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Abstract: In this work, we delve into a nonlinear integral equation (IEq) with multiple variable time
delays and a nonlinear integro-differential equation (IDEq) without delay. Global existence and
uniqueness (GEU) of solutions of that IEq with multiple variable time delays and IDEq are investi-
gated by the fixed point method using progressive contractions, which are due to T.A. Burton. We
prove four new theorems including sufficient conditions with regard to GEU of solutions of the equa-
tions. The results generalize and improve some related published results of the relevant literature.

Keywords: GEU of solutions; integral equation; integro-differential equation; variable time delay;
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1. Introduction

T.A. Burton [1–4] constructed an interesting technique called progressive contractions
to investigate GEU of solutions of various kinds of differential equations, integral equations,
and integro-differential equations. As a consequence of this technique, researchers avoided
the process of establishing existence on a possibly short interval, translating the equation
to a later starting time, and then connecting a solution on the new interval to the previous
one. Indeed, this technique is very powerful, flexible, and simple for investigating GEU
of solutions of integral equations, integro-differential equations, fractional differential
equations, etc. (see Burton [1–3,5,6], Burton and Purnaras [4,7,8], Ilea and Otrocol [9,10],
and references in these papers).

We will now briefly outline some earlier results with regard to GEU of solutions of
various IEqs with and without delay and an IDEq.

In 2017 and 2018, Burton and Purnaras ([7,8]) delved into the following IEqs including
a variable delay and without delay:

x(t) = L(t) + g(t, x(t)) +
t∫

0

A(t − s)[ f (s, x(s)) + f (s, x(s − r(s)))]ds (1)
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and

x(t) = g(t, x(t)) +
t∫

0

A(t − s) f (s, x(s))ds,

respectively. The authors obtained some new and attractive results with regard to GEU
of solutions of these IEqs according to progressive contractions. In light of the available
data of the present literature, for the first time, Burton and Purnaras [7] achieved the
application of progressive contractions from IEqs without delay to the delay IEq (1) to
obtain global unique solutions. Next, when we convert IEq (1) to the corresponding delay
differential equation, the derivative of the function L(t) of IEq (1) can be considered as a
nonhomogeneous term.

Later, in 2019, Burton (Theorems 2.1 and 2.2 in [4]) constructed sufficient conditions
guaranteeing a unique solution of the above last IEq on R+,R+ = [0, ∞), by virtue of a
simple way of progressive contractions.

In 2020, Ilea and Otrocol [9] delved into the nonlinear IEqs

x(t) =
t∫

0

K(t, s, x(s))ds

and

x(t) = g(t, x(t)) +
t∫

0

f (t, s, x(s))ds.

Ilea and Otrocol [9] extended and improved the Burton method to the case where instead
of scalar equations, they discussed GEU of solutions of these IEqs in a Banach space.

Recently, Tunç et al. [11] dealt with the following nonlinear Hammerstein-type func-
tional integral equation (HTFIE):

x(t) = F(x(t)) + G(t, x(t)) + H(t, x(t))
t∫

0

[K(t, s, x(s)) + Q(t, s, q(x(s)))]ds,

where x ∈ C([0, b], B), t, s ∈ [0, b], s ≤ t, F, q ∈ C(B, B), G, H ∈ C([0, b]× B, B), K, Q ∈
C([0, b]× [0, b]× B, B), b ∈ R, b > 0, and B is a Banach space. Tunç et al. [11] applied and
extended Burton’s method to this general and nonlinear HTFIE in a Banach space using
the Chebyshev norm and complete metric. In Tunç et al. [11], two new results consisting
of sufficient conditions have been proved with regard to existence and uniqueness of
solutions. Hence, the authors extended Burton’s progressive contraction method to general
and nonlinear HTFIEs in Banach spaces.

As for some other fixed point results, applications of fixed point methods, etc., one
can find several interesting results in the papers of Abbas and Benchohra [12], Banaś
and Rzepka [13], Becker et al. [5], Burton and Purnaras [14–16], Burton and Zhang [17],
Chauhan et al. [18], Ilea and Otrocol [10], Khan et al. ([19]), Petruşel et al. ([20,21]), Tunç and
Tunç ([22–24]), the books of Burton [6], Smart [25], and the references therein. On the other
hand, recently, Assari et al. [26] and Assari and Dehghan [27] presented a numerical method
for solving logarithmic Fredholm integral equations, which occur as a reformulation of two-
dimensional Helmholtz equations over the unit circle with the Robin boundary conditions,
and a computational scheme to solve nonlinear logarithmic singular boundary integral
equations, which arise from boundary value problems of Laplace equations with nonlinear
Robin boundary conditions, respectively.

The first key work for our paper is the paper of Burton and Purnaras [7] and their
results (Theorems 2.2 and 2.3 in [7]). In our work, we delve into a more general IEq than
an IEq studied for GEU of solutions by progressive contractions in Burton and Purnaras [7].
Indeed, we will delve into a nonlinear IEq with multiple variable time delays. Hence,
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motivated by the results of Burton [4], Burton and Purnaras ([7,8]), and Ilea and Otrocol [9],
we first delve into the following IEq including multiple variable delays:

x(t) =q(t) + r(x(t)) + h(t, x(t)) + g(t, x(t))
t∫

0

A(t − s) f (s, x(s))ds

+
N

∑
i=1

t∫
0

Ai(t − s) fi(s, x(s), x(s − τi(s)))ds, (2)

where t ∈ R+, R+ = [0, ∞), x ∈ R, τi ∈ C(R+, (0, ∞)), q ∈ C(R+,R), r ∈ C(R,R), h, g ∈
C(R+ ×R,R), f ∈ C(R+ ×R,R), fi ∈ C(R+ ×R×R,R) and A, Ai ∈ C((0, ∞),R),
i = 1, 2, . . . , N.

Let τi(t) ≥ α > 0, α ∈ R, such that α = max{αi}, i = 1, 2, . . . , N.
It should be noted that qualitative behaviors of solutions such as existence, continuabil-

ity, and uniqueness of solutions of retarded differential equations, which include multiple
constant delays or variable delays, are very attractive concepts in the recent literature.
Hence, to the best of our information, it is natural to consider IEq (2) as a new mathemati-
cal model.

The first purpose of this paper is to broaden the application of progressive contractions
of Burton and Purnaras (Theorems 2.2 and 2.3 in [7]) to obtain GEU of solutions of IEq (2).

Each of the above problems in the papers of Burton [1–4], Burton and Purnaras ([7,8]),
Ilea and Otrocol [22], and Tunç et al. [25] is an essentially different type and the title of each
paper is chosen to allow interested readers to detect which subject is being treated.

The second key work for our paper is the paper of Burton [1] and his results (Theorems
2.1 and 2.2 in [1]). In 2016, Burton [1] considered a nonlinear scalar IDEq of the form

x′(t) = g(t, x(t)) +
t∫

0

A(t − s) f (s, x(s))ds. (3)

Burton [1] used the method of “direct fixed point mappings” by considering progressive
contractions and obtained some sufficient conditions that guarantee the GEU of solutions
of scalar IDEq (3). To the best of our information, we should also state that there is no other
paper with regard to GEU of solutions of IDEqs where progressive contractions are used as
a basic tool to achieve proofs. In this paper, we secondly delve into a more general IDEq
than IDEq (3), which has been studied for GEU of solutions by progressive contractions in
the paper of Burton [1]. Hence, motivated by the results of Burton [1], the works mentioned
above, and the references of this paper, we will delve into the following IDEq:

x′(t) = r(x(t)) + g(t, x(t)) + h(t, x(t))
t∫

0

A(t − s) f (s, x(s))ds, x(0) = a, a ∈ R, (4)

where t ∈ R+, x ∈ R, r(x(0)) = 0, r ∈ C(R,R), h, g ∈ C(R+ ×R,R), g(0, x) = 0,
f ∈ C(R+ ×R,R) and A ∈ C((0, ∞),R).

The remaining sections of this work include the following contents. Some settings
with regard to IEq (2) are put forward in Section 2. Afterwards, Section 3 includes a lemma
which extends progressive contractions to nonlinear delay IEq (2), and this section also
includes four new theorems as the findings of this paper with regard to IEq (2) and IDEq (4),
respectively. As for the remaining two sections, called Sections 4 and 5, they consist of the
discussion and conclusion of this work, respectively.

2. The Setting

We now point out some basic assumptions with regard to IEq (2), which will be used
in the proofs of the results of this paper.
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We assume that

lim
t→0

t∫
0

|A(s)|ds = 0.

Let β1 < 1 and T be positive constants such that

0 < T < α and r0 + h0 + f0g0

T∫
0

|A(s)|ds < β1. (5)

For E > 0, there exist Hi, i = 1, 2, . . . , N, such that −Hi ≤ t − τi(t), 0 ≤ t ≤ E, where
Hi ∈ R, Hi > 0. Let H = max(Hi). Then −H ≤ t − τi(t).

Hence, there is an initial function ω ∈ C([−H, 0],R) with ω(0) = q(0) such that

x(t − τi(t)) = ω(t − τi(t)),−H ≤ t − τi(t) ≤ 0, i = 1, 2, . . . , N. (6)

Progressive contractions allow the following conditions: K can be f0g0, and H grows
while E grows and is unbounded when α tends to zero.

We will divide the interval [0, E] into n equal splits such that the length of each part is
denoted by S, 0 < S < T, and we represent the terminal marks by

0 = T0 < T1 < T2 < . . . < Tn = E

with Ti − Ti−1 = S and nS = T. Next, on each n equal segment, the mapping derived from
IEq (2) will be a contraction giving a unique segment of the solution of IEq (2) and each of
these segments will allow us to ignore fi(t, x(t), x(t − τi(t))), i = 1, 2, . . . , N in the future
contractions steps.

3. The Main Results

We will turn now to our main results with regard to GEU of solutions and we will
call the method of proofs a progressive contraction; see Burton [1–4]. Next, the basic
information with regard to complete metric space of this paper can be found in Burton [4]
and Ilea and Otrocol [9], respectively.

The following Lemma 1 extends progressive contractions to nonlinear IEqs including
multiple variable time delays.

Lemma 1. If Ti−1 ≤ t ≤ Ti and ϕ(t) = ψ(t) for −H ≤ t ≤ Ti, then

fi(t, ϕ(t), ϕ(t − τi(t)))− fi(t, ψ(t), ψ(t − τi(t))) = 0, i = 1, 2, . . . , N. (7)

Proof. For Ti−1 ≤ t ≤ Ti, we have the relations:

t − τi(t) ≤ t − α < Ti − T < Ti − S = Ti−1, i = 1, 2, . . . , N.

Hence, it follows that the arguments of (7) are equal. This result completes the proof of
Lemma 1.

The first result of this paper is given in Theorem 1.

Theorem 1. Let f0, g0, h0, r0, α, β1, E, H, and T be positive constants such that the below
conditions (As1) and (As2) hold:
(As1)

τi ∈ C
(
R+, (0, ∞)

)
, q ∈ C

(
R+,R

)
, ω ∈ C([−H, 0],R),

r(x(0)) = 0, r ∈ C(R,R), h, g ∈ C
(
R+ ×R,R

)
,

g(0, x) = 0, f ∈ C
(
R+ ×R,R

)
, fi ∈ C

(
R+ ×R×R,R

)
, i = 1, 2, . . . , N,
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τi(t) ≥ α, ∀t ∈ R+,

−H ≤ t − τi(t) ≤ 0, ∀t ∈ [0, E],

q(0) = ω(0),

x(t − τi(t)) = ω(t − τi(t)),

|r(x)− r(y)| ≤ r0|x − y|, ∀x, y ∈ R ,

|h(t, x)− h(t, y)| ≤ h0|x − y|, ∀t ∈ R+, ∀x, y ∈ R ,

|g(t, x)| ≤ g0, ∀t ∈ R+, ∀x ∈ R,

| f (t, x)− f (t, y)| ≤ f0|x − y|, ∀t ∈ R+, ∀x, y ∈ R ;

(As2)
A, Ai ∈ C((0, ∞),R), i = 1, 2, . . . , N,

lim
t→0

t∫
0

|A(s)|ds = 0,

0 < T < α and r0 + h0 + f0g0

T∫
0

|A(s)|ds < β1 < 1.

Then, for every E > 0, IEq (2) with multiple variable time delays admits a unique solution on [0, E].

Proof. We will divide the interval [0, E] into n equal splits such that the length of each part
is denoted by S, S < T, and we represent the terminal points by

0 = T0, T1, T2, . . . , Tn = E.

We will provide the proof step by step as in the following steps, Steps (1a)–(3a),
respectively.

Step (1a). Let (ℵ1, ∥.∥1) be a complete metric space including the functions
ϕ ∈ C([−H, T1],R) with the supremum metric and ϕ(t) = ω(t), t ∈ [−H1, 0]. We de-
fine a transformation

P1 : ℵ1 → ℵ1, ϕ ∈ ℵ1 and t ∈ [−H1, 0],

which implies that (P1ϕ)(t) = ω(t). Next, let t ∈ (0, T1]. Then, we have

(P1ϕ)(t) =q(t) + r(ϕ(t)) + h(t, ϕ(t)) + g(t, ϕ(t))
t∫

0

A(t − s) f (s, ϕ(s))ds

+
N

∑
i=1

t∫
0

Ai(t − s) fi(s, ϕ(s), ϕ(s − τi(s)))ds.

Since ω(0) = q(0) in (6), (P1ϕ) is continuous. After that, letting ϕ, ψ ∈ ℵ1,
t ∈ [−H, T1], using (As1), (As2), and Lemma 1, we derive that
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|(P1ϕ)(t)− (P1ψ)(t)| ≤|r(ϕ(t))− r(ψ(t))|+ |h(t, ϕ(t))− h(t, ψ(t))|

+ g0

t∫
0

|A(t − s)| | f (s, ϕ(s))− f (s, ψ(s))|ds

+
N

∑
i=1

t∫
0

|Ai(t − s)| | fi(s, ϕ(s), ϕ(s − τi(s)))− fi(s, ψ(s), ψ(s − τi(s)))|ds

≤(r0 + h0)|ϕ(t)− ψ(t)|

+ g0

t∫
0

|A(t − s)| | f (t, s, ϕ(s))− f (t, s, ψ(s))|ds

≤(r0 + h0)|ϕ(t)− ψ(t)|+ f0g0

t∫
0

|A(t − s)| |ϕ(s)− ψ(s)|ds

≤(r0 + h0)|ϕ(t)− ψ(t)|1 + f0g0|ϕ(t)− ψ(t)|1

T1∫
0

|A(s)| ds

=

r0 + h0 + f0g0

T1∫
0

|A(s)|ds

|ϕ(t)− ψ(t)|1

<β1|ϕ − ψ|1,

which is a contraction with a unique fixed point ξ1 on the interval [−H, T1], and for
t ∈ [0, T1] it satisfies that

(P1ξ1)(t) =ξ1(t) = q(t) + r(ξ1(t) + h(t, ξ1(t))

+ g(t, ξ1(t))
t∫

0

A(t − s) f (s, ξ1(s))ds

+
N

∑
i=1

t∫
0

Ai(t − s) fi(s, ξ1(s), ξ1(s − τi(s)))ds.

We note that ξ1(0) = q(0) and ξ1(t) = ω(t), t ∈ [−H, 0].
Step (2a). Let (ℵ2, ∥.∥2) be the complete metric space, which includes the functions

ϕ ∈ C([−H, T2],R) with the supremum metric such that

ϕ(t) = ξ1 on [−H, T1].

We define the mapping P2 : ℵ2 → ℵ2 with ϕ ∈ ℵ2 and t ∈ [−H, T1], which implies
that (P2ϕ)(t) = ξ1(t), and when t ∈ (T1, T2], it implies that

(P2ϕ)(t) =q(t) + r(ϕ(t)) + h(t, ϕ(t)) + g(t, ϕ(t))
t∫

0

A(t − s) f (s, ϕ(s))ds

+
N

∑
i=1

t∫
0

Ai(t − s) fi(s, ϕ(s), ϕ(s − τi(s)))ds. (8)

We will now prove that P2ϕ is continuous for all t ∈ [−H, T2). Since (P2ϕ)(t) = ξ1(t) on
the interval when t ∈ [−H, T1], the operator P2 is continuous for all t ∈ [−H, T1). Next,
since the functions q, r, h, g, f , fi, A and Ai are continuous, P2ϕ is also continuous for all
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t ∈ (T1, T2]. Hence, it only remains to verify that P2ϕ is continuous at end point T1. Next,
for t = T1, from (11) we can derive that

(P2ϕ)(T1) =ξ1(T1) = q(T1) + r(ϕ(T1)) + h(T1, ϕ(T1))

+ g(T1, ϕ(T1))

T1∫
0

A(T1 − s) f (s, ϕ(s))ds

+
N

∑
i=1

T1∫
0

Ai(T1 − s) fi(s, ϕ(s), ϕ(s − τi(s)))ds = lim
t↓T1

(P2ϕ)(t).

Hence, P2ϕ agrees with ξ1 on [−H, T1] (by definition) and it is also continuous on the entire
interval [−H, T2]. This means that P2 : ℵ2 → ℵ2 is continuous on [−H, T2].

We now need a change of variable for T1 ≤ t ≤ T2. Hence, from (5) we have

r0 + h0 + f0g0

t∫
T1

|A(t − s)|ds < β1.

Letting ϕ, ψ ∈ ℵ2, using ϕ(t) = ψ(t) = ξ1(t) on [−H, T1], Lemma 1, and later taking
t > T1, we obtain

|(P2ϕ)(t)− (P2ψ)(t)| ≤ |r(ϕ(t))− r(ψ(t))|+ |h(t, ϕ(t))− h(t, ψ(t))|

+ g0

t∫
0

|A(t − s)| | f (s, ϕ(s))− f (s, ψ(s))|ds

+
N

∑
i=1

t∫
0

|Ai(t − s)| | fi(s, ϕ(s), ϕ(s − τi(s)))− fi(s, ψ(s), ψ(s − τi(s)))|ds

≤(r0 + h0)|ϕ(t)− ψ(t)|2

+ f0g0

t∫
0

|A(t − s)| |ϕ(s)− ψ(s)|ds

≤(r0 + h0)|ϕ(t)− ψ(t)|2 + f0g0|ϕ(t)− ψ(t)|2
t∫

T1

|A(t − s)| ds

=

r0 + h0 + f0g0

t∫
T1

|A(t − s)|ds

|ϕ(t)− ψ(t)|2

<β1|ϕ − ψ|2,

which is a contraction on the interval [−H, T2] with a unique fixed point ξ2 on the entire
interval [−H, T2]. Hence, it follows that ξ2 is a unique solution of IEq (2) on [0, T2]. It also
agrees with ξ1 on the entire interval [−H, T1] by contraction.

Step (3a). Assume that (ℵ3, ∥.∥3) is the complete metric space, which includes the
functions ϕ ∈ C([−H, T3],R) with the supremum metric and

ϕ(t) = ξ2 on [−H, T2].

We define the mapping
P3 : ℵ3 → ℵ3 with ϕ ∈ ℵ3,
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which implies that

(P3ϕ)(t) =q(t) + r(ϕ(t)) + h(t, ϕ(t)) + g(t, ϕ(t))
t∫

0

A(t − s) f (s, ϕ(s))ds

+
N

∑
i=1

t∫
0

Ai(t − s) fi(s, ϕ(s), ϕ(s − τi(s)))ds.

We note that ϕ(t) = ξ2 is a fixed point of P3 on [−H, T2]. Next, similarly as in Step (2a),
according to (As1), (As2), and Lemma 1, we can obtain a continuous function ξ3 on the
interval [0, T3].

Afterwards, using mathematical induction, we will obtain a unique solution on the
interval [0, E], and while this is sufficient for a complete understanding, here the induction
details are given in the following.

For the case 2 < i ≤ n − 1, let ξi−1 be the unique solution of IEq (2) on the inter-
val [0, Ti−1]. Next, let (ℵi, ∥.∥i) be the complete metric, which includes the functions
ϕ ∈ C([−H, Ti],R) with the supremum metric such that

ϕ(t) = ξi−1 on [−H, Ti−1].

We define the mapping

Pi : ℵi → ℵi with ϕ ∈ ℵi,

which implies that (Piϕ(t)) = ξi−1 on [−H, Ti−1], and when t ∈ [0, Ti], let

(Piϕ)(t) =q(t) + r(ϕ(t)) + h(t, ϕ(t)) + g(t, ϕ(t))
t∫

0

A(t − s) f (s, ϕ(s))ds

+
N

∑
i=1

t∫
0

Ai(t − s) fi(s, ϕ(s), ϕ(s − τi(s)))ds.

The continuity of the function Piϕ can be shown as in Step (2a).We will now prove that the
operator Pi is a contraction. Then, letting ϕ, ψ ∈ ℵi and t ∈ [−H, Ti], according to (As1),
(As2), and Lemma 1, we obtain

|(Piϕ)(t)− (Piψ)(t)| ≤(r0 + h0)|ϕ(t)− ψ(t)|+ f0g0

t∫
0

|A(t − s)| |ϕ(s)− ψ(s)|ds.

We note that ϕ(t) = ψ(t) = ξi−1 on [0, Ti−1]. Hence, Ti−1 is the lower limit for the next step.
Then, letting t > Ti−1 and using a change of variable as given above, we derive that

|(Piϕ)(t)− (Piψ)(t)| ≤

r0 + h0 + f0g0

t∫
Ti−1

|A(t − s)|ds

|ϕ(t)− ψ(t)|i

≤

r0 + h0 + f0g0

Ti∫
0

|A(s)|ds

|ϕ(t)− ψ(t)|i

<β1|ϕ − ψ|i,

which is a contraction including a unique fixed point ξi on [−H, Ti]. This result is the end
of the proof of Theorem 1.
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For the next result, let K = f0g0. We note that if E → ∞, then the present K ∈ R may
also tend to infinity. We still establish from the relation that as K increases, T decreases.
This process operates for any E > 0. This is an important idea for the following result such
that we can take E → ∞ and always obtain a solution on [0, E].

We will now prove that a well-defined function on the interval [0, ∞) can be chosen
such that it is a unique solution of IEq (2) and also involves no translations or unfinished
steps on the road to a solution on the interval [0, ∞). Hence, the second result of this paper
is presented in Theorem 2.

Theorem 2. We assume that (As1) and (As2) of Theorem 1 with τi(t) > 0, i = 1, 2, . . . , N hold.
Then, there is a unique solution of IEq (2) on the interval [0, ∞).

Proof. In light of (As1), (As2), and Lemma 1, following the proof of Theorem 1, we can
obtain a sequence of uniformly continuous functions on the interval [0, ∞), which converges
uniformly on compact sets to a continuous function such that this function is the unique
solution of IEq (2).

In fact, for each positive n, we benefit from Theorem 1 to obtain a solution of IEq (2)
on the interval [0, n]. For the next step, we denote by xn(t) the solution on the interval
[0, n], which is extended to a function on the interval [0, ∞) such that xn(t) = xn(n), t ≥ n.
Then, the sequence (xn) converges uniformly to a continuous function x(t), which is a
solution of IEq (2), since at every t, the function x(t) agrees with a solution xn(t), n > t.
Thus, the proof of Theorem 2 is completed.

We will now give our main results with regard to IDEq (4). The third result of this
paper is given in Theorem 3.

Theorem 3. We assume that the following conditions hold for IDEq (4):
(C1) Let r ∈ C(R,R), h, g ∈ C(R+ ×R,R), f ∈ C(R+ ×R,R), and for each E > 0, there are
positive constants rL = rL(E), gL = gL(E), hL = hL(E), fL = fL(E) such that

|r(x)− r(y)| ≤ rL|x − y|, ∀x, y ∈ R,

|g(t, x)− g(t, y)| ≤ gL|x − y|, ∀t ∈ [0, E], ∀x, y ∈ R,

|h(t, x)| ≤ hL, ∀t ∈ [0, E], ∀x ∈ R,

| f (t, x)− f (t, y)| ≤ fL|x − y|, ∀t ∈ [0, E], ∀x, y ∈ R;

(C2) Let
A ∈ C((0, ∞),R), ϕ ∈ C

(
R+,R

)
,

which imply that the integrals

t∫
0

A(t − s)ϕ(s)ds and
t∫

0

|A(s)|ds

are continuous, respectively, and the last integral converges to zero as t → 0 , and for the constants
E, rL, gL, hL, and fL, pick α ∈ (0, 1) then choose a positive constant T∗ < 1 and let T ∈ R, T > 0
such that

0 < T < T∗ < 1, (rL + gL)T∗ < α, (hL fL)

T∫
0

|A(s)|ds <
1 − α

2
. (9)

Then, for every E > 0 and a ∈ R, IDEq (4) admits a unique solution on [0, E].

We will now start with a solution on [0, E] and extend it to [0, ∞).
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Proof. For the given E > 0, let positive constants rL, gL, hL, and fL be positive constants
satisfying (C1) and (C2), when T satisfies (9) with

(rL + gL)T∗ < α < 1, 0 < T < T∗ < 1.

We will divide the interval [0, E] into n equal pieces such that the length of each piece is
denoted by S, S < T, and we represent the terminal points of that pieces by

0 = T0, T1, T2, . . . , Tn = E

such that
S = Ti − Ti−1 < T < 1.

We will take two steps leading to a mathematical induction which generalizes the second
step. The first step takes place in a Banach space; however, the subsequent step takes place
in a complete metric space.

Step (1b). We assume that (Ξ1, ∥.∥1) is a Banach space, which includes the functions
ϕ ∈ C([0, T1],R) with the supremum metric. We define a transformation

P1 : Ξ1 → Ξ1 with ϕ ∈ Ξ1,

which implies that

(P1ϕ)(t) =r

a +
t∫

0

ϕ(s)ds

+ g

t, a +
t∫

0

ϕ(s)ds


+ h

t, a +
t∫

0

ξ(s)ds

 t∫
0

A(t − s) f

s, a +
t∫

0

ξ(s)ds

ds.

If the operator P1 has a fixed point such as ξ1, then

d
dt

a +
t∫

0

ξ1(s)ds

 = ξ1(t)

and

x(t) = a +
t∫

0

ξ1(s)ds

satisfies IDEq (4) with x(0) = a.
We will now show that the operator P1 is a contraction. First, letting ϕ, ψ ∈ Ξ1 and

using (9), we have

t∫
0

|ϕ(s)− ψ(s)|ds ≤ T∗|ϕ − ψ|1 ≤ |ϕ − ψ|1, 0 < T < T∗ < 1.

Hence, according to the results above, (C1) and (C2), we derive that

|(P1ϕ)(t)− (P1ψ)(t)| ≤rL

∣∣∣∣∣∣a +
t∫

0

ϕ(s)ds − a −
t∫

0

ψ(s)ds

∣∣∣∣∣∣
+ gL

∣∣∣∣∣∣a +
t∫

0

ϕ(s)ds − a −
t∫

0

ψ(s)ds

∣∣∣∣∣∣
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+ (hL fL)

t∫
0

|A(t − s)|
s∫

0

|ϕ(s)− ψ(s)|duds

≤(rL + gL)T∗|ϕ(t)− ψ(t)|1

+ (hL fL)|ϕ − ψ|1
t∫

0

|A(s)|ds

≤|ϕ − ψ|1
(

α +
1 − α

2

)
=

(1 + α)

2
|ϕ − ψ|1,

which is a contraction including a unique fixed point ξ1 on the interval [0, T1].
Step (2b). We assume that (Ξ2, ∥.∥2) is a complete metric space, which includes the

functions ϕ ∈ C([T0, T2],R) with the supremum metric and ϕ(t) = ξ1(t) for t ∈ [T0, T1].
We define a transformation

P2 : Ξ2 → Ξ2 with ϕ ∈ Ξ2,

which implies that

(P2ϕ)(t) =r

a +
t∫

0

ϕ(s)ds

+ g

t, a +
t∫

0

ϕ(s)ds


+ h

t, a +
t∫

0

ϕ(s)ds

 t∫
0

A(t − s) f

s, a +
t∫

0

ϕ(u)du

ds.

Since ξ1 is a fixed point of P1 on [T0, T1] for 0 ≤ t ≤ T1, we obtain for any ϕ ∈ Ξ2 that

(P2ϕ)(t) =r

a +
t∫

0

ξ1(s)ds

+ g

t, a +
t∫

0

ξ1(s)ds


+ h

t, a +
t∫

0

ξ1(s)ds

 t∫
0

A(t − s) f

t, s, a +
s∫

0

ξ1(u)du

ds = ξ1(t).

Hence, P2 is a map from Ξ2 to Ξ2.
We will now show that P2 is a contraction. Then, letting ϕ, ψ ∈ Ξ2 and using (C1),

(C2), we have

|(P2ϕ)(t)− (P2ψ)(t)| ≤rL

∣∣∣∣∣∣
t∫

0

ϕ(s)ds −
t∫

0

ψ(s)ds

∣∣∣∣∣∣
+ gL

∣∣∣∣∣∣
t∫

0

ϕ(s)ds −
t∫

0

ψ(s)ds

∣∣∣∣∣∣
+ (hL fL)

t∫
0

|A(t − s)|
s∫

0

|[ϕ(u)− ψ(u)]du|ds. (10)
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Let t ∈ [T1, T2] and fix s at any value in [0, T1]. Since 0 ≤ s ≤ T1, u ∈ [0, T1] and ϕ(u) = ψ(u).

Hence, we have
s∫

0
|ϕ(u)− ψ(u)|du = 0. This result holds for every value of s in 0 ≤ s ≤ T1.

Next, if |ϕ|[T1,T2] denotes the sup with S = T2 − T1 < T∗, then

T2∫
T1

|ϕ(s)− ψ(s)|ds = T∗|ϕ − ψ|[T1,T2] ≤ |ϕ − ψ|[T1,T2] = |ϕ − ψ|2.

Hence, using the above discussion, by changing a variable and |ϕ − ψ|2 = |ϕ − ψ|[T1,T2], we
obtain from (10) that

|(P2ϕ)(t)− (P2ψ)(t)| ≤rL

∣∣∣∣∣∣
t∫

T1

[ϕ(s)− ψ(s)]ds

∣∣∣∣∣∣+ gL

∣∣∣∣∣∣
t∫

T1

[ϕ(s)− ψ(s)]ds

∣∣∣∣∣∣
+ (hL fL)

t∫
T1

|A(t − s)|
s∫

T1

|ϕ(u)− ψ(u)|duds

≤(rL + gL)T∗|ϕ − ψ|[T1,T2] + (hL fL)

t∫
T1

|A(t − s)||ϕ − ψ|[T1,T2]ds

≤|ϕ − ψ|2
(

α +
1 − α

2

)
=

(1 + α)

2
|ϕ − ψ|2,

which is a contraction including a unique fixed point ξ2 on the interval [0, T2]. We also note
that ξ1 = ξ2 on [0, T1], since both are unique and the definition of the space demands it.

As for Step (3b), we note that ϕ(t) = ξ2(t) is a fixed point of P3 on [0, T2]. Next, as in
Step (2b), we can obtain a continuous function ξ3 on the interval [0, T3]. The remaining of
the mathematical calculations of Step (3b) are similar to that of Step (2b). We ignore the
details of the calculations for this step.

Hence, using mathematical induction, we would obtain a unique solution on the
interval [0, E]. While this is sufficient for a complete understanding, here the induction
details are given in the following lines.

For the case 2 < i < n − 1, let ξi−1 be the unique solution of IDEq (4) on the interval
[0, Ti−1] for i ≥ 2. Next, let (Ξi, ∥.∥i) be the complete metric, which includes the functions
ϕ ∈ C([0, Ti],R) with the supremum metric such that

(Piϕ(t)) = ξi−1(t) for t ∈ [0, Ti−1].

We define the mapping
Pi : Ξi → Ξi with ϕ ∈ Ξi

such that

(Piϕ)(t) =r

a +
t∫

0

ϕ(s)ds

+ g

t, a +
t∫

0

ϕ(s)ds


+ h

t, a +
t∫

0

ϕ(s)ds

 t∫
0

A(t − s) f

s, a +
t∫

0

ϕ(u)du

ds.

Since ξi−1 is a solution on [0, Ti−1] when 0 ≤ t ≤ Ti−1, (Piξi−1)(t) = ξi−1(t), and so
the mapping is into Ξi.
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We will now show that Pi is a contraction. Then, letting ϕ, ψ ∈ Ξi and using (C1), (C2),
we have

|(Piϕ)(t)− (Piψ)(t)| ≤rL

∣∣∣∣∣∣
t∫

0

ϕ(s)ds −
t∫

0

ψ(s)ds

∣∣∣∣∣∣
+ gL

∣∣∣∣∣∣
t∫

0

ϕ(s)ds −
t∫

0

ψ(s)ds

∣∣∣∣∣∣
+ (hL fL)

t∫
0

|A(t − s)|
s∫

0

|ϕ(u)− ψ(u)|duds.

Following a similar procedure as in Step (2b), we have
Ti−1∫
0

|ϕ(u)− ψ(u)|du = 0. This

result is true for every value of s in 0 ≤ s ≤ Ti−1. Next, if |ϕ|[Ti−1,Ti ] denotes the sup with
s = Ti − Ti−1 < T∗, then

Ti∫
Ti−1

|ϕ(s)− ψ(s)|ds = T∗|ϕ − ψ|[Ti−1,Ti ] ≤ |ϕ − ψ|[Ti−1,Ti ] = |ϕ − ψ|i.

Hence, using the above discussion, by changing a variable and |ϕ − ψ|i = |ϕ − ψ|[Ti−1,Ti ],
we obtain

|(Piϕ)(t)− (Piψ)(t)| ≤rL

∣∣∣∣∣∣∣
t∫

Ti−1

[ϕ(s)− ψ(s)]ds

∣∣∣∣∣∣∣+ gL

∣∣∣∣∣∣∣
t∫

Ti−1

[ϕ(s)− ψ(s)]ds

∣∣∣∣∣∣∣
+ (hL fL)

t∫
Ti−1

|A(t − s)|
s∫

Ti−1

|ϕ(u)− ψ(u)|duds

≤(rL + gL)T∗|ϕ − ψ|[Ti−1,Ti ]

+ (hL fL)

t∫
Ti−1

|A(s)||ϕ(s)− ψ(s)|[Ti−1,Ti ]ds

≤|ϕ − ψ|i
(

α +
1 − α

2

)
=

(1 + α)

2
|ϕ − ψ|i,

which is a contraction including a unique fixed point ξi on the interval [0, Ti]. We also note
that ξi−1 = ξi on [0, Ti−1], since both are unique and the definition of the space demands it.
This is the final step of the proof.

Example 1. Consider the following IDEq:

x′ = sin x +
1

1 + t2 sin x +
1

1 + t2 + x2

t∫
0

exp[−(t − s)]
x(s)

1 + s4 ds, (11)

where x′ and x denote x′(t) and x(t), respectively.
We note that IDEq (11) is in the form of IDEq (4), with the data as follows:

r(x) = sin x,
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g(t, x) =
1

1 + t2 sin x,

h(t, x) =
1

1 + t2 + x2 ,

f (t, x) =
x

1 + t4 ,

A(t − s) = exp[− (t − s)], 0 ≤ s ≤ t.

Now we will check the assumptions (C1) and (C2) of Theorem 3. We verify that (C1) and (C2)
hold. For this, we let rL = 1, gL = 1, hL = 1, fL = 1 and calculate

|r(x)− r(y)| = |sin(x)− sin(y)|

= 2
∣∣∣∣cos(x + y)

2

∣∣∣∣ ∣∣∣∣ sin(x − y)
2

∣∣∣∣
≤ |x − y|, ∀x, y ∈ R,

|g(t, x)− g(t, y)| = 1
1 + t2 |sin(x)− sin(y)|

≤ |sin(x)− sin(y)|

≤ |x − y|, ∀t ∈ [0, E], ∀x, y ∈ R,

|h(t, x)| = 1
1 + t2 + x2 ≤ 1, ∀t ∈ [0, E], ∀x ∈ R,

| f (t, x)− f (t, y)| = 1
1 + t4 |x − y| ≤ |x − y|, ∀t ∈ [0, E], ∀x, y ∈ R,

t∫
0

|A(s)|ds =
t∫

0

exp (-s)ds = 1 − exp(−t),

1 − exp(−t) is continuous and 1 − exp(−t) converges to zero as t → 0.

Hence, (C1) and (C2) hold. Thus, the application of the result of Theorem 3 is valid.

Finally, our last result with regard to GEU of solutions of IDEq (4) is given in Theorem 4.

Theorem 4. If (C1) and (C2) of Theorem 3 hold, then there is a unique solution ξ of IDEq (4) on
R+, R+ = [0, ∞).

Proof. Using (C1), (C2) and pursuing the proof of Theorem 3, we can construct a unique
solution ξn on every interval [0, n] for every positive integer n. As the next step, we
extend each of the solutions to the interval [0, ∞) by defining functions ξn past n such that
ξn

∗ = ξn(n) for t > n. Then, we have a sequence of uniformly continuous functions such as
(ξn). Hence, this sequence converges uniformly on compact sets to a continuous function
ξ on R+, which is a solution of IDEq (4), since at every value of t, the function ξ on [0, t]
coincides with any ξn for n > t. Thus, the proof of Theorem 4 is completed.

4. Discussion

We will now present some information with regard to the results of this article.

(10) According to the related published results in the relevant literature (see Burton [1–4],
Burton and Purnaras ([7,8]), Ilea and Otrocol [22]), the GEU of solutions of nonlinear
IEq (2) and IDEq (4) has not been discussed in the relevant literature up to now.
Hence, IEq (2) and IDEq (4) are new mathematical models to investigate the GEU of
solutions of them. Therefore, this article includes new results with regard to the GEU
of solutions of IEq (2) and IDEq (4).
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(20) In this article, for the first time, we verified the GEU of solutions of an IEq hav-
ing N-multiple variable time delays such that we extended the progressive contrac-
tion approach, which is due to T.A. Burton, for an IEq with the N-multiple variable
time delays.

(30) We improved Lemma 1 to apply progressive contractions to nonlinear IEqs including
multiple variable delays. This is a new contribution to IEqs with multiple variable
time delays.

(40) If Ai(t − s) = A(t − s), fi(s, x(s), x(s − τi(s)) = f (s, x(s), x(s − r(s))), g(t, x(t)) = 1,
r(x(t)) = 0, and q(t) = 0, then IEq (2) can be reduced to IEq (1) of Burton and
Purnaras [7]. In this case, the conditions of Theorem 1 and Theorem 2 can be converted
to that of Theorem 2.1 and Theorem 2.2 of Burton and Purnaras [7], respectively.

(50) If Ai(t − s) = 0, fi(s, x(s), x(s − τi(s)) = 0, g(t, x(t)) = 1, r(x(t)) = 0 and q(t) = 0,
then IEq (2) can be reduced to the IEq of Burton and Purnaras [8]. Similar results as in
40 can also be obtained for Theorem 2.1 of Burton and Purnaras [8].

(60) Finally, as for the possible open problems in future advancements, GEU of solutions
of delay IEq (2) with Caputo fractional derivative, and IDEq (4) with Caputo frac-
tional derivative or with Riemann–Liouville fractional derivative are suggested for
future work.

5. Conclusions

In this article, a nonlinear IEq including multiple variable time delays and a nonlinear
IDEq without delay has been considered. GEU of solutions of the delay IEq and IDEq
without delay have been investigated. We have constructed sufficient conditions through
four new theorems with regard to GEU of solutions of the delay IEq and IDEq without delay.
The technique of the proofs of the theorems is based on a fixed point method consisting
of progressive contractions, which is due to T.A. Burton. The new results of this article
generalize and improve the results of Burton and Purnaras (Theorems 2.2 and 2.3 in [7])
from the case with one variable time delay to the more general case and N-times multiple
variable time delays (see Theorems 1 and 2). Next, the other new results of this article,
called Theorems 3 and 4, improve and include the results of Burton (Theorems 2.1 and 2.2
in [1]).
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