	
0.0796

	
1.3468

	
1.5366




	
  θ  

	
0.1631

	
0.1540

	
0.7699

	
1.0910

	
94.8%

	
−0.1128

	
0.0931

	
0.6638

	
0.7529




	
  β  

	
0.1403

	
0.5402

	
1.3709

	
3.0190

	
98.4%

	
0.0133

	
0.0482

	
1.9454

	
2.0992




	
1.3

	
0.5

	
30

	
  α  

	
−0.0161

	
1.8375

	
0.1289

	
5.0806

	
95.2%

	
−0.0893

	
0.2022

	
1.1191

	
1.6715




	
  θ  

	
0.2417

	
0.5574

	
0.7108

	
2.5176

	
97.0%

	
−0.0770

	
0.1671

	
0.9649

	
1.5162




	
  β  

	
2.9986

	
1.9656

	
0.1495

	
4.4932

	
95.4%

	
0.2996

	
0.1973

	
0.4097

	
0.8957




	
70

	
  α  

	
−0.0127

	
1.8093

	
0.2549

	
4.9173

	
96.0%

	
−0.1216

	
0.2207

	
1.1361

	
1.5891




	
  θ  

	
0.2073

	
0.4650

	
0.8261

	
2.3130

	
96.8%

	
−0.0716

	
0.1243

	
1.0573

	
1.3653




	
  β  

	
1.0203

	
1.8424

	
0.2329

	
4.2970

	
96.0%

	
0.4009

	
0.2295

	
0.4769

	
0.9082




	
100

	
  α  

	
−0.0157

	
1.2760

	
0.2963

	
3.5147

	
95.8%

	
−0.0973

	
0.1743

	
1.1848

	
1.5360




	
  θ  

	
0.1764

	
0.4309

	
0.8514

	
2.2450

	
97.2%

	
−0.0625

	
0.1035

	
1.0952

	
1.3359




	
  β  

	
0.9256

	
0.9678

	
0.5612

	
3.8173

	
96.2%

	
0.3340

	
0.1821

	
0.5292

	
0.8175




	
200

	
  α  

	
−0.0142

	
0.9294

	
0.3171

	
3.0604

	
96.4%

	
−0.0507

	
0.0912

	
1.3314

	
1.5228




	
  θ  

	
0.0813

	
0.3153

	
0.8228

	
1.9886

	
98.0%

	
−0.0378

	
0.0594

	
1.1915

	
1.3146




	
  β  

	
0.5671

	
0.6315

	
0.6249

	
3.0816

	
99.2%

	
0.1931

	
0.1029

	
0.5286

	
0.6659




	
2

	
30

	
  α  

	
−0.3113

	
0.6551

	
0.1315

	
1.9347

	
99.4%

	
−0.1012

	
0.2185

	
1.0986

	
1.6487




	
  θ  

	
0.1534

	
0.3004

	
1.0585

	
1.9403

	
93.6%

	
−0.1306

	
0.2070

	
0.9252

	
1.3786




	
  β  

	
0.1334

	
0.7466

	
0.8986

	
3.6349

	
98.4%

	
0.0235

	
0.1570

	
1.7458

	
2.3302




	
70

	
  α  

	
−0.3117

	
0.6555

	
0.1310

	
1.9338

	
99.4%

	
−0.1027

	
0.2185

	
1.0986

	
1.6487




	
  θ  

	
0.1526

	
0.2934

	
1.0744

	
1.9225

	
93.8%

	
−0.1263

	
0.2067

	
0.9265

	
1.3857




	
  β  

	
0.1323

	
0.7438

	
0.9007

	
3.6028

	
98.4%

	
0.0216

	
0.1529

	
1.7548

	
2.3035




	
100

	
  α  

	
−0.3207

	
0.4811

	
1.0057

	
1.0321

	
93.8%

	
−0.0914

	
0.2108

	
1.1902

	
1.4334




	
  θ  

	
0.1929

	
0.2756

	
1.3192

	
1.7823

	
100.0%

	
−0.1151

	
0.1656

	
1.0148

	
1.2705




	
  β  

	
0.0887

	
0.1776

	
1.9162

	
2.1927

	
100.0%

	
0.0154

	
0.0757

	
1.9316

	
2.1534




	
200

	
  α  

	
−0.3188

	
0.4782

	
1.0096

	
1.0341

	
93.3%

	
−0.0538

	
0.0946

	
1.3235

	
1.5159




	
  θ  

	
0.1594

	
0.2403

	
1.3682

	
1.7462

	
94.7%

	
−0.0763

	
0.1043

	
1.1427

	
1.2673




	
  β  

	
0.0809

	
0.1683

	
1.9258

	
2.1821

	
95.9%

	
0.0140

	
0.0496

	
1.9582

	
2.1127











 





Table 3. MLE and Bayes for parameters of DNGR distribution:   α = 3  .






Table 3. MLE and Bayes for parameters of DNGR distribution:   α = 3  .





	
    α = 3    

	
MLE

	
Bayesian




	
  θ  

	
  β  

	

	

	
RB

	
MSE

	
Lower

	
Upper

	
CP

	
RB

	
MSE

	
Lower

	
Upper






	
1.3

	
0.5

	
30

	
  α  

	
0.1917

	
2.0185

	
0.2210

	
7.3712

	
96.2%

	
−0.0038

	
0.1558

	
2.6689

	
3.2541




	
  θ  

	
0.5325

	
1.0676

	
0.3977

	
3.5868

	
93.2%

	
−0.0696

	
0.1621

	
0.9486

	
1.4541




	
  β  

	
9.3388

	
5.0389

	
1.4536

	
8.8852

	
96.4%

	
0.4023

	
0.2277

	
0.5010

	
0.8988




	
70

	
  α  

	
0.3736

	
1.8015

	
1.3537

	
6.8878

	
92.6%

	
−0.0071

	
0.1313

	
2.7384

	
3.2252




	
  θ  

	
0.3598

	
0.6399

	
0.9110

	
2.6245

	
95.2%

	
−0.0784

	
0.1300

	
1.0446

	
1.3579




	
  β  

	
9.7520

	
5.4079

	
0.7873

	
9.9648

	
96.4%

	
0.5596

	
0.2929

	
0.6081

	
0.9368




	
100

	
  α  

	
0.3083

	
2.0838

	
0.2612

	
7.5884

	
95.4%

	
−0.0040

	
0.0897

	
2.8073

	
3.1475




	
  θ  

	
0.3510

	
0.5847

	
1.0390

	
2.4735

	
96.2%

	
−0.0627

	
0.1003

	
1.1033

	
1.3265




	
  β  

	
9.7169

	
5.4798

	
0.3857

	
10.3312

	
93.6%

	
0.4114

	
0.2145

	
0.5799

	
0.8143




	
200

	
  α  

	
0.8118

	
3.5689

	
0.3173

	
10.5536

	
95.8%

	
−0.0021

	
0.0452

	
2.9092

	
3.0800




	
  θ  

	
0.3223

	
0.4785

	
1.2655

	
2.1725

	
95.8%

	
−0.0367

	
0.0585

	
1.1795

	
1.3146




	
  β  

	
9.6584

	
5.0771

	
2.2548

	
8.4036

	
96.0%

	
0.2381

	
0.1241

	
0.5548

	
0.6959




	
0.9

	
30

	
  α  

	
−0.1503

	
1.6360

	
0.5364

	
5.6349

	
95.6%

	
−0.0038

	
0.1618

	
2.6992

	
3.3379




	
  θ  

	
0.3752

	
0.8357

	
0.4565

	
3.1191

	
97.8%

	
−0.1104

	
0.1934

	
0.9110

	
1.3977




	
  β  

	
6.1647

	
6.2502

	
0.8019

	
5.0945

	
97.0%

	
0.1488

	
0.1888

	
0.7805

	
1.3184




	
70

	
  α  

	
−0.1584

	
1.0898

	
0.6006

	
4.4492

	
97.6%

	
−0.0134

	
0.1395

	
2.7034

	
3.2184




	
  θ  

	
0.1830

	
0.4443

	
0.8017

	
2.2740

	
93.0%

	
−0.1119

	
0.1694

	
0.9717

	
1.2952




	
  β  

	
5.3507

	
5.0649

	
2.6369

	
4.7944

	
97.8%

	
0.1222

	
0.1722

	
0.8992

	
1.2938




	
100

	
  α  

	
0.1317

	
2.0370

	
0.6525

	
4.3156

	
94.2%

	
−0.0031

	
0.0883

	
2.8246

	
3.1589




	
  θ  

	
0.2120

	
0.4331

	
0.9200

	
2.2311

	
92.0%

	
−0.0901

	
0.1313

	
1.0629

	
1.2857




	
  β  

	
6.4228

	
6.0394

	
3.2486

	
4.1124

	
96.4%

	
0.1633

	
0.1653

	
0.8964

	
1.1761




	
200

	
  α  

	
0.1701

	
1.6929

	
0.3436

	
3.6772

	
94.2%

	
−0.0031

	
0.0461

	
2.8961

	
3.0742




	
  θ  

	
0.1568

	
0.2695

	
1.1578

	
1.8498

	
95.0%

	
−0.0485

	
0.0704

	
1.1800

	
1.3009




	
  β  

	
6.7695

	
6.3441

	
3.5224

	
3.8463

	
97.2%

	
0.0836

	
0.0848

	
0.9010

	
1.0514




	
2

	
0.5

	
30

	
  α  

	
−0.1881

	
0.6957

	
1.6375

	
3.2338

	
95.6%

	
−0.0047

	
0.1551

	
2.6721

	
3.2679




	
  θ  

	
−0.0411

	
0.5058

	
0.9386

	
2.8969

	
90.0%

	
−0.0553

	
0.1959

	
1.5765

	
2.2175




	
  β  

	
4.5180

	
2.5199

	
0.5683

	
4.9497

	
96.8%

	
0.2992

	
0.1983

	
0.3997

	
0.9025




	
70

	
  α  

	
−0.2116

	
0.8253

	
1.3305

	
3.3996

	
100.0%

	
−0.0067

	
0.1355

	
2.6983

	
3.2384




	
  θ  

	
−0.0649

	
0.6639

	
0.5929

	
3.1475

	
97.2%

	
−0.0726

	
0.1869

	
1.6464

	
2.0764




	
  β  

	
4.1615

	
2.3945

	
0.2558

	
4.9057

	
100.0%

	
0.4675

	
0.2563

	
0.5129

	
0.9282




	
100

	
  α  

	
−0.2105

	
0.8825

	
1.1588

	
3.5784

	
100.0%

	
−0.0039

	
0.0929

	
2.8218

	
3.1785




	
  θ  

	
−0.0837

	
0.6576

	
0.5849

	
3.0803

	
100.0%

	
−0.0565

	
0.1382

	
1.7356

	
2.0397




	
  β  

	
3.8575

	
2.2378

	
0.2023

	
4.6552

	
100.0%

	
0.3167

	
0.1723

	
0.5349

	
0.7985




	
200

	
  α  

	
−0.0747

	
0.3607

	
2.2214

	
3.3303

	
92.6%

	
−0.0021

	
0.0450

	
2.9162

	
3.0799




	
  θ  

	
−0.2174

	
0.5774

	
0.8199

	
2.3105

	
95.2%

	
−0.0275

	
0.0695

	
1.8580

	
2.0248




	
  β  

	
3.0823

	
1.7603

	
0.3725

	
3.7098

	
95.4%

	
0.1803

	
0.0975

	
0.5084

	
0.6579




	
1.1

	
30

	
  α  

	
−0.4095

	
1.4678

	
0.1957

	
3.3470

	
99.6%

	
−0.0073

	
0.1620

	
2.6815

	
3.2895




	
  θ  

	
−0.0105

	
0.6870

	
0.6319

	
3.3262

	
100.0%

	
−0.0911

	
0.2397

	
1.5140

	
2.1195




	
  β  

	
2.5931

	
3.5294

	
0.1257

	
8.0306

	
99.6%

	
0.1034

	
0.1881

	
0.9228

	
1.5108




	
70

	
  α  

	
−0.3289

	
1.1819

	
0.7368

	
3.2901

	
100.0%

	
−0.0127

	
0.1424

	
2.6825

	
3.1929




	
  θ  

	
−0.1004

	
0.6782

	
0.5283

	
3.0700

	
100.0%

	
−0.0941

	
0.2211

	
1.5755

	
1.9901




	
  β  

	
2.3766

	
2.7979

	
1.7584

	
5.6701

	
97.8%

	
0.1644

	
0.2140

	
1.0552

	
1.4943




	
100

	
  α  

	
−0.2776

	
0.9788

	
1.1578

	
3.1769

	
92.8%

	
−0.0075

	
0.0892

	
2.8212

	
3.1590




	
  θ  

	
−0.1742

	
0.6667

	
0.5362

	
2.7671

	
93.0%

	
−0.0655

	
0.1549

	
1.7024

	
2.0002




	
  β  

	
2.3582

	
2.7976

	
1.6383

	
5.7497

	
98.2%

	
0.1111

	
0.1451

	
1.0470

	
1.3534




	
200

	
  α  

	
−0.2445

	
0.8234

	
1.5320

	
3.0013

	
93.8%

	
−0.0041

	
0.0453

	
2.8966

	
3.0706




	
  θ  

	
−0.2436

	
0.5653

	
0.9504

	
2.0750

	
97.4%

	
−0.0367

	
0.0844

	
1.8520

	
2.0008




	
  β  

	
2.2435

	
2.5427

	
2.3663

	
4.7694

	
96.6%

	
0.0569

	
0.0753

	
1.0850

	
1.2456











 





Table 4. Data I: The number of strikes and their frequency that occurred in the UK coal mining industry.






Table 4. Data I: The number of strikes and their frequency that occurred in the UK coal mining industry.





	data
	0
	1
	2
	3
	4 or more



	Freq
	46
	76
	24
	9
	1










 





Table 5. MLE estimates and different measures of fit for Data I.






Table 5. MLE estimates and different measures of fit for Data I.





	

	

	
Estimators

	
SE

	
AIC

	
CAIC

	
BIC

	
HQIC

	
    X 2    

	
p-Value






	
DNGR

	
  α  

	
33.0996

	
13.6357

	
382.7571

	
382.9150

	
391.9067

	
386.4733

	
3.6721

	
0.4522




	
  θ  

	
0.3343

	
0.0434




	
  β  

	
0.9276

	
0.1425




	
DOPE

	
  α  

	
39.3584

	
3.5957

	
387.5354

	
387.6933

	
396.6850

	
391.2516

	
5.2373

	
0.2638




	
  θ  

	
0.2757

	
0.0264




	
  β  

	
3.1307

	
0.5099




	
Binomial

	
  θ  

	
0.9937

	
0.1315

	
386.1302

	
386.1562

	
389.1801

	
387.3689

	
10.1078

	
0.0387




	
Poision

	
  θ  

	
0.9936

	
0.0798

	
386.1302

	
386.1562

	
389.1801

	
387.3689

	
9.8986

	
0.0422




	
DB

	
  α  

	
4.6524

	
0.6986

	
388.4190

	
388.4974

	
394.5187

	
390.8964

	
5.4076

	
0.2480




	
  β  

	
0.5940

	
0.0448




	
DMOL

	
  α  

	
21.1960

	
7.5845

	
386.4288

	
386.5867

	
395.5784

	
390.1450

	
3.9771

	
0.4091




	
  θ  

	
1.8892

	
0.3088




	
  β  

	
0.0028

	
0.0009




	
Geometric

	
  θ  

	
0.5017

	
0.0284

	
433.1343

	
433.1603

	
436.1842

	
434.3731

	
50.7984

	
0.0000




	
NDL

	
  θ  

	
0.5017

	
0.0284

	
433.1343

	
433.1603

	
436.1842

	
434.3731

	
50.7984

	
0.0000











 





Table 6. MLE estimates and different measures for Data II.
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Estimators

	
SE

	
AIC

	
CAIC

	
BIC

	
HQIC

	
    X 2    

	
p-Value






	
DNGRD

	
  α  

	
12.5091

	
2.5308

	
668.4150

	
668.6150

	
676.8759

	
671.8520

	
22.8025

	
0.2986




	
  θ  

	
0.0122

	
0.0027




	
  β  

	
0.4495

	
0.1299




	
DOPE

	
  α  

	
44.2111

	
9.3605

	
685.1374

	
685.3374

	
693.5983

	
688.5744

	
32.6330

	
0.0370




	
  θ  

	
0.0134

	
0.0017




	
  β  

	
0.7291

	
0.0844




	
Binomial

	
  θ  

	
0.9608

	
0.2622

	
821.7835

	
821.8163

	
824.6038

	
822.9292

	
12776.3387

	
0.0000




	
Poision

	
  θ  

	
5.0645

	
0.2021

	
821.7835

	
821.8163

	
824.6038

	
822.9292

	
26469.5465

	
0.0000




	
DB

	
  α  

	
2.5385

	
0.4910

	
748.2257

	
748.3249

	
753.8663

	
750.5170

	
91.3536

	
0.0000




	
  β  

	
0.7611

	
0.0425




	
DMOL

	
  α  

	
4.6349

	
1.8610

	
674.2602

	
674.4602

	
682.7210

	
677.6972

	
25.0095

	
0.2011




	
  θ  

	
13.0180

	
3.2683




	
  β  

	
0.0031

	
0.0018




	
Geometric

	
  θ  

	
0.1649

	
0.0135

	
675.3352

	
675.3679

	
678.1554

	
676.4808

	
27.5152

	
0.1214




	
NDL

	
  θ  

	
0.1649

	
0.0135

	
675.3352

	
675.3679

	
678.1554

	
676.4808

	
27.5152

	
0.1214











 





Table 7. Survival and hazard rate functions for DNGR distribution with different values of Data I.
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	x
	    S   x ; 33.0994 , 0.3343 , 0.9275     
	    h   x ; 33.0994 , 0.3343 , 0.9275     





	0
	0.6952
	0.4383



	1
	0.2518
	1.7607



	2
	0.0472
	4.3343



	3
