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Abstract: The multi-objective evolutionary algorithm optimization (MOEA) is a challenging but
critical approach for tackling complex data analysis problems. However, prevailing MOEAs often rely
on single strategies to obtain optimal solutions, leading to concerns such as premature convergence
and insufficient population diversity, particularly in high-dimensional data scenarios. In this paper,
we propose a novel adversarial population generation algorithm, APG-SMOEA, which synergistically
combines the benefits of MOEAs and Generative Adversarial Networks (GANs) to address these
limitations. In order to balance the efficiency and quality of offspring selection, we introduce an
adaptive population entropy strategy, which includes control parameters based on population
entropy and a learning pool for storing and retrieving optimal solutions. Additionally, we attempt to
alleviate the training complexity and model collapse problems common in GANs with APG-SMOEA.
Experimental results on benchmarks demonstrate that the proposed algorithm is superior to the
existing algorithms in terms of solution quality and diversity of low-dimensional or high-dimensional
complex data.

Keywords: multi-objective optimization; evolutionary algorithm; generative adversarial network;
complex data analysis

MSC: 68W50

1. Introduction

In recent years, complex data analysis has become an essential research field due to
the increasing and diversified data generated by various sources [1], such as traffic logistics,
commercial transactions, financial investment, and healthcare services [2,3]. One of the
most significant and prevalent challenges in analyzing complex data include the multi-
objective optimization problems (MOPs) [4], as optimizing one objective often leads to the
deterioration of others. Traditional optimization methods, such as gradient-based methods,
can only optimize one objective at a time, which may not be able to address MOPs effectively.
In this context, multi-objective evolutionary algorithms (MOEAs) [5], which incorporate
evolutionary algorithms (EAs) into MOPs, have emerged as a promising solution.

MOEAs are designed to find a set of solutions that balance multiple objectives and
achieve the best trade-offs among them, which are known as Pareto optimal solutions.
Specifically, a solution is Pareto optimal if no other solution exists that can improve at least
one goal without compromising any of the others. Moreover, the set of all Pareto optimal
solutions is called the Pareto front or Pareto set. To explore the solution space, MOEAs
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generate a population of candidate solutions and then apply genetic operators such as
mutation, crossover, and selection to evolve better solutions over generations. Typical
MOEAs can be categorized into four types: Domination-based MOEAs, such as NSGA-
II [6] and NSGA-III [7], utilize the Pareto-dominance principle to achieve convergence and
maintain diversity, but may suffer from the problem of slow convergence. Indicator-based
MOEAs, such as SMS-EMOA [8], use quality indicators to evaluate approximation sets
and impose a total order among related solutions, but with high computational complex-
ity. Decomposition-based MOEAs (known as MOEA/D), such as MOEA/D-AWA [9],
decompose MOPs into several scalar sub-problems and solve them simultaneously. In
MOEA/HD [10], sub-problems are layered into different hierarchies, and the search
directions of lower-hierarchy sub-problems are adaptively adjusted, according to the
higher-hierarchy search results. However, they may face challenges in generating high-
quality and diverse offspring for complex high-dimensional data. Hybrid MOEAs, such as
Hybrid-MOEA/D-I [11], combine different algorithms to solve complex MOPs, but they
can be challenging to design and implement.

Compared to domination- and indicator-based MOEAs, MOEA/D stands out for its
unique decomposition strategy, which enables it to be more easily combined with other
optimization methods to potentially improve its performance. To further enhance the
performance of MOEA/D, substantial research [12–18] has been conducted recently. In
particular, Qian et al. [13] proposed MOEA/D-AEE with a joint coefficient for adaptive
exploration and development. It has been proven to be effective in achieving improved
sparse distribution and global search capabilities compared with several classical MOEA/D
algorithms [19]. However, like many MOEA/D algorithms, it still faces limitations in
generating high-quality and diverse offspring, especially in dealing with complex high-
dimensional data. These limitations can potentially hinder the performance of MOEA/D-
AEE in solving complex multi-objective optimization problems.

Generative Adversarial Networks (GANs) show tremendous potential in generating
high-quality synthetic data. The classical GANs consist of generator network and discrimi-
nator network. Specifically, the generator network takes a random noise vector as input
and produces synthetic data, while the discriminator network tries to distinguish between
synthetic and real data. During training, GANs leverage an adversarial loss function that
simultaneously minimizes the generator’s loss and maximizes the discriminator’s loss,
leading to the generation of high-quality synthetic data. The effectiveness of GANs has
been demonstrated in various applications, such as image and text generation [20], data
augmentation [21], and style transfer [22].

In the context of MOEA, GANs can be used to generate diverse and high-quality
offspring populations, further enhancing the optimization process. Compared to traditional
MOEA methods, the synergistic approach based on the MOEA and GAN has several
benefits. First, the GAN can produce diverse and high-quality offspring populations by
learning the data distribution through adversarial training, thus preventing premature
convergence and enhancing the exploration of the search space. Second, the GAN can
overcome the limitations of traditional MOEA methods in generating diverse offspring
populations, which can lead to more optimal solutions. Third, the synergistic approach
can adapt to different dimensions of data, which improves the performance of the MOEA
algorithm in complex data.

Despite the synergistic approach of combining EAs and GANs for MOEA optimization
having shown great potential, it also has its limitations. One major challenge is how to
balance the trade-off between exploration and exploitation when selecting offspring from
the GAN-generated and MOEA-generated population. Additionally, training a GAN can
be challenging, as it typically requires a large amount of data. Moreover, GAN-generated
populations may suffer from the problem of mode collapse, resulting in poor quality
and lack of diversity in offspring populations. To address these challenges, this paper
proposes a novel adversarial population generation-based algorithm, namely, Synergistic
MOEA Algorithm with Adversarial Population Generation (APG-SMOEA), that synergistically
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combines the strengths of EAs and GANs. In summary, this paper makes the following
main contributions:

1. This paper introduces the GANs into the MOEA/D algorithm. This new algorithm
combines the advantages of both MOEAs and GANs. It can utilize the simple frame-
work of multi-objective evolution algorithms and the advantages of GANs in generat-
ing samples and high-dimensional data analysis.

2. This paper introduces an adaptive entropy control strategy that includes a population
entropy-based control parameter. This strategy allows us to balance the exploration
and exploitation trade-off by controlling the diversity of the GAN-generated popu-
lation.Effectively avoid premature convergence and population diversity issues in
APG-SMOEA algorithm.

3. This paper introduces a quality hybrid memory pool to store and retrieve optimal
solutions. This strategy not only improves the algorithm’s ability to maintain diversity
and avoid premature convergence, but also alleviates the problem of high quality data
desire in GAN training. By storing the best solutions from previous generations, we
can prevent the algorithm from becoming stuck in a local optima, while also allowing
for the exploration of new regions of the search space.

4. Our algorithm effectively mitigates the common problems of training complexity and
model collapse in GANs. Experimental results on benchmarks demonstrate that our
proposed algorithm outperforms existing methods in terms of solution quality and
diversity on complex data with low or high dimensions.

2. Related Work
2.1. MOEAs

As the classical algorithms that have been popular for many years, MOEAs [23,24]
are an effective way to solve complex MOPs. Generally, MOEAs can be classified into the
following four classes, according to their characteristics [25]:

1. Domination-based MOEAs [26], such as NSGA-II [6,27] and NSGA-III [7], usually
achieve the convergence by means of Pareto-dominance principle, while maintain-
ing the diversity of solutions via explicit diversity preservation. However, such
MOEAs suffer from the slow convergence since Pareto-dominance principle has the
low selection mechanism.Domination-based MOEAs can be described in following
equation.
The population size is N, the objective function value of the i-th individual in the
population is fi, then the domination set of this individual is defined by Equation (1).

D(i) =
{

j | j ∈ {1, 2, . . . , N} ∧ f j < fi
}

(1)

where D(i) is the dominated set of individual i, which is the index set of all individuals
dominated by individual i. The i-th individual domination is defined as follows in
Equation (2).

πi =
|D(i)|

N
(2)

where |D(i)| is the number of elements in the dominated set of individual i, the
domination degree of individual i. Finally, based on the domination degree, the
population is selected to generate the next generation. There can be many specific
selection methods, such as tournament selection, sorting selection, etc.

2. Indicator-based MOEAs [28–32] adopt quality indicators, which define the selection
mechanism as a function to evaluate approximation sets. For example, in the S-Metric
Selection Evolutionary Multi-objective Algorithm (SMS-EMOA) [8], the dominated
volume of an approximation set is calculated by the hypervolume indicator. Based on
this, a total order among related solutions is imposed. An example of a weighted sum
index calculation formula is shown in Equation (3).
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f (x) =
n

∑
i=1

wi fi(x) (3)

where f (x) is the index value of solution x, n is the number of indices, wi is the weight
of the i-th index, and fi(x) is the function value of the i-th index.

3. Decomposition-based MOEAs, also called MOEA/D [33–35], decompose a MOP into
several scalar sub-problems by employing the decomposition strategy. Thus, such
sub-problems are solved simultaneously by optimizing the solution of each sub-
problem. To cope with the limitations of MOEA/D, some research works [14] have
proposed new methods for weight vector generation. For example, the MOEA/D-
AWA [9] employs an adaptive weight vector adjustment strategy to achieve better
uniformity of solutions to the target MOPs. The MOEA/D’s general equation is as
follows in Equation (4).

F(x) = [ f1(x), f2(x), . . . , fn(x)]T (4)

where F(x) is the objective function value vector of solution x, fi(x) is the function
value of the i-th objective function, and n is the number of objective functions.
In the MOEA/D algorithm, the multi-objective optimization problem needs to be
decomposed into a series of single-objective optimization sub-problems, each cor-
responding to a reference point. For each reference point ri, a weight vector w =
[w1, w2, ..., wn]T needs to be defined, where wi > 0, and the weighted function value
fi(x) = wT ∗ F(x) needs to be calculated. Then, define a sub-problem Li: minimize
fi(x) subject to x ∈ X. Use an evolutionary algorithm or other optimization method
to solve each sub-problem, and obtain a set of non-dominated solutions Si. Merge
all non-dominated solutions into a solution set S, and select a set of non-dominated
solutions from S as the final result. Repeat the above steps until the termination
condition is met.

4. Hybrid MOEAs [36–38] often combine different algorithms in a unified framework to
solve complex MOPs. For example, the Hybrid-MOEA/D-I [11] combines a differ-
ential evolutionary algorithm with a genetic algorithm to improve the performance,
which effectively optimizes MOPs in wireless sensor networks. Moreover, in the
multi-objective particle swarm optimization (MOPSO) [39], a novel particle swarm
optimization approach can solve a class of mean-variance in portfolio selection prob-
lems, and an adaptive ranking procedure further improves the performance of the
proposed algorithm.

2.2. GAN

Theoretically, GAN is a generative model that uses unsupervised learning to generate
synthetic or fake data [40]. It consists of two models: the generator network and the
discriminator network [41]. The generator network captures the distribution of training
data and generates realistic data, whereas the discriminator network is a classifier that
differentiates generated data from training data as accurately as possible [42]. In other
words, to deal with the shortcomings of other generative algorithms, GAN introduces
adversarial learning to distinguish the generated data (i.e., synthetic or fake data) from
true data.

In general, the objective function, in original minmax cases, of GAN can be defined as
follows [43].

min
G

max
D

V(D, G) = Ex∼Pg(x)[log(D(x))] + Ez∼Pz(z)[log(1 − D(G(z)))] (5)

where G denotes the generator, D denotes the discriminator, Pg(x) is a generator dis-
tribution over data x, log(D(x)) denotes the cross-entropy value between [1 0]T and
[D(x) 1 − D(x)]T , Pz(z) is a prior on the input noise variable z, and log(1 − D(G(z)))
denotes the cross-entropy value between [0 1]T and [D(G(z)) 1 − D(G(z))]T .
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However, the generator G usually works poorly during the early learning process. To
this end, we may maximize log D(G(z)) instead of minimizing log(1 − D(G(z))) to reduce
the cost for training the generator [42]:

J(G) = Ez∼Pz(z)[− log(D(G(z)))]

= Ex∼Pg(x)[− log(D(x))]
(6)

Similarly, we also can minimize the following function by the maximum likelihood,
assuming that the discriminator G(z) is optimal, then [44]

J(G) = Ez∼Pz(z)[−exp(σ−1(D(G(z))))]

= Ez∼Pz(z)

[ −(D(G(z))
1 − D(G(z))

] (7)

where σ is the logistic sigmoid function.
In recent years, GAN has become a hot research topic and has gained remarkable

success in various fields [45,46], such as text-to-image synthesis [47], human pose syn-
thesis [48], handwritten font generation [49], medical applications [50], face frontal view
generation [51], text-to-image synthesis [52], and anime characters generation [53]. In
summary, the applications of GAN algorithms can be classified into two categories: The
first is computer vision [54], including image applications [55], object detection [56], video
applications [57], and texture synthesis [58]. The second is data engineering, including
spatio-temporal data [59], music generation [60], data synthesis [61], and sequential data
processing [62]. In this work, to address the problem of high quality data desire in GAN
training, we propose a quality hybrid memory pool to store and retrieve optimal solutions.

3. The Proposed Algorithm

In this section, we first provide the definition for the solved problems. Then we
propose the specific algorithm framework. Finally, we detail three major innovations.

3.1. Problem Definition

In MOPs, optimizing a single objective can come at the cost of other objectives, while
achieving multiple optimal objectives may require finding an optimal constraint relation-
ship between them [63]. The classical portfolio optimization, for example, has to satisfy
both the highest return and the lowest risk. In reality, return and risk are often constrained,
as achieving higher returns may lead to higher risks, while lowering risks may result in
lower returns. Similar classical problems exist in the fields of recommendation systems,
traffic logistics, path planning, and financial investment. Therefore, the MOPs have been a
more important research direction in the field of scientific research, and the classical MOEA
algorithm has proposed a better solution. Consider the weights of each objective and find a
set of optimal solution sets that satisfy the problem constraints, i.e., Pareto solution sets.
In [13], the authors proposed the MOEA/D-AEE algorithm, incorporating dynamic search
and joint development techniques. This algorithm addresses the issue of self-optimization
in low- and medium-dimensional data and enhances the algorithm’s self-adaptive capacity
and global search capability. However, an effective solution for large-scale MOPs with a
large number of objectives and high complexity has not yet been found. Our team proposes
the APG-SMOEA algorithm, which is based on the MOEA/D-AEE, to tackle MOPs with
complex data. To evaluate the effectiveness of our proposed algorithm, this paper uses a
financial dataset from the OR library, which contains data with high dimensions up to 225.
The dataset addresses a problem that can be formulated mathematically as follows:

max
ω

RETURN =
n

∑
i=1

riωi (8)



Mathematics 2024, 12, 175 6 of 30

max
ω

RISK =
n

∑
i=1

n

∑
j=1

σijωiωj (9)

subject to,
n

∑
i=1

ωi = 1(0 ≤ ωi ≤ 1) (10)

where ω = (w1, w2, ..., wn) is a vector representing the invest ratios of n assets. ri is the
return rate of i-th asset, and σij is co-variance between the return rated of i-th asset and
j-th asset.

The APG-SMOEA algorithm aims to solve the issues of early convergence and popula-
tion diversity in the MOEA algorithm. These are the three key challenges:

• Challenge 1: How to synergize GAN networks?
• Challenge 2: How to solve the problem of model collapse arising from the introduction

of GAN?
• Challenge 3: How to introduce an adaptive control strategy?

These are the solutions:

1. Fusion of traditional arithmetic with GANs.
2. Increase the generation probability of GAN networks when the population diversity

decreases.
3. Population entropy determines the proportion of mixed operators.

3.2. APG-SMOEA Framework

This paper uses high-dimensional portfolio data and specifically uses the portfolio
optimization problem to represent a MOPs with complex data. The MOP problem is
converted into a matrix vector form, where the corresponding solution is represented by a
weight vector consisting of floating-point numbers between 0 and 1.

The variational formulation of the MOEA/D-Lévy algorithm [19] is shown below in
Equation (11)

y(ε) = εxi + α0

(
xi − xj

)
⊕ Levy(β) (11)

where xi and xj are the two parents used for progeny reproduction, y is the generated
progeny, ⊕ is the method of multiplying item by item, α0 is the scale factor used, and
Levy(β) is the vector generated by mantegna algorithm (MA).

The Lévy flight mutation operator utilized in this study exhibits distinct differences in
its application to distinct individuals. It is worth noting that the scaling factor utilized in
the Lévy flight mutation is derived from a heavy-tailed distribution. Furthermore, Lévy
flight mutation typically necessitates only two parents. The Lévy flight mutation formula
is outlined in the following Equation (12):

Levy(β) ∼ u

|v|
1
β

(12)

u ∼ N
(

0, σ2
u

)
, v ∼ N

(
0, σ2

v

)
(13)

σv =

 Γ(1 + β) • sin
(

πβ
2

)
Γ
(

1 + β
2

)
• β · 2β− 1

2


1
β

, σv = 1 (14)

where β is a parameter of the Lévy mutation algorithm. u is a random variable with a mean
of 0 and a variance of σ2

u . v is a random variable with a mean of 0 and a variance of σ2
v . The

expressions for σv and σu are provided in Equation (14). Γ is a function.
Due to the limited global search and adaptive control capabilities of the Lévy flight

algorithm, the quality of offspring generated in the later stages of iteration often suffers.
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To address these issues, MOEA/D-AEE introduces a dynamic coefficient to dynamically
explore the solution space, thereby enhancing the Lévy flight algorithm’s performance [13].
This is achieved by choosing a random number ε between 0 and 1, and then one of the
parents is selected at random with ε. If ε is less than σ, the parent is selected from the
neighbors. Otherwise, the parent is selected from the initial population. In addition,
the algorithm selects another parent in the initial population with probability 1 − ε. The
formulation of this algorithm [13] is shown in (15) below.

y(ε) = εxi + α0(1 − ε)
(

xi − xj
)
⊕ Levy(β) (15)

The MOEA/D-AEE algorithm [13] has a strong ability for global search and adap-
tation. The performance metrics of MOEA/D-AEE are notably superior to those of clas-
sical multi-objective optimization algorithms like NSGA-II [6], MOEA/D-Lévy [19], and
MOEA/D-DEM.

The APG-SMOEA algorithm is further optimized based on MOEA/D-AEE algorithm.
Figure 1 shows the process and Algorithm A1 (in Appendix A.1) provides the pseudo-
code, where t is the number of loop iterations, i is used to traverse each individual in the
population, and σ uses the diversity maintenance strategy in [33]. b is the neighbor of the
current individual. α controls the probability of GAN network generation. M and V are the
[return, risk] of the individuals in the population. update_count is the individual update
counter. nr is the upper limit of update neighbors. In the generation operation of offspring,
the dynamic parameter α controlled by the population entropy determines the generation
ratio between the polynomial variation and GANs.

The following are the detailed steps of the APG-SMOEA algorithm:

1. Read the information of the dataset and set the parameters of the problem. This
includes statistical information on the number of assets, returns and risks, and corre-
lation information (covariance matrix). It is also necessary to set the initial parameters
of the algorithm, such as population size, number of neighbors, etc. (Algorithm A1
line 1)

2. Define the neighbors, generate the initial population, and calculate the individual
[return, risk] and Pareto front extreme value points. (Algorithm A1 line 2–3)

3. Construct the GAN network. (Algorithm A1 line 4 and Algorithm A2)
4. Loop iterations; each iteration is a complete search process, including selection, varia-

tion, crossover, replacement, and other operations. (Algorithm A1 line 5–27)
5. Each iteration traverses each individual in the population. This step generates

new children by performing mutation and crossover operations on each individ-
ual. (Algorithm A1 line 6–26)

6. Determine the mating pool of the offspring generated by the variation operator. The
generated random number is compared with σ. If the random number is greater
than σ, the whole population is used as the mating pool. Otherwise, the neighbors of
individuals are used as the mating pool. (Algorithm A1 line 7)

7. Determine the way of generation of offspring. Compare the generated random
number with α. If the random number is greater than α, choose the polynomial
variation generated offspring determined by Equation (2); otherwise, choose the way
to generate offspring by GAN network training (see Algorithm A2 for related pseudo-
code, in Appendix A.2). Compute the [return, risk] of the offspring. (Algorithm A1
line 8–12)

8. Update the extreme value points of the Pareto front, compute the reference points
and weight vectors to decide whether to replace the parent, and then update the
population. (Algorithm A1 line 13–15)

9. Set the counter, traverse the neighbors, update the population if the children are better
than the parents, and exit the loop when the traversal ends or the counter reaches the
upper limit. (Algorithm A1 line 16–24)
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10. Calculate the population entropy according to Equation (19), update the alpha, and
record the new population entropy and alpha (see Algorithm A3 for the relevant
pseudo-code, in Appendix A.3). (Algorithm A1 line 25 and Algorithm A3)

Figure 1. Algorithm flow chart.

The children generated by the hybrid operator (AEE operator and GAN networks),
especially the GAN network, may not satisfy the constraints, so the repair operation is
needed for the children. The repair steps are as follows:
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1. Iterate through the weights of all assets in the child generation and set the negative
numbers to 0.

2. Sum the weights of all children s assets .
3. If s ̸= 0, all the weight vectors are scaled so that their sum is 1. Otherwise, the children

satisfying the constraint are generated randomly.

The time complexity of the APG-SMOEA algorithm mainly manifests during the
generation process of descendants using Generative Adversarial Networks (GANs). First,
we use a fast non-dominated sorting algorithm to select training samples, where the number
of objectives is denoted as M, and the population size is N. The time complexity for a single
individual undergoing sorting is O(MN) (requiring comparisons with N − 1 individuals,
each involving comparison of M objectives). The initial round involving N individuals
entails a time complexity of O(MN2). In the worst-case scenario, where only one individual
replaces the current non-dominated solution in each round, O(N) rounds of sorting are
necessary, with each round consuming O(N) time complexity, and the worst-case time
complexity of the other rounds of sorting is O(N2). Thus, the time complexity of the fast
non-dominated sorting algorithm is O(MN2) = O(MN2) + O(N2).

Furthermore, the training of GANs also contributes to the time complexity. The gener-
ator comprises two fully connected layers and two hidden layers, while the discriminator
consists of one fully connected layer and one hidden layer. During the training process,
the mean and covariance matrix of real samples are computed, followed by the generation
of samples Z from a noise distribution for training the discriminator D. GAN networks
undergo training every 100 epochs.

The extensive computations involved in the fast non-dominated sorting and GAN
training processes consume a considerable amount of time. Consequently, compared to
multi-objective optimization algorithms based on conventional methods, the time perfor-
mance of this algorithm is significantly reduced.

3.3. Introduction of GANs

Classical multi-objective optimization algorithms have problems with premature
convergence and insufficient population diversity. Although many algorithms have been
proposed to solve these problems, their performance on high-dimensional complex data
varies widely [41]. The initial population of the APG-SMOEA algorithm is randomly
generated. In the early iterations, there are few high-quality solutions in the population. If
we use these few solutions to train the GAN network, it is easy to encounter premature
convergence/insufficient population diversity/local optimal problems. Therefore, the
APG-SMOEA algorithm uses population entropy strategy to coordinate the MOEA/D-AEE
algorithm and GAN network to generate offspring, so that more high-quality solutions
are generated by MOEA/D-AEE in the early iterations and more offspring are generated
by GAN network in the later iterations.This strategy addresses the issues of premature
convergence and insufficient population diversity.

Studies have shown that when dealing with MOPs for complex high-dimensional
data, GAN networks have significant advantages. In addition, GAN networks can generate
data by adversarial training, which is very similar to the way multi-objective optimization
algorithms generate new individuals by parental crossover variation. The effectiveness of
GAN networks in MOPs was demonstrated in conjunction with the literature [12]. The
specific pseudo-code of the algorithm is shown in Algorithm A2 (in Appendix A.2). For
the method of generating offspring by GAN network, if the offspring need to be generated,
the population is firstly sorted by fast non-dominated ordering, the top ten individuals
are screened out as the real samples (non-dominated solutions) for training, and the other
dominated solutions are used as false samples, which are inputted into the GAN network to
be trained, at the same time generating the offspring. At the end of that, the set of solutions
generated by the GAN network is sorted by fast non-dominated ordering, and the top
twenty individuals are screened out to be used in the replacement of the population. The
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loss function of the discriminator in the GAN network used in this experiment is presented
in Equation (16).

max
D

V(D) = Er∼Pf [log(D(r))] + E f∼Pf
[log(1 − D( f ))] + Ez∼Pz [log(1 − D(G(z)))] (16)

where D(r), D( f ), D(G(z)) denote the output of the discriminator, respectively; the distri-
butions of the real and fake datasets are denoted as Pr and Pf . The positive samples (good
individuals in the population), negative samples (other individuals in the population), and
samples generated by the generator are the inputs.

The following steps are necessary for generating progeny by the GAN network:

1. Calculate the covariance matrix according to the mean vector µ. Obtain the sum of
the real samples according to Equation (17),

∑ =
∑
⌊N/2⌋
i=1 (ri − µ)(ri − µ)T

⌊N/2⌋ − 1
, where µ =

∑
⌊N/2⌋
i=1 ri

⌊N/2⌋ (17)

Here, N is the population size, and ri is the i-th member of the positive sample.
2. Sample the D-dimensional vector x. Generate a D-dimensional vector y′, which

satisfies the multivariate normal distribution according to Equation (18).

y′ =
exp

(
−1/2(x − µ)TΣ−1(x − µ)

)√
(2π)D|Σ|

(18)

where µ is the mean vector of the positive samples. ∑ is the sample covariance of the
positive samples. D is the dimensionality of the feature.

3. The generator generates children based on the upper boundary l and the lower
boundary u of the decision space, as shown in Equation (19).

y = G
(
y′
)
(u − l) + 1 (19)

where y is the candidate solution generated by the GAN networks. l and µ are the
upper and lower boundaries of the decision space.

3.4. Solving the Model Collapse Problem

In the APG-SMOEA algorithm, the initial population is generated by randomization,
and the number of good solutions in the population may be relatively small in the early
iterations. Retraining the GAN network using the solutions it generates can lead to the
problem of model collapse. This paper proposes a new hybrid operator to solve these
problems. This approach fuses the GAN network with the MOEA/D-AEE operator, while
using adaptive parameters to control the probability of generating offspring from the
GAN network training (adaptive parameters will be described in Section 3.5). The specific
formula is shown in Equation (20) below:

y =

 εxy + α0(1 − ε)
(
xi − xj)⊕ Levy(β), Rn > α

G
(

exp(−1/2(x−µ)T ∑−1(x−µ))√
(2π)D |Σ|

)
(u − l) + l, Rn < α

(20)

where Rn is between 0 and 1. α is an adaptive parameter determined by the population
entropy.

The use of hybrid operators allows for the complete training of GAN networks,
enabling them to search for more regions and optimize further in terms of convergence.
The hybrid operator approach combines the benefits of GAN networks in diversity and
reduces the risk of model collapse.



Mathematics 2024, 12, 175 11 of 30

3.5. Adaptive Entropy Control Strategy

Multi-objective optimization often suffers from a common issue where the population
diversity is large in the early stage, but small in the later stage, leading to the risk of getting
stuck in a local optimum. The idea of solving this problem is generally to increase the
diversity of late stage populations through specific methods. The MOEA/D-AEE algorithm
introduces joint coefficients for a good optimization of this typical problem. However,
it is not effective in increasing the later population diversity. This paper improves the
previous work by using the APG-SMOEA algorithm and a population entropy adaptive
control strategy, which aligns better with the characteristics of multi-objective optimization.
By adjusting the GAN network generation probability, we can use the GAN network to
increase population diversity in the early iteration and decrease it in the late iteration,
which can be beneficial for optimizing the population using the GAN network. Based on
this idea, the local optimum problem is greatly solved. (Refer to Algorithm A3 for the
specific pseudo-code, in Appendix A.3).

In the process of fusion between GAN networks and AEE operators to generate off-
spring, this paper adopts population entropy [64] to control the ratio of the two generations.
As in [64], population entropy is used to measure the diversity of a population. Therefore,
if the current population entropy is less than the historical average population entropy,
increase the proportion of children generated by the GAN network; conversely, increase
the proportion of children generated by the traditional operator. The calculation steps of
population entropy are as follows. The similarity between an individual Pi and every other
individual Pj in the population is calculated by adding up their Euclidean distances, as
shown in Equation (21).

Pi =
len(P)

∑
j=1

(∣∣Pi − Pj
∣∣2) (21)

where len(P) is the population size. Pi, Pj are the individuals in the population. The
expression is in two-dimensional coordinates. Then, this paper converts the similarity into
probability by Gaussian distribution as follows in Equation (22):

Pi = exp
{

−Pi
2 · σ(Pi)

}
(22)

where σ(Pi) is the variance of individuals in the population.
After normalizing the probabilities, the entropy of the population is calculated by the

following Equation (23).

E = −
len(P)

∑
i=1

(Pi ∗ log2 Pi) (23)

After obtaining the entropy of the population, it is compared with the historical average
population entropy, and the proportional alpha of the hybrid operator is deflated according
to the results of the comparison. The formula is shown in Equation (24).

alpha =

{
max

(
alpha_list[−1]
scaling_ f actor , 0

)
, E < avg_E

min(alpha_list[−1] • scaling_ f actor, 1), E > avg_E
(24)

where alpha_list[−1] is the initial alpha value. scaling_ f actor is the deflation factor. avg_E
is the historical average population entropy.

4. Experiments and Analysis

In this section, we firstly describe the performance indicators and the dataset and
parameter configurations. We then discuss the experimental results from experiment 1 to
experiment 4.
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4.1. Performance Metric
4.1.1. Performance Indicators

The evaluation metrics of multi-objective evolutionary algorithms (MOEA) can be
divided into three main categories: convergence metrics, distribution metrics, and compre-
hensive metrics. Convergence metrics, such as generational distance (GD) and inverted
generational distance (IGD), are used to evaluate how well the solution set approaches
the true Pareto optimal surface. Distribution metrics are used to assess the diversity and
uniformity of the solution set, including the Spacing spatial evaluation method, Delta, and
maximum spread (MS). The integrative metrics combine the convergence and distribution
of the solution set, such as the hypervolume (HV) metric.

In this study, this paper uses six indicators, i.e., GD, IGD, Spacing, Delta, HV, and MS.
Among them, GD and Spacing are used to evaluate the convergence of the algorithm, MS
and Delta are used to evaluate the distributivity of the algorithm, and IGD and HV are
used to evaluate the comprehensive performance of the algorithm. These six indicators are
mathematically defined as follows:

1. GD: This metric measures the distance between the solution set P found by the
algorithm and the reference optimal solution set P∗ of the problem set. It reflects how
much the solution set deviates from the true optimal bound . The larger the value,
the further the deviation from the true optimal bound and the worse the convergence.
The mathematical formula is as follows.

GD(P, P∗) =

√
∑y∈P minx∈P∗ dis(x, y)2

|P| (25)

where dis(x, y) denotes the Euclidean distance between the y-point in the solution set
P found by the algorithm and the reference optimal solution set P∗.

2. IGD: The average of the distance from each reference point to the nearest solution. The
solution set with smaller IGD values is better. It can respond well to the uniformity
and extensiveness of the distribution in addition to the convergence of the solution set.
The smaller the IGD value, the better the diversity and convergence. The mathematical
formula is as follows.

IGD(P, P∗) =
∑x∈P∗ miny∈P dis(x, y)

|P∗| (26)

3. Spacing: This measures the standard deviation of the minimum distance of each
solution to the other solutions. The smaller the Spacing value is, the more uniform
the solution set is. The mathematical formula is as follows.

Spacing(P) =

√√√√ 1
|P| − 1

|P|

∑
i=1

(
d − di

)2
(27)

where di denotes the minimum distance from the i-th solution of the solution set P
sought by the algorithm to the other solutions, and d denotes the average distance
of di.

4. Delta: A measure of the breadth of the solution set obtained, i.e., the diversity of the
solution set. The smaller the Delta value, the more diverse the solutions in the Pareto
frontier set. Its mathematical formula is as follows.

∆ =
d f + dl + ∑N−1

i=1

∣∣di − d̄
∣∣

d f + dl + (N − 1)d̄
(28)

The parameters d f and dl are the Euclidean distances between the extreme solutions
and the boundary solutions of the obtained non-dominated set.
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5. HV: The volume of the region in the target space enclosed by the set of non-dominated
solutions and reference points obtained by the algorithm. HV is a comprehensive
metric to assess the convergence and diversity of the approximate solution set. The
larger the HV value, the better the comprehensive performance of the algorithm. The
mathematical formula is as follows.

HV = δ

 |S|⋃
i=1

vi

 (29)

where δ denotes the Lebesgue measure, which is used to measure the volume. | S |
denotes the number of non-dominated solution sets. vi denotes the super volume
formed by the reference point and the i-th solution in the solution set.

6. MS: This measures the maximum distance between the solutions in all solution sets.
Specifically, it calculates the distance between the solutions in all solution sets and
returns the maximum distance as the index value. This metric can help assess the
search capability and diversity of the algorithm, as the algorithm is able to search
for more solutions, and the distance between these solutions should be greater. Its
mathematical formula is as follows.

MS(P) =

√√√√ M

∑
m=1

max(xm − ym)
2, (x, y ∈ P) (30)

where M is the dimension of the dataset or the number of targets. x and y are the
solutions in the solution set P.

4.1.2. Dataset

To verify the effectiveness of the algorithm on high-dimensional complex data, this
project uses a financial test dataset from the OR library, which is mainly applied to portfolio
optimization. The dataset contains five files collecting financial indices from Hangsheng
(Hong Kong), DAX (Germany), FSET (UK), S&P (US), and Nikkei (Japan). These five
datasets have dimensions (i.e., number of targets or assets) of 31, 85, 89, 98, and 225,
respectively, and the datasets include low-, medium-, and high-dimensional data. Our
algorithm has to reweight assets based on information from the dataset to find portfolios
with high returns or low risk as early as possible. The dataset can help us validate the
algorithm’s effectiveness on complex and high-dimensional data, as it requires handling
information and relationships among up to 225 assets. The dataset includes the number of
assets, the average return and the variance of returns for each asset, and the correlation
between the assets. A summary of the datasets is presented in Table 1.

Table 1. A summary of the datasets used in experiments.

Dataset Region Dimensions

Hangsheng Hong Kong 31
DAX100 Germany 85
FTSE100 U.K. 89
S&P100 U.S. 98
Nikkei Japan 225

4.1.3. Comparison Algorithm

This experiment compares five multi-objective optimization algorithms (i.e., NSGA-II,
MOEA/D-AEE, MOEA/D-GA, MOEA/D-D-DEM, and MOEA/D-DE [65]). NSGA-II uses
non-dominance ranking and crowdedness distance to maintain the diversity of populations.
MOEA/D-D-DE and MOEA/D-DEM use decomposition methods to transform the multi-
objective problem into multiple single-objective sub-problems and solve these sub-problems
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by differential evolutionary algorithms. MOEA/D-GA uses genetic algorithms to solve
multi-objective problems. All five algorithms use cross-variance for progeny propagation,
and all use a single operator.

4.2. Parameter Configurations

All experiments were repeated 51 times on all five datasets. The population size was
set to 100 and the neighbor size is 20. The number of offspring generated per algorithm
iteration is 1500, and the upper limit of individual neighbor updates in each iteration is 2.
The parameters of the AEE operator in the hybrid operator were set with reference to the
literature [13], and the parameter σ used to determine the origin of the parents was set to
0.9. The initial value of alpha is 0.15. The scaling factor scaling_factor was set to 1.1.

For the parameters of the GAN network model, the learning rates of the discriminator
and generator are 0.0001 and 0.0004, respectively, and the total number of iterations was set
to 200 with reference to the settings in the literature [12]. This paper chose to train the GAN
network every 100 generations, generating 100 individuals each time, and then perform
a fast non-dominated sorting to select the top 20 individuals for replacing the parent
generation. Experimental results were obtained from the last generation of the population.

4.3. Experimental Results and Analysis
4.3.1. Experiment: Comparison Analysis of the APG-SMOEA Algorithm and Other
Algorithms

To better evaluate the effectiveness of the algorithm, the APG-SMOEA algorithm
is compared with other multi-objective optimization algorithms. Figure 2 display the
IGD variation of different algorithms on the Nikkei dataset and the populations’ final
distribution. Our proposed algorithm shows faster convergence in the early stage and
better final results, as depicted in the figure. And the final population distribution fits the
Pareto front perfectly.

Figure 2. Changes in IGD indicators on Nikkei.

Figure 3 shows that, in the late iteration, the APG-SMOEA algorithm does not stop
exploring the solution set even during the convergence to the Pareto front, and the obtained
solution set fits the distribution of the Pareto front perfectly. It shows that the adaptive
control strategy of population entropy is effective and effectively avoids the local optimum.
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Figure 3. Final distributions of populations on Nikkei.

Figures 4 and 5 show the distribution of the population iterative process for generations
1, 2, 3, 5, 100, 150, 200, and 300. The APG-SMOEA algorithm allows a broader exploration
of the space in the early iterations, with a greater diversity of populations and a wider
distribution. The algorithm’s search capability improves with the GAN network. In
particular, training using the best samples from the population can provide a richer and
more diverse solution for the population.

Figure 4. Distributions of populations in the 1-, 2-, 3-, and 5-generation (Nikkei).
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Figure 5. Distributions of populations in the 100-, 150-, 200-, and 300-generation (Nikkei).

Figure 6 shows the update frequency of the different algorithms during the iterations.
The addition of the GAN network results in a decrease in the update frequency of the
children; however, it still outperforms most of the other algorithms. Individuals with long
trajectories (meaning those located near the ends of the Pareto front) can still be partially
updated in the early iterations.

Figure 6. Frequency of successful renewal of 1-, 2-, 3-, and 5-generation offspring (Nikkei).
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Tables A1–A3 (in Appendix B.1) compare the performance metrics of the APG-SMOEA
algorithm with other algorithms on three datasets. Table A1 shows the comparative
experimental results for the FTSE dataset, Table A2 shows the comparative experimental
results for the S&P dataset, and Table A3 shows the comparative experimental results for the
Nikkei dataset. It can clearly be seen that the APG-SMOEA algorithm far surpasses other
algorithms in two metrics, MaxSpread and HV. It even appears exponentially higher. The
APG-SMOEA algorithm has improved the performance of the GD, IGD, Delta, and Spacing
metrics on the high-dimensional dataset, Nikkei, and still has significant improvement in
MaxSpread and HV metrics as well.

4.3.2. Experiment II: Ablation Experiments

In this paper, ablation experiments were completed in a rigorous and comprehensive
manner. The effects of offspring generated by pure GAN networks are clearly analyzed and
compared with those generated by hybrid operators. This paper obtains the population
distributions of both algorithms at generations 2, 3, 5, and 10 during the pre-iterative stage,
as depicted in Figure 7. Figure 8 shows the population distributions of the two algorithms
at the late stage of the iteration, specifically at the 100th, 150th, 200th, and 300th generations.
APG-SMOEA denotes hybrid operator-generated progeny, while APG-SMOEA-15 denotes
pure GAN network-generated progeny.

The experimental results show that model collapse occurs in the APG-SMOEA-15 algo-
rithm. In the initial stage of iteration, both algorithms tend to concentrate their population
distribution towards low-risk and low-return regions, with limited ability to explore the so-
lution space. As the number of population iterations increased, APG-SMOEA successfully
converged with the Pareto front and fitted the best distribution, while APG-SMOEA-15
did not converge with the Pareto front. The initial populations were generated randomly,
resulting in lower quality of the non-dominated solutions obtained by fast non-dominated
sorting and smaller differences between the real and generated data, which eventually led
to deviations from the Pareto frontier.

Figure 7. Distributions of populations in the 2-, 3-, 5-, and 10-generation (Nikkei).
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Figure 8. Distributions of populations in the 100-, 150-, 200-, and 300-generation (Nikkei).

In summary, the hybrid operator-based APG-SMOEA algorithm outperforms the pure
GAN network-based algorithm in solving the multi-objective problem.

4.3.3. Experiment III: Comparative Analysis of Different Parameters of APG-SMOEA
Algorithms

To obtain the optimal parameters for the APG-SMOEA algorithm, this paper uses
scientific experimental methods for parameter optimization. Table 2 provides a detailed
overview of the configuration details of different parameters. This section first compares
four different parameter configurations of the APG-SMOEA algorithm: APG-SMOEA-1,
APG-SMOEA-2, APG-SMOEA-3, and APG-SMOEA-4, to determine the optimal configura-
tion parameters for the GAN network generation probability. This section selects exper-
imental results from the Nikkei and Hangsheng datasets, as shown in Tables A4 and A5
(in Appendix B.2). Through analysis, it is concluded that on the Nikkei dataset, APG-
SMOEA-2 algorithm performs significantly better than other algorithms, while on the
Hangsheng dataset, APG-SMOEA-3 performs significantly better than other algorithms.
Both the APG-SMOEA-2 and APG-SMOEA-3 algorithms have a GAN network generation
probability of 0.1. Therefore, the conclusion is drawn that when the generation probability
of the generative adversarial network is set to 0.1, the algorithm performs optimally.

Table 2. Experimental parameters configuration.

Algorithm GAN Generation Probability GAN Network Training
Period/Algebra

The Number of Individuals Used
to Replace the Parent

APG-SMOEA-1 0.3 100 First 50 individuals
APG-SMOEA-2 0.1 100 First 50 individuals
APG-SMOEA-3 0.1 20 First 10 individuals
APG-SMOEA-4 0.1–0.9 uniform change 100 First 50 individuals
APG-SMOEA-5 0.1 100 First 20 individuals
APG-SMOEA-6 0.1 50 First 50 individuals
APG-SMOEA-7 0.05 100 First 50 individuals
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To determine the optimal settings for two parameters of the generative adversarial
network, namely, the GAN network training period/algebra and the number of individuals
used to replace the parent, we further designed three algorithms with different parameter
settings: APG-SMOEA-5, APG-SMOEA-6, and APG-SMOEA-7. We conducted comparative
experiments and the results are shown in Tables A6 and A7 (in Appendix B.2). This section
still selects the high-dimensional data of the Nikkei index and the Hangsheng index as
a comparison to analyze the influence of these two parameters on the training period
of the GAN network and the number of individuals used to replace the parent when
the GAN network’s generation probability is 0.1. Through comparison, it is found that
on the Hangsheng dataset, the APG-SMOEA-2 algorithm performs best, while on the
Nikkei dataset, the APG-SMOEA-5 performs best. Especially, as a high-dimensional
dataset, Nikkei has achieved all optimal results in various performance indicators with
APG-SMOEA-5. Therefore, we draw the conclusion that the optimal parameters for the
APG-SMOEA algorithm are 0.1 for the GAN network’s generation probability, 100 for the
GAN network’s training period, and 20 for the number of individuals used to replace
the parent. In this paper, we will use these optimal parameters as the parameters of the
APG-SMOEA algorithm.

4.3.4. Experiment IV: APG-SMOEA Algorithm Improvement Exploration

With the experimental results in Section 4.3.3, this paper derives the optimal param-
eters for generating offspring by GANs. However, fixed parameters may not be a better
choice in general. We further explore the generative probabilities of the GAN network.
And the specific parameter configurations are shown in Table 3. Uniform variation refers
to a gradual increase in parameters over generations, while interval variation means that
different generations have fixed probability values. The experimental results in Table A8 (in
Appendix B.3) do not show the expected improvements, indicating that a simple algebraic
variation of GAN generation probabilities is not the optimal choice.

Table 3. Experimental parameters configuration by algebraic variation.

Algorithm GAN Generation Probability GAN Network Training
Period/Algebra

The Number of Individuals Used to
Replace the Parent

APG-SMOEA-8 0.1–0.9 uniform change 100 First 20 individuals
APG-SMOEA-9 0.1–0.9 uniform change 50 First 50 individuals
APG-SMOEA-10 0.1–0.9 interval change 100 First 50 individuals
APG-SMOEA-11 0.1–0.3 interval change 100 First 50 individuals

Based on the above failed experiences, this paper tries to use adaptive control meth-
ods by three different implementations: the first one based on Gaussian distribution
changes [66], the second one based on the proportion of successfully updated generated
offspring, and the last one based on population entropy strategies [67].

Regarding the Gaussian distribution variation methods (APG-SMOEA-12), when
the GAN generation probability is between 0.1 and 0.3, the algorithm can obtain better
performance in this interval. Therefore, this paper uses a Gaussian distribution with a
mean value of 0.15 to generate 1000 random numbers and filter out values greater than 1 or
less than 0, from which we randomly select probability values as the generation probability
of the GAN network.

With regard to the proportion of successfully updated generated offspring methods
(APG-SMOEA-13), this paper records the number of individuals that successfully update
their parents in each generation of GAN-generated offspring, and calculate their proportion
of the total number of individuals. If this ratio is greater than 0.35, it indicates that the
GAN network is well trained and the generation probability of the GAN network needs to
be increased.
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The population entropy control methods (APG-SMOEA-14) can measure the diversity
of populations. If the overall entropy of a generation is higher than the historical average,
it indicates that the diversity of the population is better. In this case, the GAN network’s
generation probability needs to be increased to provide more diverse training samples.

The experimental results show that APG-SMOEA-14 is the best one among the three al-
gorithms, for example in Tables A9 and A10 in the FTSE and DAX dataset (in Appendix B.3).
In view of the situation that the performance of the APG-SMOEA is not particularly sat-
isfactory, inspired by [68], we also propose a learning pool approach. Specifically, the
learning pool serves as a collection that stores the best-performing individuals within the
population. By utilizing these excellent individuals as training samples, we aim to increase
the diversity and quality of samples, thereby improving the generative performance of the
network. However, the final experimental results were not satisfactory, and we will make
further relevant attempts.

In Section 4.3.1, we compared the APG-SMOEA algorithm with other MOEA algo-
rithms by experiments. The results show that the APG-SMOEA algorithm exhibits excellent
performance on high-dimensional data and can significantly improve the exploration ability
of the solution space. As a result, the improvements in both MaxSpread and HV evaluation
metrics are large, with exponential improvements observed on some datasets.

In Section 4.3.2, we performed ablation experiments to verify the necessity of the
hybrid operator. The experimental results show that the generation of offspring from pure
GAN networks leads to the problem of pattern collapse.

In Sections 4.3.3 and 4.3.4, this paper describes the work conducted in the process of
improving the APG-SMOEA algorithm. Section 4.3.3 is an a priori experiment conducted
to determine the hyperparameters of the algorithm. In Section 4.3.4, we proposed three
implementation approaches: Gaussian distribution-based variations, proportion-based
adjustments using the success rate of generated offspring updates, and adaptive variations
based on population entropy. The effectiveness of the adaptive parameters is verified by
experiments. And we decide to use population entropy.

5. Conclusions

This paper proposes a synergistic MOEA with adversarial population generation,
namely, APG-SMOEA, to address complex data issues. The proposed algorithm utilizes
the complementary strengths of MOEAs and GANs to optimize MOPs simultaneously
while effectively exploring the solution space in high-dimensional and non-linear problem
domains. In particular, this paper introduces an adaptive population entropy strategy to
balance the efficiency and quality of offspring selection.

The experimental results show that the APG-SMOEA algorithm is more effective on
complex data on both low and high dimensions, and is superior to the most advanced
MOEA algorithms on various benchmark problems. The proposed algorithm not only
showed superior diversity performance but also exhibited robustness and adaptability to
different complexity problems. For future work, several potential research directions can be
identified. Firstly, we can study the potential synergies between MOEAs, GANs, and other
optimization techniques to develop novel hybrid algorithms with superior performance.
Secondly, distributed computing can be employed to speed up the algorithm’s execution,
so that it can be applied to more demanding optimization tasks when dealing with complex
data. Thirdly, we can enhance the interpretability of APG-SMOEA by integrating various
techniques that help to understand the components of the algorithm, their interactions,
and the decision-making process. Lastly, we can explore various methods, such as the
neurodynamic approach [23] and reinforcement learning algorithm [69], to improve asset
allocation decisions by accounting for multiple conflicting objectives, ultimately enhancing
portfolio performance and addressing the complexities associated with financial markets.
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Appendix A. The Algorithms

Appendix A.1. APG-SMOEA Algorithm Framework

Algorithm A1 APG-SMOEA algorithm framework

Input: T is the maximum number of iterations, nr is the maximum number of updates of
the offspring;

Initialize: T = 1500, nr = 2;
1: Read the dataset parameters
2: Generate initial population
3: Calculate initial parameters
4: Build GAN networks
5: while t < T do
6: for xi in population do
7: Determine the mating pool b of offspring produced by the variant operator
8: if the Rn > α then
9: AEE operator generates offspring (Equation (15))

10: else
11: GAN networks generate offspring (Algorithm A2, in Appendix A.2)
12: end if
13: Repair offspring
14: Calculate information of offspring (e.g., return, risk, reference points)
15: Calculate and update initial parameters
16: for bi in neighbor of b do
17: if the offspring M, V is better than the parent bi then
18: Update populations,replace bi with y
19: update_count + 1
20: end if
21: if update_count >= nr then
22: Break;
23: end if
24: end for
25: Update α (Algorithm A3, in Appendix A.3)
26: end for
27: end while

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html
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Appendix A.2. GAN Networks Generate Offspring

Algorithm A2 GAN networks generate offspring

Input: max_num is the upper limit of the child selection, period is the training period of
GAN network, t is the population iteration times.

Initialize: max_num = 20, period = 100.
1: if k = max_num or k = 0 then
2: Fast non-dominated sorting of populations
3: Record the top ten individuals in the population
4: Mark the top 10 individuals as excellent individuals
5: Generate a mating pool containing the best individuals as real data for training
6: Generate input data containing both true data (top ten best individuals) and false

data (dominated solutions)
7: end if
8: if t%period = 0 or t = 0 then
9: Train GAN networks (Equation (16) )

10: Generate offspring using GAN (Equation (20))
11: Perform a fast non-dominated sort on the generated offspring, and use the first

twenty individuals to replace the parent
12: end if

Appendix A.3. Update Alpha

Algorithm A3 Update alpha

Input: E is the entropy of the population, α is the ratio of mixed operators, scaling_ f actor
is the scaling factor of α.

Initialize: α = 0.15, scaling_ f actor = 1.1.
1: Initialize each individual with probability P to 0
2: Calculate the Euclidean distance between individual Pi and other individuals Pj in

the summation population to obtain the similarity of individuals in the population
(Equation (21))

3: Converting similarity to probability via Gaussian distribution
4: Normalization of probabilities (Equation (22))
5: Calculating the entropy of a population by probability (Equation (23))
6: if E < avg_E then
7: α = max(alpha_list[-1] /scaling_ f actor, 0) (Equation (24))
8: else
9: α = min(alpha_list[-1] * scaling_ f actor, 1) (Equation (24))

10: end if
11: Regularize the α so that the α regresses towards the initial α
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Appendix B. The Tables

Appendix B.1. Tables in Experiment 1

Table A1. Comparative experimental results for the FTSE dataset.

Metric MOEA/D-AEE MOEA/D-DEM MOEA/D-DE MOEA/D-GA NSGA-II APG-SMOEA

Best 5.27 × 10−6 6.32 × 10−6 7.01 × 10−6 2.84 × 10−6 7.38 × 10−6 4.58 × 10−3

GD Median 7.05 × 10−6 9.58 × 10−6 1.83 × 10−5 5.05 × 10−6 9.25 × 10−6 7.98 × 10−1

Std. 7.28 × 10−7 2.41 × 10−6 1.55 × 10−4 1.60 × 10−6 9.50 × 10−7 2.61 × 10−1

Best 1.71 × 10−5 1.38 × 10−5 9.87 × 10−6 1.14 × 10−5 2.39 × 10−5 1.53 × 10−4

Spacing Median 2.07 × 10−5 2.01 × 10−5 1.72 × 10−5 1.97 × 10−5 2.99 × 10−5 1.12 × 10−2

Std. 3.76 × 10−6 4.54 × 10−6 3.34 × 10−6 5.10 × 10−6 2.24 × 10−6 1.20 × 10−2

Best 5.96 × 10−3 5.79 × 10−3 5.74 × 10−3 5.47 × 10−3 5.67 × 10−3 2.27 × 100

Max Spread Median 5.56 × 10−3 5.40 × 10−3 5.15 × 10−3 4.91 × 10−3 5.45 × 10−3 1.96 × 100

Std. 1.59 × 10−4 1.93 × 10−4 5.08 × 10−4 4.19 × 10−4 1.69 × 10−4 6.28 × 10−1

Best 4.01 × 10−1 4.25 × 10−1 4.21 × 10−1 4.27 × 10−1 5.47 × 10−1 6.60 × 10−1

Delta Median 4.33 × 10−1 4.72 × 10−1 4.51 × 10−1 5.05 × 10−1 6.06 × 10−1 8.78 × 10−1

Std. 2.02 × 10−2 3.06 × 10−2 6.30 × 10−2 6.88 × 10−2 3.34 × 10−2 1.16 × 10−1

Best 2.30 × 10−5 2.90 × 10−5 4.26 × 10−5 4.07 × 10−5 3.22 × 10−5 7.59 × 10−5

IGD Median 3.71 × 10−5 5.31 × 10−5 9.09 × 10−5 8.76 × 10−5 4.74 × 10−5 1.08 × 10−3

Std. 1.14 × 10−5 2.16 × 10−5 1.47 × 10−4 4.33 × 10−5 1.38 × 10−5 3.65 × 10−4

Best 1.96 × 10−2 1.96 × 10−2 1.96 × 10−2 1.96 × 10−2 1.96 × 10−2 3.93 × 10−1

HV Median 1.96 × 10−2 1.96 × 10−2 1.96 × 10−2 1.92 × 10−2 1.96 × 10−2 3.67 × 10−1

Std. 1.08 × 10−8 2.50 × 10−6 1.43 × 10−3 8.49 × 10−4 1.45 × 10−4 8.88 × 10−2

Table A2. Comparative experimental results for the S&P dataset.

Metric MOEA/D-AEE MOEA/D-DEM MOEA/D-DE MOEA/D-GA NSGA-II APG-SMOEA

Best 9.36 × 10−6 1.13 × 10−5 1.27 × 10−5 3.20 × 10−6 1.01 × 10−5 7.92 × 10−3

GD Median 1.21 × 10−5 1.75 × 10−5 3.92 × 10−5 5.02 × 10−6 1.29 × 10−5 6.76 × 10−1

Std. 1.55 × 10−6 3.45 × 10−6 7.64 × 10−5 1.86 × 10−6 1.42 × 10−6 1.98 × 10−1

Best 2.25 × 10−5 2.01 × 10−5 1.72 × 10−5 1.77 × 10−5 2.51 × 10−5 2.75 × 10−4

Spacing Median 2.66 × 10−5 2.76 × 10−5 2.31 × 10−5 2.35 × 10−5 3.56 × 10−5 9.55 × 10−3

Std. 5.45 × 10−6 5.26 × 10−6 4.78 × 10−6 5.06 × 10−6 3.71 × 10−6 8.21 × 10−3

Best 7.70 × 10−3 7.86 × 10−3 7.60 × 10−3 6.87 × 10−3 7.29 × 10−3 1.99 × 100

Max Spread Median 7.41 × 10−3 7.55 × 10−3 7.23 × 10−3 5.82 × 10−3 6.57 × 10−3 1.62 × 100

Std. 1.30 × 10−4 1.61 × 10−4 2.53 × 10−4 4.35 × 10−4 3.52 × 10−4 4.82 × 10−1

Best 3.29 × 10−1 3.30 × 10−1 3.29 × 10−1 4.22 × 10−1 5.37 × 10−1 6.61 × 10−1

Delta Median 3.53 × 10−1 3.74 × 10−1 3.66 × 10−1 5.57 × 10−1 6.48 × 10−1 8.59 × 10−1

Std. 1.77 × 10−2 3.37 × 10−2 2.41 × 10−2 3.88 × 10−2 3.69 × 10−2 1.34 × 10−1

Best 3.21 × 10−5 3.30 × 10−5 3.64 × 10−5 4.88 × 10−5 4.08 × 10−5 1.73 × 10−4

IGD Median 4.15 × 10−5 4.35 × 10−5 7.12 × 10−5 1.36 × 10−4 7.08 × 10−5 1.28 × 10−3

Std. 5.77 × 10−6 7.65 × 10−6 4.16 × 10−5 4.13 × 10−5 2.21 × 10−5 3.59 × 10−4

Best 1.83 × 10−2 1.83 × 10−2 1.83 × 10−2 1.82 × 10−2 1.82 × 10−2 3.90 × 10−1

HV Median 1.83 × 10−2 1.83 × 10−2 1.83 × 10−2 1.69 × 10−2 1.74 × 10−2 3.65 × 10−1

Std. 1.75 × 10−8 3.47 × 10−8 4.10 × 10−4 6.01 × 10−4 4.32 × 10−4 7.31 × 10−2
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Table A3. Comparative experimental results for the Nikkei dataset.

Metric MOEA/D-AEE MOEA/D-DEM MOEA/D-DE MOEA/D-GA NSGA-II APG-SMOEA

Best 5.32 × 10−6 5.10 × 10−6 5.93 × 10−5 9.95 × 10−6 2.54 × 10−6 6.13 × 10−6

GD Median 7.36 × 10−6 8.06 × 10−6 1.45 × 10−4 3.32 × 10−5 4.24 × 10−6 8.54 × 10−6

Std. 9.19 × 10−7 1.66 × 10−4 7.09 × 10−5 2.08 × 10−4 2.01 × 10−6 3.76 × 10−4

Best 1.42 × 10−5 1.28 × 10−5 5.99 × 10−6 0.00 × 100 1.05 × 10−5 1.38 × 10−5

Spacing Median 1.79 × 10−5 2.08 × 10−5 1.15 × 10−5 1.92 × 10−5 1.45 × 10−5 2.03 × 10−5

Std. 4.87 × 10−6 5.77 × 10−6 4.53 × 10−6 9.72 × 10−6 1.87 × 10−6 3.84 × 10−5

Best 4.17 × 10−3 4.23 × 10−3 4.29 × 10−3 2.63 × 10−3 3.36 × 10−3 1.16 × 10−2

Max Spread Median 3.93 × 10−3 3.94 × 10−3 2.96 × 10−3 2.20 × 10−3 2.88 × 10−3 4.01 × 10−3

Std. 1.21 × 10−4 5.39 × 10−4 5.48 × 10−4 4.65 × 10−4 2.54 × 10−4 1.15 × 10−3

Best 3.87 × 10−1 3.99 × 10−1 3.17 × 10−1 8.40 × 10−1 6.09 × 10−1 3.99 × 10−1

Delta Median 4.42 × 10−1 4.81 × 10−1 5.58 × 10−1 9.34 × 10−1 6.81 × 10−1 4.55 × 10−1

Std. 6.09 × 10−2 9.05 × 10−2 1.00 × 10−1 3.55 × 10−2 2.94 × 10−2 1.42 × 10−1

Best 1.72 × 10−5 1.90 × 10−5 7.90 × 10−5 1.77 × 10−4 4.64 × 10−5 1.84 × 10−5

IGD Median 2.47 × 10−5 2.73 × 10−5 2.23 × 10−4 2.41 × 10−4 9.69 × 10−5 2.75 × 10−5

Std. 7.05 × 10−6 4.09 × 10−4 6.95 × 10−5 5.29 × 10−4 3.67 × 10−5 2.84 × 10−5

Best 2.06 × 10−4 2.06 × 10−4 2.05 × 10−4 1.98 × 10−4 1.99 × 10−4 3.85 × 10−4

HV Median 2.06 × 10−4 2.06 × 10−4 1.98 × 10−4 1.86 × 10−4 1.91 × 10−4 2.06 × 10−4

Std. 1.06 × 10−8 2.12 × 10−5 7.70 × 10−6 2.64 × 10−5 3.08 × 10−6 2.69 × 10−5

Appendix B.2. Tables in Experiment 3

Table A4. Experimental results for the Hangsheng dataset.

Metric APG-SMOEA-1 APG-SMOEA-2 APG-SMOEA-3 APG-SMOEA-4

Best 1.36 × 10−2 7.05 × 10−5 2.49 × 10−4 1.53 × 10−4

GD Median 4.11 × 10−1 4.20 × 10−1 3.96 × 10−1 4.11 × 10−1

Std. 8.97 × 10−2 1.06 × 10−1 1.70 × 10−1 1.18 × 10−1

Best 1.12 × 10−3 5.63 × 10−5 4.45 × 10−5 5.17 × 10−5

Spacing Median 6.81 × 10−3 6.86 × 10−3 5.95 × 10−3 5.66 × 10−3

Std. 5.86 × 10−3 4.78 × 10−3 5.70 × 10−3 6.72 × 10−3

Best 1.09 × 100 1.09 × 100 1.09 × 100 1.09 × 100

Max Spread Median 1.04 × 100 1.05 × 100 1.06 × 100 1.05 × 100

Std. 1.68 × 10−1 2.39 × 10−1 3.91 × 10−1 2.85 × 10−1

Best 7.12 × 10−1 6.11 × 10−1 4.48 × 10−1 6.10 × 10−1

Delta Median 9.48 × 10−1 9.48 × 10−1 9.49 × 10−1 9.12 × 10−1

Std. 1.51 × 10−1 1.67 × 10−1 1.98 × 10−1 2.05 × 10−1

Best 1.72 × 10−4 3.94 × 10−5 3.81 × 10−5 3.82 × 10−5

IGD Median 6.38 × 10−4 6.21 × 10−4 5.97 × 10−4 6.43 × 10−4

Std. 7.90 × 10−5 1.31 × 10−4 1.80 × 10−4 1.40 × 10−4

Best 8.35 × 10−2 8.43 × 10−2 8.91 × 10−2 8.32 × 10−2

HV Median 7.70 × 10−2 7.66 × 10−2 8.24 × 10−2 7.65 × 10−2

Std. 7.76 × 10−3 1.36 × 10−2 2.38 × 10−2 1.66 × 10−2
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Table A5. Experimental results for the Nikkei dataset.

Metric APG-SMOEA-1 APG-SMOEA-2 APG-SMOEA-3 APG-SMOEA-4

Best 9.40 × 10−6 7.15 × 10−6 2.31 × 10−5 8.79 × 10−6

GD Median 3.23 × 10−5 3.14 × 10−5 7.81 × 10−5 2.92 × 10−5

Std. 1.37 × 10−3 2.34 × 10−5 1.90 × 10−3 1.02 × 10−3

Best 1.33 × 10−5 1.41 × 10−5 1.90 × 10−5 1.49 × 10−5

Spacing Median 2.31 × 10−5 2.30 × 10−5 2.70 × 10−5 2.33 × 10−5

Std. 6.86 × 10−5 6.64 × 10−6 5.25 × 10−5 5.28 × 10−5

Best 3.37 × 10−2 9.25 × 10−3 2.43 × 10−2 1.88 × 10−2

Max Spread Median 4.24 × 10−3 4.27 × 10−3 4.27 × 10−3 4.26 × 10−3

Std. 4.21 × 10−3 7.25 × 10−4 4.44 × 10−3 2.58 × 10−3

Best 3.87 × 10−1 3.93 × 10−1 4.35 × 10−1 4.13 × 10−1

Delta Median 5.11 × 10−1 5.07 × 10−1 6.10 × 10−1 5.26 × 10−1

Std. 1.35 × 10−1 1.15 × 10−1 2.11 × 10−1 1.50 × 10−1

Best 2.08 × 10−5 2.02 × 10−5 4.69 × 10−5 2.11 × 10−5

IGD Median 3.18 × 10−5 2.58 × 10−5 1.18 × 10−4 3.00 × 10−5

Std. 4.79 × 10−5 2.80 × 10−5 3.70 × 10−5 2.90 × 10−5

Best 4.22 × 10−4 2.44 × 10−4 4.25 × 10−4 4.04 × 10−4

HV Median 2.07 × 10−4 2.07 × 10−4 2.07 × 10−4 2.06 × 10−4

Std. 3.51 × 10−5 5.27 × 10−6 7.05 × 10−5 4.58 × 10−5

Table A6. Experimental results for the Hangsheng dataset where GAN generation probability is 0.1.

Metric APG-SMOEA-2 APG-SMOEA-5 APG-SMOEA-6 APG-SMOEA-7

Best 7.05 × 10−5 1.59 × 10−4 1.95 × 10−4 1.18 × 10−4

GD Median 4.20 × 10−1 4.22 × 10−1 3.87 × 10−1 3.91 × 10−1

Std. 1.06 × 10−1 1.24 × 10−1 1.35 × 10−1 1.39 × 10−1

Best 5.63 × 10−5 5.81 × 10−5 1.21 × 10−4 6.66 × 10−5

Spacing Median 6.86 × 10−3 6.26 × 10−3 5.87 × 10−3 7.12 × 10−3

Std. 4.78 × 10−3 5.52 × 10−3 5.09 × 10−3 6.87 × 10−3

Best 1.09 × 100 1.09 × 100 1.09 × 100 1.09 × 100

Max Spread Median 1.05 × 100 1.05 × 100 1.02 × 100 9.93 × 10−1

Std. 2.39 × 10−1 2.76 × 10−1 2.98 × 10−1 3.09 × 10−1

Best 6.11 × 10−1 6.41 × 10−1 7.58 × 10−1 5.78 × 10−1

Delta Median 9.48 × 10−1 9.06 × 10−1 9.24 × 10−1 9.88 × 10−1

Std. 1.67 × 10−1 1.72 × 10−1 1.40 × 10−1 2.02 × 10−1

Best 3.94 × 10−5 4.11 × 10−5 9.90 × 10−5 3.58 × 10−5

IGD Median 6.21 × 10−4 6.43 × 10−4 6.01 × 10−4 5.98 × 10−4

Std. 1.31 × 10−4 1.36 × 10−4 1.32 × 10−4 1.63 × 10−4

Best 8.43 × 10−2 8.26 × 10−2 8.61 × 10−2 8.26 × 10−2

HV Median 7.66 × 10−2 7.65 × 10−2 7.83 × 10−2 7.61 × 10−2

Std. 1.36 × 10−2 1.47 × 10−2 1.59 × 10−2 1.82 × 10−2
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Table A7. Experimental results for the Nikkei dataset where GAN generation probability is 0.1.

Metric APG-SMOEA-2 APG-SMOEA-5 APG-SMOEA-6 APG-SMOEA-7

Best 7.15 × 10−6 7.15 × 10−6 1.80 × 10−5 9.92 × 10−6

GD Median 3.14 × 10−5 2.58 × 10−5 4.04 × 10−5 3.30 × 10−5

Std. 2.34 × 10−5 8.61 × 10−4 5.25 × 10−3 1.98 × 10−3

Best 1.41 × 10−5 1.57 × 10−5 1.73 × 10−5 1.63 × 10−5

Spacing Median 2.30 × 10−5 2.22 × 10−5 2.34 × 10−5 2.27 × 10−5

Std. 6.64 × 10−6 2.87 × 10−5 2.33 × 10−4 3.43 × 10−5

Best 9.25 × 10−3 2.23 × 10−2 1.55 × 10−1 3.89 × 10−2

Max Spread Median 4.27 × 10−3 4.28 × 10−3 4.22 × 10−3 4.26 × 10−3

Std. 7.25 × 10−4 2.56 × 10−3 2.11 × 10−2 6.21 × 10−3

Best 3.93 × 10−1 3.87 × 10−1 4.24 × 10−1 4.02 × 10−1

Delta Median 5.07 × 10−1 4.99 × 10−1 5.14 × 10−1 5.05 × 10−1

Std. 1.15 × 10−1 9.68 × 10−2 1.17 × 10−1 1.40 × 10−1

Best 2.02 × 10−5 1.96 × 10−5 2.24 × 10−5 1.81 × 10−5

IGD Median 2.58 × 10−5 2.44 × 10−5 3.69 × 10−5 2.61 × 10−5

Std. 2.80 × 10−5 1.62 × 10−5 3.99 × 10−5 2.57 × 10−5

Best 1.24 × 10−3 2.05 × 10−3 3.85 × 10−3 2.96 × 10−3

HV Median 1.00 × 10−3 1.00 × 10−3 1.00 × 10−3 1.00 × 10−3

Std. 3.29 × 10−5 1.56 × 10−4 3.98 × 10−4 3.52 × 10−4

Appendix B.3. Tables in Experiment 4

Table A8. Experimental results for the Nikkei dataset by algebraic variation.

Metric APG-SMOEA-4 APG-SMOEA-8 APG-SMOEA-9 APG-SMOEA-10 APG-SMOEA-11

Best 8.79 × 10−6 1.30 × 10−5 1.67 × 10−5 1.07 × 10−5 1.01 × 10−5

GD Median 2.92 × 10−5 3.97 × 10−5 3.96 × 10−5 2.36 × 10−5 2.86 × 10−5

Std. 1.02 × 10−3 1.98 × 10−3 1.12 × 10−3 1.28 × 10−3 2.55 × 10−5

Best 1.49 × 10−5 1.99 × 10−5 1.82 × 10−5 1.25 × 10−5 7.15 × 10−6

Spacing Median 2.33 × 10−5 2.28 × 10−5 2.30 × 10−5 2.31 × 10−5 2.27 × 10−5

Std. 5.28 × 10−5 1.41 × 10−4 9.78 × 10−5 3.50 × 10−5 9.03 × 10−6

Best 1.88 × 10−2 4.71 × 10−2 3.01 × 10−2 2.30 × 10−2 4.93 × 10−3

MS Median 4.26 × 10−3 4.23 × 10−3 4.24 × 10−3 4.27 × 10−3 4.27 × 10−3

Std. 2.58 × 10−3 6.23 × 10−3 3.80 × 10−3 3.06 × 10−3 2.99 × 10−4

Best 4.13 × 10−1 4.19 × 10−1 4.11 × 10−1 4.24 × 10−1 3.93 × 10−1

Delta Median 5.26 × 10−1 5.16 × 10−1 5.35 × 10−1 5.20 × 10−1 5.04 × 10−1

Std. 1.50 × 10−1 1.31 × 10−1 1.21 × 10−1 9.23 × 10−2 1.09 × 10−1

Best 2.11 × 10−5 1.90 × 10−5 2.21 × 10−5 2.16 × 10−5 1.90 × 10−5

IGD Median 3.00 × 10−5 3.89 × 10−5 3.79 × 10−5 2.72 × 10−5 2.62 × 10−5

Std. 2.90 × 10−5 3.74 × 10−5 6.33 × 10−5 2.67 × 10−5 5.84 × 10−5

Best 5.82 × 10−4 7.28 × 10−4 6.30 × 10−4 7.48 × 10−4 3.19 × 10−4

HV Median 2.88 × 10−4 2.88 × 10−4 2.88 × 10−4 2.88 × 10−4 2.88 × 10−4

Std. 6.68 × 10−5 7.25 × 10−5 6.27 × 10−5 7.46 × 10−5 6.00 × 10−6
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Table A9. Experimental results for the FTSE dataset by adaptive parameters.

Metric APG-SMOEA-5 APG-SMOEA-12 APG-SMOEA-13 APG-SMOEA-14

Best 5.17 × 10−2 8.76 × 10−2 2.95 × 10−1 1.13 × 10−2

GD Median 8.12 × 10−1 9.48 × 10−1 9.55 × 10−1 8.26 × 10−1

Std. 1.72 × 10−1 1.52 × 10−1 1.78 × 10−1 2.43 × 10−1

Best 9.19 × 10−4 8.27 × 10−3 2.41 × 10−3 2.73 × 10−4

Spacing Median 1.06 × 10−2 1.22 × 10−2 1.47 × 10−2 1.14 × 10−2

Std. 8.64 × 10−3 8.80 × 10−3 2.55 × 10−2 9.52 × 10−3

Best 2.28 × 100 2.41 × 100 2.41 × 100 2.40 × 100

MS Median 2.02 × 100 2.39 × 100 2.40 × 100 2.07 × 100

Std. 3.96 × 10−1 3.48 × 10−1 2.97 × 10−1 5.94 × 10−1

Best 6.67 × 10−1 6.98 × 10−1 7.03 × 10−1 6.63 × 10−1

Delta Median 8.31 × 10−1 8.35 × 10−1 9.13 × 10−1 8.51 × 10−1

Std. 1.00 × 10−1 1.45 × 10−1 1.94 × 10−1 1.29 × 10−1

Best 3.11 × 10−4 5.53 × 10−4 7.23 × 10−4 1.23 × 10−4

IGD Median 1.15 × 10−3 1.36 × 10−3 1.30 × 10−3 1.09 × 10−3

Std. 2.65 × 10−4 2.08 × 10−4 2.13 × 10−4 3.07 × 10−4

Best 3.84 × 10−1 3.95 × 10−1 3.97 × 10−1 3.99 × 10−1

HV Median 3.67 × 10−1 3.74 × 10−1 3.67 × 10−1 3.69 × 10−1

Std. 3.94 × 10−2 2.61 × 10−2 3.30 × 10−2 6.40 × 10−2

Table A10. Experimental results for the DAX dataset by adaptive parameters.

Metric APG-SMOEA-5 APG-SMOEA-12 APG-SMOEA-13 APG-SMOEA-14

Best 7.32 × 10−2 2.11 × 10−4 2.51 × 10−1 8.33 × 10−3

GD Median 6.11 × 10−1 6.83 × 10−1 7.12 × 10−1 5.06 × 10−1

Std. 1.63 × 10−1 1.43 × 10−1 2.16 × 10−1 2.25 × 10−1

Best 1.64 × 10−3 1.15 × 10−4 4.84 × 10−4 2.81 × 10−4

Spacing Median 1.03 × 10−2 1.11 × 10−2 1.01 × 10−2 9.66 × 10−3

Std. 6.55 × 10−3 9.92 × 10−3 8.99 × 10−3 1.26 × 10−2

Best 1.92 × 100 1.92 × 100 1.92 × 100 1.91 × 100

MS Median 1.61 × 100 1.91 × 100 1.90 × 100 1.50 × 100

Std. 3.71 × 10−1 3.05 × 10−1 2.71 × 10−1 5.57 × 10−1

Best 8.16 × 10−1 7.76 × 10−1 7.43 × 10−1 8.18 × 10−1

Delta Median 9.61 × 10−1 9.25 × 10−1 9.78 × 10−1 9.56 × 10−1

Std. 9.06 × 10−2 1.60 × 10−1 2.01 × 10−1 1.18 × 10−1

Best 2.71 × 10−4 5.05 × 10−5 4.80 × 10−4 2.24 × 10−4

IGD Median 7.08 × 10−4 7.18 × 10−4 7.30 × 10−4 7.14 × 10−4

Std. 1.09 × 10−4 1.02 × 10−4 6.81 × 10−5 1.55 × 10−4

Best 1.81 × 10−1 2.03 × 10−1 1.86 × 10−1 1.97 × 10−1

HV Median 1.59 × 10−1 1.70 × 10−1 1.66 × 10−1 1.67 × 10−1

Std. 1.72 × 10−2 2.64 × 10−2 3.04 × 10−2 3.62 × 10−2
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