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Abstract: This article explores the finite-time control problem associated with a specific category
of non-homogeneous hidden semi-Markov jump systems. Firstly, a hidden semi-Markov model is
designed to characterize the asynchronous interactions that occur between the true system mode and
the controller mode, and emission probabilities are used to establish relationships between system
models and controller modes. Secondly, a novel piecewise homogeneous method is introduced to
tackle the non-homogeneous issue by taking into account the time-dependent transition rates for the
jump rules between different modes of the system. Thirdly, an asynchronous controller is developed
by applying Lyapunov theory along with criteria for stochastic finite-time boundedness, ensuring the
specified He, performance level is maintained. Finally, the effectiveness of this method is verified
through two simulation examples.

Keywords: non-homogeneous hidden semi-Markov jump systems; stochastic finite-time

boundedness; emission probabilities

MSC: 37MO05; 37M10

1. Introduction

The Markov process (MP) is commonly utilized to analyze system state transitions in
various fields such as finance, power systems, and robotics. Due to its ability to capture
dynamic behavior, Markov jump systems (M]Ss) have been extensively researched in recent
years [1-5]. In continuous-time systems, the transition rates between different modes of an
MP are influenced solely by the current mode in which the system resides. The dwell time
(DT) follows an exponential distribution. In real systems, the DT distribution often follows
different patterns, and new methods need to be explored to solve this problem. Unlike
a traditional MP, semi-Markov processes (SMPs) consider historical data, and the DT is
not constrained by an exponential distribution. As a result, researchers and practitioners
may find semi-Markov jump systems (SMJSs) to be more suitable for modeling a variety of
systems where the exponential assumption does not hold, thus enhancing their applicability
in complex scenarios [6-12]. Regarding the stability analysis and synthesis of semi-Markov
jump systems, Ref. [13] focused on the issues of stochastic stability and stabilization
regarding a particular category of continuous-time semi-Markovian jump systems that
feature mode transition-dependent sojourn time distributions. In [14], the author discussed
the problem of He, observer-based control for a class of continuous-time semi-Markovian
jump systems with more detailed observational information.

A significant limitation in the majority of current research is the assumption that
transition rates (TRs) are constant over time. This perspective overlooks the dynamic nature
of many practical engineering applications. For instance, in contexts such as manufacturing
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systems and voltage conversion circuitry, the conditions and factors affecting TRs frequently
change, rendering the assumption of time invariance unrealistic. Therefore, it is important
to consider non-homogeneous semi-Markov jump systems (NHSM]Ss) in these scenarios.
Ref. [15] proposed an SMP framework that is affected by deterministic high-order switching
signals, and the Markov renewal process is non-homogeneous. The stabilization problem
of a class of stochastic NHSM]JSs is studied in [16]. To date, there is limited research on
NHSM]Ss, making it a fruitful area for exploration. This lack of existing literature is a key
driving factor behind the current study.

On the other hand, the above research is based on the synchronization of the system
mode and the controller mode. In fact, the asynchronous problem of SMJSs has attracted
widespread attention from researchers. Given the potential misalignment of variables and
modes between the filter and plant in real network environments, a double asynchronous
phenomenon may occur. For this reason, Ref. [17] proposed a new fault detection filter
which specifically targets fault detection in fuzzy SMJSs. Ref. [18] explored the issue of
asynchronous control in two-dimensional SMJSs within the Roesser model. The interval
type-2 fuzzy model was investigated in [19], which developed an asynchronous sliding
mode control mechanism to achieve a quasi-sliding mode, effectively addressing the
challenges posed by parameter uncertainties for nonlinear semi-Markov jump models.
Hidden semi-Markov jump systems (HSMJSs) have emerged as a research area with the
potential to overcome the limitations of the assumption that the system mode is consistent
with the controller [20-24]. The hidden semi-Markov process (HSMP) can be understood as
a parameter process characterized by two variables. The stochastic process, referred to as
the SMP, is time-homogeneous and remains undisclosed to the controller, making it hidden.
The observed modes within the underlying process are determined from the emission
probabilities of the actual and observed system modes, which aids in the identification of
hidden system modes. While there has been significant research on stability analysis and
controller synthesis for HSMJSs, certain areas within this field have not been fully explored,
leaving open questions that have inspired our current investigation.

Building upon this foundation, the examination of stability and control mechanisms for
non-homogeneous hidden semi-Markov jump systems is undertaken. Ref. [25] addresses
the analysis of stability for a class of discrete-time non-homogeneous hidden semi-Markov
jump systems that operate with limited information regarding the sojourn time probability
density functions. Ref. [26] explores the non-fragile asynchronous control challenge within
discrete-time non-homogeneous hidden semi-Markov Lur’e systems, which face uncer-
tainties related to the system mode and gain. However, the aforementioned studies are
primarily based on discrete-time scenarios. To the best of the author’s knowledge, the sta-
bility analysis of continuous-time non-homogeneous hidden semi-Markov jump systems
remains unexplored. This gap in the literature serves as one of the primary motivations for
this article.

Meanwhile, in numerous engineering applications, the performance during a transi-
tion phase of a system is evaluated within a restricted operational time frame, contrasting
with the analysis of stability over an endless duration. The goal of finite-time stability is
to guarantee that, within a specified time frame, the system’s trajectories do not surpass
a certain physical limit. Up to this point, significant interest has been directed towards
finite-time stability [12,27,28].

This study examines the design challenges associated with asynchronous He con-
trollers for non-homogeneous HSM]Ss within a finite-time framework. The main contribu-
tions of this research can be outlined as follows:

(i) A hidden semi-Markov model is proposed to describe the asynchronous behavior
observed between the mode of the actual system and that of the controller.

(ii) A novel piecewise homogeneous approach is suggested for addressing the non-
homogeneous phenomenon by taking into account the time-dependent transition rates of
the jump rules across different system modes.
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(iif) An asynchronous controller is designed using Lyapunov theory to generate finite
stochastic criteria with the prescribed He, performance level.
Table 1 lists the notations used in this article.

Table 1. Common notations in this paper.

Notations Meanings
R" n-dimensional Euclidean space
-1l Euclidean norm
u=o U is a positive-definite symmetric matrix
ut the transpose of U
u-t the inverse of U
Amax{U}, Amin{U} maximum and minimum eigenvalues of U
He{U} u+ur
E(") the mathematical expectation
* the elision for symmetry matrix
My 12,... M
M, 12,...M,
N 12,...N

2. Materials and Methods
We consider a class of non-homogeneous HM]JSs described by

{ %(t) = Apx(t) + Bru(t) + Crw(t), 1)
z(t) = Dy, x(t)

where x(t) € R" represents the state vector of the system, u(t) € R™ represents the
control input, z(t) € RP represents the measured output, and w(t) € R7 represents
the external disturbance belonging to L,[0,00), V¥t > 0. r; represents a continuous-time
non-homogeneous semi-Markov process that assumes values within the set M. The time-
dependent TRs are indicated as follows:

T (8)A+0(8), j#i,

1+ 1 (8)A+o(d), j=i. @

Prirga=jln=i}= {

with A > 0, where § means sojourn time, and iinb o(A)/A=0, 7'(3’(5) >0(i,j € My,j#1)
—

is the transition rate between the i mode at time t and the j mode at time ¢ + A, which satisfies

o) =— Y. ), vie M.
jeMa\{i}

In this context, the variable 0; represents a piecewise constant switching signal that assumes
values from the set \V, and it determines the pattern of the transition probability matrix at
each moment. For every potential value of the variable r; = i, with 6; = p, the TRs, ﬂfj, are
formulated as a function of the high-level switching signal, 6; = p.

This formulation underscores the fact that the TRs exhibit temporal variability. Addi-
tionally, when organized sequentially, the matrix representing the TRs is introduced as

nfl(é) ”fz(‘s) ”fm(fs)
5 (6)  7y(8) -7, (6)

= | 0
Tt (0) T (8) - T (9)

Due to asynchronous phenomenon, we cannot assume that the controller has precise
access to modal system information. This study aimed to discover the hidden controller
modes by utilizing an observed mode analysis approach. Figure 1 can provide a clearer
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depiction of the HSMP. {r;, t > 0} stands for the hidden system mode, and the observed
mode {ot,t > 0} assumes values from the set Mj. A range of observed modes can be
emitted by each hidden system mode. The emission probability matrix is

Pr{oy =m|r =i} = pi, Vi€ My,me My, 3)

with pi, € [0,1] and ¥pe pa, pim = 1

Observer Modes

Emission Probability

Hidden Modes

ri=1 re=2 e =13
Figure 1. An example of a hidden semi-Markov process.

In this paper, for r; = i, 0 = p, and 0y = m, the parameter matrices A;, B;, C;,
and D; possess suitable dimensions. We consider the following three-variable-dependent
asynchronous controller for non-homogeneous HSMJSs (1):

u(t) = Kimpx(t), )

where K; ;; , means the feedback control gain matrix. The combination of (1) and (4) gives
rise to an expression for non-homogeneous HSMJS as follows:

{02 U Byt Gt -

z(t) = D;x(t).

Remark 1. In practical application systems, the modal information acquired by the controller
is often inaccurate, meaning that the true system model remains concealed from the controller.
To address this issue, the variable oy is proposed to denote the mode of the controller, with the
relationship between r and oy illustrated by Equation (3).

Remark 2. In actual systems, it is unrealistic to obtain the transition probability at each moment
in real time. Therefore, it is difficult to study semi-Markov jump systems with time-varying transi-
tion probabilities, which also increases the difficulty of deriving the stability theory. Fortunately,
in control practice, this type of system can usually be divided into a limited number of continuous
homogeneous systems, hence the piecewise homogeneous system proposed in this article.

Before we continue, here are the definitions, given below.

Assumption 1 ([27]). Given the time interval [0, T] and the constant d > 0, the unknown
external disturbance w(t) satisfies the following conditions:

/OT W (Hw(t)dt < d>. (6)

Definition 1 ([29]). HSMJSs (5) are stochastically finite-time-bounded (SFTB) within a time
interval [0, T] concerning (d, T, R, c1, cp) if the following conditions hold:

£)dt < a2,
{ f%( 0)R+(0 )<c1 SOE{T()Rx() < e}, ¥t € {0, T}. @

where c1 and cy are positive scalars with ¢y > c¢q, and R > 0 is a weighting matrix.
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Definition 2 ([29]). Given a scalar -y > 0, if there is an asynchronous controller (4) under zero
initial conditions such that all i € My, m € My, and p € N, the HSMJS (5) is SETB and satisfies
the following:

T T
/ 2T (1)z(H)dt < / WT (Hw(t)dt. ®)
0 0
We say that the controller (4) satisfies the Hoo performance index y.

3. Results

Theorem 1. For a given scalar a« > 0, the closed-loop non-homogeneous HSMJS (5) is SFTB and
satisfies the Ho performance index -y concerning (d, T, R, c1, cp) if there exist symmetric matrices
P;,, > 0, such that the following conditions hold for every value of i € My, m € Ma,and p € N:

6”6‘1)\2 + ’deZ — A <0 9)
E11 E12 Ei3
QO=| % Z» 0 |<o0 (10)
* * 333
with
_1 _1 _1 _1
A= )\min{R 2Pi,pR 2}, Ay = /\max{R Zpi,pR 24,
1 = He[Pi,p(Ai + Z PimBiKi,m,p)] + Z ﬁ?]‘Pj,p _‘Xpi,p
meMy jeEMy
B = PG, Ei3=Dj,
By = —% T, Ep=-I

= B0 = [ m()dr o),

where .7-"1.’9 (6) represents the probability density function of DT with respect to 6.

Proof of Theorem 1. A stochastic Lyapunov functional candidate is chosen as follows:
Vix(t) = xTPi,px(t). (11)

Define £ as a weak infinity operator, and for « > 0, the auxiliary function is defined as
follows:

J(t) = E{LV (x(t)) — aV (x(t)) — v?e " Tw! (Hew(t) + 2T (Dz(t)}. (12)
By carrying out this calculation, we obtain

J(t) = E{LV(x(t)) —aV(x(t)) — e “Tw' (Hw(t) + 2" (t)z(t)}
— E{xT(t)(';A nSP]-,p)x(t)+2[xT(t)Pi,pAix(t)
jEM1

+ xT(t)( Z Pimpi,pBiKi,m,p)x(t)+wT(t)Pi,pCiW(t)]
meMs

aV(x(t)) — v Tl (Hw(t) + 2T (H)z(t)}. (13)

Thus, the following inequality can be obtained:

J(t) < 7T (H)Qn(t) (14)
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where #(t) = [x(t) w(t)]T. From condition (10), we obtain
J(t) <O. (15)
According to (15), the equivalent inequality is obtained:
LV (x(t)) —aV(x(t) — Y?e Tw (Hw(t) + 2T (t)z(t) < 0. (16)
Then, taking the expectation of (16), it follows that
E{Le ™V (x(1))} < v *HDE{wT(Hw(t)}. (17)
Integrating (17) over t(t € (0, T]) yields
e ME{V(x(t))} < E{V(x(0))} + 7*E{ / DT ()w(T)dT}. (18)

Multiplying (18) by e*! yields
E{V(x(t))} < e™E{V(x(0))} + 7*d?* < e*TAzc; + 72d>.
Since
E{V(x(1)} = ME{xT()Rx(1)},
We can obviously obtain

th 212
E{xT(HRx(t)} < )‘zci—”d
1

From (9), it follows that

aT 212
E{V(x(t)} < w <.
1

Therefore, according to Definition 1, the closed-loop system (5) is SFTB. If we multiply (16)
by e*! and calculate the mathematical expectation, we obtain

E{L[e™V (x())]} < E{e™ [y Tw! (Hw(t) — 2" (1)z(1)]}. (19)
Integrating (19) over t(t € (0, t]) under zero initial conditions, we obtain
E{ /0 "M T (0)2(0) = 42T (0w (0)]dE} < .

Thus, for all ¢(t € (0, T]), it follows that

E{/ (t)dt} < e “‘TE{/ ' (Few(t)dt} <72E{/0TwT(t)w(t)

Returning to Definition 2, the closed-loop system (5) is SFTB and satisfies the He perfor-
mance index 7. This completes the proof. O

The following theorem we solve for the three-variable-dependent asynchronous con-
troller.
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Theorem 2. For a given scalar « > 0, the closed-loop non-homogeneous HSMJS (5) is SFTB and
satisfies the Heo performance index y concerning (d, T, R, ¢1, ¢2) if there exist symmetric matrices
P;,, > 0 such that the following conditions hold for every value of i € My, m € My, and p € N:

202 —aT
(7°d” —coAq)e Vel <0 20)
* —)\2
~ By En Ei
Q=1 * En 0 | <0 (21)
*ox Ha
with
~ 1 1 ~ 1 1
)\1 = min{R_QX‘ R_E} )Lz: max{R_EX' R~ 2
By = He[AXjy+ Y. PimBiNimy + 2 leppjpx —aX;,,
meMy jEM
Ep = G, E=X],Dl.

The other parameters are consistent with Theorem 1. Then, the three-variable-dependent controller’s
gain matrices are given as K; y, , = N pX

Proof of Theorem 2. Define
X; P = P_ Ni,m,p = Ki,m,pXm,pr

dia g{Xl-,p ; I; 1}, and its transposition; then, (10) is equivalent to (21), and, obviously, (9) is
equivalent to (20). Proof completed. O

Remark 3. In contrast to the asynchronous controllers commonly found in the existing literature,
the asynchronous controller presented in this paper is defined by three variables. This approach
leverages the characteristics of the system state more effectively, thereby significantly reducing
conservatism.

4. Mlustrative Example
Example 1. Consider a non-homogeneous hidden semi-Markov jump system with two subsystems:

-1 2 |-2 -3
[AlAz]_[—3 2| 4 —1]
10
Bl_Bz_R_[O 1},
0.001 | —0.001 0202
[ClCz]:[—o.om—o.om}’[l)lDz]:[o.zio.l]

The transition rate matrix I1P (8) is described by

1 3(6)*  3(6) 25 — | —4(6)°  4(6)°
O I e L e ey
The semi-Markov chain dwell time for each mode is assumed to follow a Weibull distribution. .7-'}’(5)
refers to the probability density functions of DT with respect to 5, where dF{ (6) = 3(6)2%e~9’ds,
dFL(6) = 4(5)3e~0'ds, dF2(5) = 3(6)2e©ds, and dF2(5) = 4(6)3e~©)'ds. Further,
the mathematical expectation can be calculated:
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(7]t = —2.7082  2.7082 (72 = —3.6763  3.6763
LTl 36763  —3.6763 |7 YUY T | 27082 —2.7082 |

Case I: Asynchronous case: we define the emission probability matrix.

el = |03 03 ]

By choosing « = 1, v = 01, ¢ = 04, ¢cp =20, T =4d =2, xp = [1,—1]T, and
w(t) = e ?sin(0.5t) and solving Theorem 2, we obtain the three-variable-dependent asynchronous
feedback control gain matrix:

[ Kot | Ko ] = 02312  1.0238 | 02216  1.0135
™ML 748556 —12.6636 | —4.8641 —12.6847 |’

[ Kot | Ko | = 02227 10148 | 02323  1.0252
AR T 48704 —12.7001 | —4.8619 —12.6791 |’

[ Kina | Kiz | = —2.4428 —1.1474 | —2.4407 —1.1465
H2 1 ™M22 0= 1 11370 11520 | 11371  1.1521 |’

[ Kana | Koy | = | 97750 —45913| —0.7755 45916
221821 = | 45435 46040 | 45435  4.6040

The trajectories of the state response are shown in Figure 2. It can be clearly seen
from Figure 3 that the evolution of x™ (#)Rx(t) tends to zero in finite time, and the designed
asynchronous controllers can make non-homogeneous HSMJSs (5) become SFTB. Figure 4
and Figure 5 show the system mode and controller mode, which both have two modes.
Figure 6 shows a possible evolution of the switching signal 6;.

Case II: Synchronous case: we define the emission probability matrix.

ol = [ 00 10 |

The other parameters are the same as in case L.

1 T T T T T T T T T

X, (1)
X5()

State Responses

_1 .5 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10

Time(s)

Figure 2. State response of closed-loop system.
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1
0.5 4
Fa
+=
e
8
X,
g
i
+2
—
—
H -0I5 -
-1 -
1
0 05 1
1 -0.5 0
t oA
X X, (8
Figure 3. The evolution of xT(t)Rx(¢) .
2.5 T T T T T T T T T
Mt
2 — — — A - - - — — — —
®
3157 i
=
1 H (- [y SN ) SN S S U U (I (N B
0.5 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10

Figure 4. The system mode 7;.
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25 T T T T T T T T T

05 : : :

Figure 5. The controller mode o;.

25 T T T T T T T T T

0.5 1 1 1 1

Figure 6. Value of 6; .

The trajectories of the state response are shown in Figure 7. It can be clearly seen
from Figure 8 that the evolution of xT(#)Rx(t) tends to zero in finite time, and the designed
synchronous controllers can make non-homogeneous HSM]JSs (5) become SFTB. These
figures fully demonstrate the effectiveness of the method presented in this paper.
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0.5 4

05} §

State Responses

_1-5 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10

Time(s)

Figure 7. State response of closed-loop system.

w () R(t)x(t)

X,(t) A | X, (t)

Figure 8. The evolution of xT(t)Rx(¢) .

Remark 4. From case I and case II, it can be seen that, differing from the existing literature [30,31],
the method adopted in this paper can not only deal with the stochastic finite-time boundedness
problem in the case of an asynchronous controller and system mode but also with the stochastic
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finite-time boundedness problem in the case of a synchronous controller and system mode, so the
method in this paper has wider practicability and generality.

Example 2. Next, we consider a single-link robot arm system from [28], which can be expressed as

B = =S sin(p() - () + u()

t

in which (t), Y (t), and P(t) separately stand for the angle, angular velocity, and angular accelera-

tion, [, represents the moment of inertia, M,, and L are the total mass and the length of the arm,

respectively, g denotes the gravitational acceleration, and W is the coefficient of viscous friction.

The robot runs under different payloads that obey the SMP {ry,t > 0} in My, and {0y, t > 0} in

My is the asynchronous controller mode. Define x(t) = [x{ (t) xa (t)]T, where x1(t) = ¢(t) and
xo(t) = (). Thus, when ry = i, one has the linearized system

x(t) = [_&gL Rron ?]uw.
Ji Ji Ji

For every single-link robot arm, let J; = 0.15, [ = 025, M; =05, M, =1, L =05 W =2,
¢ =9.81,x0 = [2,—1]T, and w(t) = sin(t). The other parameters are the same as in Example 1
Case 1. Solving Theorem 2, we obtain the three-variable-dependent asynchronous feedback control
gain matrix:

[ K | Kizn | =[ 17565 0.5955 | 1.7306  0.5424 |,
[ Konn | Koz ] =[ 26850 0.7930 | 0.6636 0.1921 |,
[ Kiz | K1 | = [ 1.7636 05599 | 1.7808 0.5968 |,

[ Koo | Koo | = [ 24764 0.6709 | 0.6141 0.1638 ].

The trajectories of the state response are shown in Figure 9. It can be clearly seen from Figure 10 that
the evolution of xT (t)Rx(t) tends to zero in finite time, and the designed asynchronous controllers
can make non-homogeneous HSMJSs (5) become SFTB.

2 T T T T T T T T T

X,
1.5 1
X0

1k J

051 g

0

-0.5

-1

State Responses

-1.5

-2

-2.5

_3 1 1 1 1 1 1 1 1 1
Time(s)

Figure 9. State response of closed-loop system.
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1-
0.5 -
=
=
> 0
C::’ -
=
H
8 -0.5-
.1 o
1 N“‘“x
E“a.,x o~ |
’ R\\‘ S -
~——— ;
1A 05
(1) y

Figure 10. The evolution of xT(¢)Rx(t).

5. Conclusions

This article explores the finite-time control problem associated with a specific category
of non-homogeneous hidden semi-Markov jump systems. A novel piecewise homogeneous
strategy is presented to adequately address the challenges posed by the non-homogeneous
nature of the system. Furthermore, based on Lyapunov theory, the closed-loop non-
homogeneous HSMJSs can be stochastically finite-time-bounded and satisfy the He, per-
formance. To demonstrate the practical applicability and effectiveness of the proposed
method, two simulation examples were employed. The issue of cyber attacks targeting
network control systems has emerged as a significant concern this year, prompting us to
investigate it further in our upcoming research. This study will investigate the finite-time
stability of non-homogeneous hidden semi-Markov jump systems within the context of
complex cyber attack environments.
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