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Abstract: This paper investigates reachable set estimation and state-feedback controller design
for linear time-delay control systems with bounded disturbances. By constructing an appropriate
Lyapunov–Krasovskii functional, we obtain a delay-dependent condition, which determines the
admissible bounding ellipsoid for the reachable set of the system we considered. Then, a sufficient
condition in the form of liner matrix inequalities is given to solve the problem of controller design
and reachable set estimation. Then, by minimizing the volume of the ellipsoid and solving the liner
matrix inequality, we obtain the desired ellipsoid and controller gain. A comparative numerical
example is given to show the effectiveness of our result.
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1. Introduction

The reachable set estimation of dynamic systems is an important research topic in
control theory since it has a large number of applications in control systems with actuator
saturation [1–3], peak-to-peak gain minimization [4], and aircraft collision avoidance [5].
The reachable set of a dynamic system with bounded peak input is defined as the set
of system state vectors in the presence of all allowed input disturbances. Reachable set
bounding was first considered in the late 1960s in the context of state estimation, and it
later received a lot of attention in parameter estimation [6]. Boyd et al. studied the problem
of reachable set estimation of linear systems without time delay and obtained an LMI
condition for an ellipsoid that bounds the reachable set [7].

It is well known that time delays are extremely common in practice, such as in aircraft,
chemical processes, long pipeline supply, belt transmission, extremely complex online
analyzers in various industrial systems, and so on. Usually, the occurrence of time delay
may lead to instability or performance degradation of dynamic systems [5,8–12]. Therefore,
extensive research is devoted to the study of the reachable set estimation issue of dynamic
systems with delay. During the past few decades, there have been some excellent results
related to the reachable set estimation of time-delay systems [11,13–28].

In [14], based on the Lyapunov–Razumikhin functional method, Fridman and Shaked
first investigated the reachable set estimation of a linear system with time-varying delay
and obtained an LMI criteria of an ellipsoid bounding the reachable states set. Kim obtained
an improved ellipsoidal bound of a reachable set [16] by using the Lyapunov–Krasovskii
functional. Nam and Pathirana obtained a smaller reachable set bound [18] by employing
the delay decomposition technique. Zuo et al. obtained a non-ellipsoidal bound of a
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reachable set of linear time-delayed systems through the maximal Lyapunov functionals
and the Razumikhin method [26]. More recently, Zhang et al. investigated the reachable
set estimation for uncertain nonlinear systems with time delay [27]. For more references
and recent advances in reachable set estimation, one can refer to [29–32]. The key point
of the reachable set estimation is the choice of Lyapunov functional. Motivated by the
above idea, we study the reachable set estimation of linear time-delayed control systems
with disturbances.

Contributions of this paper are listed below:

• We derived a sufficient condition that determines the admissible bounding ellipsoid
for the reachable set related to the delay-dependent system; the condition is in the
form of LMI;

• We propose a state feedback controller design method to find the minimum ellipsoidal
bound so that the reachable set of the resulting closed-loop system is bounded by an
ellipsoid, and the admissible ellipsoid should be as small as possible;

• We show that our conclusion is an extension of the available results in the paper [16].

In this paper, we intend to design a state feedback controller so that the reachable
set of the resulting closed-loop system is contained in an admissible ellipsoid, and the
admissible ellipsoid should be as small as possible. The rest of this paper is organized
as follows: In Section 2, in order to obtain the main result, some useful lemmas and
preliminary knowledge are given. In Section 3, by constructing an appropriate Lyapunov–
Krasovskii functional, we obtain a condition related to delay-dependent, which determines
the admissible bounding ellipsoid for the reachable set of the system we considered. Then,
a sufficient condition in the form of liner matrix inequalities is given to solve the problem
of controller design with reachable set estimation. Finally, by minimizing the volume
of the ellipsoid and solving the liner matrix inequality, we obtain the desired ellipsoid
and controller gain. Section 4 presents a comparative numerical example to show the
effectiveness of the proposed methods.

Notation

Throughout this paper, the notations are standard. Rn is the vector of real numbers,
Rn×m is the n × m real matrix, I is the identity matrix, 0 is the zero matrix, and AT presents
the transpose of A. For a matrix P, P > 0 denotes P as a symmetric positive definite matrix;
also, xt(θ) = x(t+ θ), θ ∈ [−h, 0], and symbol (⋆) in a matrix represents the symmetric part.

2. Problem Statement and Preliminaries

Consider the following linear time-delay control system with bounded disturbances:{
ẋ(t) = Ax(t) + Dx(t − d(t)) + Bu(t) + Ew(t),
x(t) ≡ 0, t ∈ [−h, 0],

(1)

where x(t) ∈ Rn is the state vector, u(t) is the control vector, A ∈ Rn×n, D ∈ Rn×n, B ∈ Rn×n,
and E ∈ Rn×m, A, D, B, and E are constant matrices, w(t) ∈ Rm is the disturbance, satisfying

wT(t)w(t) ≤ w2
m (2)

and d(t) is a time-varying delay, satisfying

0 ≤ d(t) ≤ h,
∣∣ḋ(t)∣∣ ≤ u ≤ 1 (3)

where wm, d, and u are constants.
In this paper, based on the modified Lyapunov–Krasovskii functional, which is used for

exponential stability analysis in [33,34], we intend to design a state feedback controller K, G,
that is u(t) = Kx(t) + Gx(t − d(t)), such that the reachable set of the closed-loop system

ẋ(t) = (A + BK)x(t) + (D + BG)x(t − d(t)) + Ew(t) (4)
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is bounded by an ellipsoid ε(P, 1) :

ε(P, 1) =
{

x ∈ Rn : xT Px ≤ 1, P > 0
}

(5)

The reachable set of system (4) is denoted as follows:

Rx = {x(t)|x(t) and w(t) satis f y (2) and (3), t ≥ 0}

The following three useful lemmas are given to derive the main results.

Lemma 1 ([35]). The following relation is known as the Leibniz rule

d
dt

∫ a(t)

b(t)
f (t, s) ds = ȧ(t) f [t, a(t)]− ḃ(t) f [t, b(t)] +

∫ a(t)

b(t)

δ

δt
f (t, s) ds.

Lemma 2 ([36]). For any constant matrix Q = QT > 0 , we have

−
∫ t

t−d(t)
ẋT(s)QẋT(s)ds ≤ [xT(t), xT(t − d(t))]

[
−Q Q
Q −Q

]
[xT(t), xT(t − d(t))]T .

Lemma 3 ([7]). Let Q be a symmetric positive definite matrix. For any matrices P, S with
appropriate dimensions, where P = PT , then[

P S
ST Q

]
> 0

if and only if P − SQ−1ST > 0 .

Lemma 4 ([7]). Let V(x(0)) = 0 and wT(t)w(t) ≤ w2
m, if V̇(xt) + αV(xt)− βwT(t)w(t) ≤

0, α > 0, β > 0, then we have V(xt) ≤ β
α w2

m, ∀t > 0.

3. Main Results

Theorem 1. For given scalars h, u > 0, if there exist matrices L, H ∈ R1×n, M, P̃, R̃, S̃, W̃, X̃, Ỹ,
Z̃, R̂, Ẑ, Z̆ ∈ Rn×n with M, R̃, S̃, W̃, X̃ > 0 and a scalar α > 0 such that they satisfy the following
matrix inequalities:

Φ11 DM + BH − Ỹ MAT + LT BT + Z̆ + αM E Ỹ
⋆ −(1 − u)e−αhS̃ + u2W̃ MD + HT BT − Z̆ 0 0
⋆ ⋆ − 1

h e−αhR̂ + αẐ E Z̆T

⋆ ⋆ ⋆ −α
w2

m
0

⋆ ⋆ ⋆ ⋆ −W̃

 ≤ 0, (6)

[
M − P̃ Ỹ

⋆ Z̃ + 1
h e−αhS̃

]
≥ 0, (7)

where Φ11 = AM + BL + MAT + LT BT + αM + Ỹ + ỸT + S̃ + hR̃, then the reachable sets of
the system (4) are bounded by an ellipsoid ε(P, 1) defined in (5). At this point, the state feedback
gain is K = LM−1, G = HM−1.

Proof. To prove this theorem, let us consider the following Lyapunov–Krasovskii function:

V(xt) = V1(xt) + V2(xt) + V3(xt), (8)
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where

V1(xt) = xT(t)Px(t),

V2(xt) =
∫ t

t−d(t)
e−α(s−t)[xT(s)Sx(s) + (h − t + s)xT(s)Rx(s)]ds,

V3(xt) =
[
xT(t) ηT(t)

][X Y
⋆ Z

][
x(t)
η(t)

]
,

η(t) =
∫ t

t−d(t)
x(s)ds,

where P, S, R, X, Y, Z are symmetric matrices with appropriate dimensions. First, we prove
that V(xt) in (8) is a good Lyapunov–Krasovskii functional candidate. For t − d(t) ≤ s ≤ t
and 0 ≤ d(t) ≤ h, we can get e−h ≤ e−d(t) ≤ es−t ≤ 1 and 0 ≤ h − d(t) ≤ h − t + s ≤ h.
In the light of the Lamma 2, we have

V2(xt) ≥
∫ t

t−d(t)
e−α(s−t)xT(s)Sx(s)ds ≥ 1

h
e−αhηT(t)Sη(t),

then

V2(xt) + V3(xt) ≥
[
xT(t) ηT(t)

][X Y
⋆ Z + 1

h e−αhS

][
x(t)
η(t)

]
.

If [
X Y
⋆ Z + 1

h e−αhS

]
≥ 0, (9)

then we have V2(xt) + V3(xt) ≥ 0.
Hence, we have{

V(xt) = V1(xt) + V2(xt) + V3(xt) ≥ V1(xt) = xT(t)Px(t),
V(xt) = 0, when x(s) = 0, ∀s ∈ [t − d(t), t],

(10)

which shows V(xt) in (8) is an L–K functional.
Next, from Lemma 1, we obtain the following time derivatives:

d
dt

V1(xt) = 2xT(t)P[(A + BK)x(t) + (D + BG)x(t − d(t)) + Ew(t)], (11)

d
dt

V2(xt) = xT(t)(S + hR)x(t)− (1 − ḋ(t))e−αd(t)xT(t − d(t))Sx(t − d(t))

− (1 − ḋ(t))e−αd(t)(h − d(t))xT(t − d(t))Rx(t − d(t))

−
∫ t

t−d(t)
e−α(s−t)xT(s)Rx(s) ds − αV2(xt)

≤ xT(t)(S + hR)x(t)− (1 − u)e−αhxT(t − d(t))Sx(t − d(t))

− 1
h

e−αhηT(t)Rη(t)− αV2(xt), (12)

d
dt

V3(xt) = 2
[
xT(t) ηT(t)

][X Y
⋆ Z

][
ẋ(t)

(x(t)− x(t − d(t))

]
+ 2ḋ

[
xT(t) ηT(t)

][Y
Z

]
x(t − d(t))

≤ 2
[
xT(t) ηT(t)

][X Y
⋆ Z

][
(A + BK)x(t) + (D + BG)x(t − d(t)) + Ew(t)

x(t)− x(t − d(t))

]
+

[
xT(t) ηT(t)

][Y
Z

]
W−1[YT ZT][x(t)

η(t)

]
+ u2xT(t − d(t))Wx(t − d(t)), (13)
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where we used the relation that 2aTb ≤ aTW−1a + bTWb, W > 0 and the constraints (2)
and (3) in the derivation of the inequality (13).

Through (9) and (11)–(13), we obtain:

V̇(xt) + αV(xt)− βwT(t)w(t)

≤ ξT
t

Ω +


YT

0
ZT

0

W−1[YT 0 ZT 0
]ξt

:= ξT
t Ψξt,

where
ξT

t = [xT(t) xT(t − d(t)) ηT(t) wT(t)],

Ω =


ϕ11 (P + X)(D + BG)− Y (A + BK)TY + Z + αY (P + X)E
⋆ −(1 − u)e−αhS + u2W (D + BG)TY − Z 0
⋆ ⋆ − 1

h e−αh + αZ YTE
⋆ ⋆ ⋆ −α

w2
m


and

ϕ11 = (P + X)(A + BK) + (A + BK)T(P + X) + α(P + X) + Y + YT + S + hR.
If Ψ ≤ 0, by virtue of Lamma 3, we get

Φ11 M(D + BG)− Y (A + BK)TY + Z + αY ME Y
⋆ −(1 − u)e−αhS + u2W (D + BG)TY − Z 0 0
⋆ ⋆ − 1

h e−αh + αZ YTE Z
⋆ ⋆ ⋆ −α

w2
m

0
⋆ ⋆ ⋆ ⋆ −W

 ≤ 0, (14)

where
M = P + X, Φ11 = M(A + BK) + (A + BK)T M + αM + Y + YT + S + hR.
By defining N1 = diag(M−1; M−1; Y−1; I; M−1), pre- and post-multiplying the inequality

(14) by N1 and NT
1 , and defining M = M−1, L = KM−1, H = GM−1, X̃ = M−1XM−1, Ỹ =

M−1YM−1, R̃ = M−1RM−1, Z̃ = M−1ZM−1, S̃ = M−1SM−1, W̃ = M−1WM−1, Z̆ =
M−1ZY−1, R̂ = Y−1RY−1, Ẑ = Y−1ZY−1, the following inequality is derived:

Φ11 DM + BH − Ỹ MAT + LT BT + Z̆ + αM E Ỹ
⋆ −(1 − u)e−αhS̃ + u2W̃ MD + HT BT − Z̆ 0 0
⋆ ⋆ − 1

h e−αhR̂ + αẐ E Z̆T

⋆ ⋆ ⋆ −α
w2

m
0

⋆ ⋆ ⋆ ⋆ −W̃

 ≤ 0, (15)

where M = (P + X)−1, Φ11 = AM + BL + MAT + LT BT + αM + Ỹ + ỸT + S̃ + hR̃. Thus,
if inequality (15) holds, we have

V̇(xt) + αV(xt)−
α

w2
m

wT(t)w(t) ≤ 0.

which means, by virtue of Lemma 4, that V(xt) = V1(xt) + V2(xt) + V3(xt) ≤ 1. Since
V2(xt) + V3(xt) ≥ 0, from inequality (9), we get V1(xt) = xT(t)Px(t) ≤ 1. Following a
similar line, we need to convert condition (9) into[

M − P Y
⋆ Z + 1

h e−αhS

]
≥ 0 (16)
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By defining N2 = diag(M−1; M−1) and pre- and post-multiplying the inequality (16)
by N2 and NT

2 , the following inequality is derived:[
M − P̃ Ỹ

⋆ Z̃ + 1
h e−αhS̃

]
≥ 0 (17)

which completes the proof. This implies that the reachable sets of the closed-loop system
in (4) are bounded by the ellipsoid ε(P, 1) defined in (5), and the desired state-feedback
controller can be obtained as K = LM−1, G = HM−1.

Remark 1. The L–K functional (8) is a function of the system state and control input, with certain
positive definite and sub-positive definite conditions. With this function, the stability of time-delay
systems can be determined, error bounds can be estimated, and control strategies can be designed to
ensure system stability.

Remark 2. In order to obtain the ‘smallest’ possible bound for the reachable set, we introduce the
method in [14,16]. That is, maximize δ subject to δI ≤ P, which can be transformed to the following
optimization problem for a scalar δ > 0 :

min δ̄ , (δ̄ = 1
δ )

s.t
[

δ̄ I
I P

]
≥ 0.

(18)

Then, by defining N3 = diag(I; M), pre- and post-multiplying inequality (18) by N3 and NT
3 ,

and defining P̃ = MPM, the following optimization is derived:
min δ̄ , (δ̄ = 1

δ )

s.t
[

δ̄ M
M P̃

]
≥ 0.

(19)

Therefore, we can obtain the ‘smallest’ possible bound for the reachable set of the system (4) by
solving the following optimization problem for a scalar δ > 0 :

min δ̄ , (δ̄ = 1
δ )

s.t

 (a)
[

δ̄ M
M P̃

]
≥ 0,

(b) (6), (7) or (15), (17).

(20)

Remark 3. In [16], for given scalars h, u > 0, if there exist matrices P, S, R, W, X, Y, Z ∈ Rn×n

with P, S, R, W > 0 and a scalar α > 0, they satisfy the following matrix inequalities:
Φ11 (P + X)D − Y ATY + Z + αY (P + X)E Y
⋆ −(1 − u)e−αhS + u2W DTY − Z 0 0
⋆ ⋆ − 1

h e−αh + αZ YTE Z
⋆ ⋆ ⋆ −α

w2
m

0
⋆ ⋆ ⋆ ⋆ −W

 ≤ 0, (21)

[
X Y
⋆ Z + 1

h e−αhS

]
≥ 0, (22)

where Φ11 = (P + X)A + AT(P + X) + α(P + X) + Y + YT + S + hR.
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To find the ‘smallest’ bound for the reachable set, one may propose a simple opti-
mization problem. That is, maximize δ subject to δI ≤ P, which can be transformed to the
following optimization problem for a scalar δ > 0 :

min δ̄ , (δ̄ = 1
δ )

s.t

 (a)
[

δ̄ I
I P

]
≥ 0,

(b) (21), (22).

(23)

Remark 4. If B = 0, K = 0, and G = 0 in (6) and (7) of Theorem 1, the condition becomes the
condition in [16], and (20) also becomes (23) in Remark 2; in this respect, the conclusion can be seen
as an extension of [16].

4. Numerical Example

An example is presented to illustrate our proposed method. The simulation is per-
formed on Matlab and by using the LMI toolbox, a package for specifying and solving
linear matrix inequalities.

Consider the linear state-delayed control system (1) with the following parameters

A =

[
−2 0
0 −0.9

]
, D =

[
−1 0
−1 −1

]
, B =

[
1
1

]
, E =

[
−0.5

1

]
, wm = 1.

By solving optimization problem (20), we get the sizes of the ellipsoidal bound of a
reachable set for various u when h = 0.70 and h = 0.75. These results are summarized in
Tables 1 and 2; figures are also provided in Figures 1 and 2. The results of our method and
the method in [16] are compared.

Table 1. Computed δ̄’s in Example for 0 ≤ d(t) ≤ 0.7,
∣∣ḋ(t)∣∣ ≤ u ≤ 1.

u

Method 0 0.1 0.2 0.3 0.4 0.5 0.6

[16] 2.2586 2.4970 2.8497 3.4355 4.5384 7.0915 16.8263
Theorem 1 1.4571 1.6372 1.8905 2.2702 2.9171 4.2496 8.1427

As can be seen in Table 1, when h = 0.7, u = 0.6, our results greatly reduce the
size of the ellipsoid. At this point, the state feedback gain is K = [−0.5209 − 1.3698],
G = [0.9414 − 0.4495].

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

x
1

-5

0

5

x 2

Theorem 1 
Kim,2008

Figure 1. The bounding ellipsoids ε for h = 0.7 and µ = 0.6 [16].
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Table 2. Computed δ̄’s in Example for 0 ≤ d(t) ≤ 0.75,
∣∣ḋ(t)∣∣ ≤ u ≤ 1.

Method
u

0 0.1 0.2 0.3 0.4 0.5 0.6

[16] 2.5077 2.8071 3.2462 3.9935 5.4419 8.9945 25.1048
Theorem 1 1.6222 1.8417 2.1363 2.5992 3.4134 5.1046 10.4056

It is obvious that the results of this paper are better than the autonomous systems
in [16], which shows the effectiveness of our method.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

x
1

-6

-4

-2

0

2

4

6

x 2

Theorem 1 
Kim,2008

Figure 2. The bounding ellipsoids ε for h = 0.75 and µ = 0.6 [16].

5. Conclusions

In this paper, we deal with the problem of reachable set estimation and state-feedback
controller design for linear time-delay control systems with bounded disturbances. Firstly,
by constructing an appropriate L–K functional, we obtained a delay-dependent condition,
which determines the admissible bounding ellipsoid for the reachable set of the system we
considered. Secondly, a sufficient condition in form of liner matrix inequalities is given to
solve the problem of controller design with reachable set estimation. Finally, by minimizing
the volume of the ellipsoid and solving the liner matrix inequality, we obtain the desired
ellipsoid and controller gain. The numerical example shows that the results of the method
in this paper are better than that in [16] for the autonomous systems in [16], which shows
the effectiveness of the proposed method.
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