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Abstract: This paper employs an integral reinforcement learning (IRL) method to investigate the
optimal tracking control problem (OTCP) for nonlinear nonzero-sum (NZS) differential game systems
with unknown drift dynamics. Unlike existing methods, which can only bound the tracking error, the
proposed approach ensures that the tracking error asymptotically converges to zero. This study begins
by constructing an augmented system using the tracking error and reference signal, transforming the
original OTCP into solving the coupled Hamilton—Jacobi (HJ) equation of the augmented system.
Because the HJ equation contains unknown drift dynamics and cannot be directly solved, the IRL
method is utilized to convert the HJ equation into an equivalent equation without unknown drift
dynamics. To solve this equation, a critic neural network (NN) is employed to approximate the
complex value function based on the tracking error and reference information data. For the unknown
NN weights, the least squares (LS) method is used to design an estimation law, and the convergence
of the weight estimation error is subsequently proven. The approximate solution of optimal control
converges to the Nash equilibrium, and the tracking error asymptotically converges to zero in the
closed system. Finally, we validate the effectiveness of the proposed method in this paper based on
MATLAB using the ode45 method and least squares method to execute Algorithm 2.

Keywords: nonzero-sum games; optimal asymptotic tracking control; integral reinforcement learning;
neural network

MSC: 93C10

1. Introduction

In the processes of manufacturing, military action, economic activities, and other
purposeful human activities, it is necessary to apply a certain control to a controlled
system and process to make a certain performance index reach the optimal value [1,2];
such a control effect is called optimal control, which is the most basic and core subject of
modern control theory. The central issue is determining how to select a control law based
on the system’s dynamics to ensure the system operates according to specified technical
requirements, thereby optimizing a particular performance index of the system in a defined
sense [3]. For example, the use of the minimum amount of fuel or the minimum time
to accurately launch space rockets and satellites into the predetermined orbit is a typical
optimal control problem (OCP). In the past few decades, optimal control has received
much research attention and has been widely used in the fields of aerospace [4], industrial
production [5], and power systems [6].
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The OCP of linear systems or nonlinear systems can be solved by constructing and
solving the Riccati equation or the Hamilton—Jacobi-Bellman (H]B) equation [7]. However,
the HJB equation is a nonlinear partial differential equation (NPDE) that is extremely
challenging to solve analytically due to the “curse of dimensionality” as the dimensionality
increases. Therefore, many scholars have developed an adaptive dynamic programming
(ADP) technique that can solve the H]B equation [8,9]. In [10], the convergence and error
bound analysis of value iteration (VI) ADP for continuous-time (CT) nonlinear systems
were studied. However, most of the previously developed OCP discussed above is for
systems affected by a single input parameter or a single agent. In fact, not only are multi-
agent systems attracting attention from academics [11-13], but many practical systems are
controlled by multi-input controllers, such as micro smart grid systems [14] and wireless
communication systems [15], where each control input can be thought of as a player, and
each player minimizes its own cost functions by influencing the system state. In this case,
each player’s optimal problem is coupled to the other players” optimal problems; therefore,
the optimal solution does not exist in the general sense, which promotes the formulation of
alternative optimality criteria.

For these multi-input systems, game theory provides an approach to a solution [16-18].
Nash equilibrium refers to a combination strategy. The combination strategy consists of the
optimal strategy of all players; that is, under the condition of a given strategy of the other
players, no individually motivated players choose other strategies, so no one is motivated
to break this equilibrium [19]. Therefore, in some game-based control methods, the Nash
equilibrium is often used to provide the concept of solutions.

Game theory has been successful in the simulation of strategic behavior in which each
player’s outcome depends on their own actions and those of all the other players. Each
player influences the state of the system by selecting its own control policy to minimize
its own predetermined performance goals independent of the other players. Differential
games are an important field of game theory and have been used in different fields [20-22].
Differential games can be classified into zero-sum games, cooperative games, and NZS
games based on the different tasks and roles of the participants. The objective of NZS games
is to find a set of optimal control strategies that minimize the individual performance index
function and ensure the stability of the NZS game systems, ultimately producing a Nash
equilibrium. The Nash equilibrium can be obtained by solving coupled HJ equations [23].
However, the HJ equation is also an NPDE.

Recently, numerous scholars have investigated approximate dynamic programming (ADP)
and reinforcement learning (RL) using an NN to approximate the Nash equilibrium [24-27].
RL can be classified into model-free RL and model-based RL based on the dynamic model
of the system. The difference between the two approaches is whether a system model is
required in the solution process. For model-based RL, Werbos [24] was the first to propose
the use of ADP to tackle the discrete-time OCP, including two algorithms, VI and policy
iteration (PI). However, compared to the PI algorithm, the convergence speed of the VI
algorithm is slower, and the control strategy obtained at each iteration cannot ensure system
stability. In [25], an online critical NN weight-tuning algorithm combining PI and recursive
LS is proposed to solve the optimal control problem for players in nonlinear systems with
nonzero-sum games. In [26], Zhang proposed a single-layer critic NN instead of a dual
critic-actor NN, which solves the Nash equilibrium of NZS game systems. Vrabie [27]
proposed an IRL method to solve the HJB equation with unknown drift dynamics. The IRL
method is based on the integration time interval, PI technique, and RL concept to obtain the
value function and has become a common method for solving the HJB equation. However,
these methods still need to assume some knowledge of the model. This has motivated the
development of model-free learning design methods.

Model-free RL can be classified into two categories: identifier-based RL and data-
based RL. For identifier-based RL, Liu [28] proposed a critic-identifier structure to tackle
the OCP for NZS games with completely unknown dynamics. In this approach, an iden-
tifier NN and a critic NN were used for approximating the unknown dynamics system
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and value function, respectively. However, identifier training is usually time-consuming
and inevitably introduces harmful identifier errors. Data-based RL methods are used to
solve discrete-time nonlinear NZS game systems [29,30] and CT nonlinear NZS games
systems [31-33]. Compared to the identifier-based RL method, this method avoids the
introduction of identification error.

To our best knowledge, previous studies have focused on the regulation problem,
and there have been few studies on the OTCP of NZS game systems. However, for
practical systems, it is common to have the state or output of the system trace a given
reference (desired) signal. For the OTCP, the traditional approach entails a two-stage
process: optimal feedback tracking control and steady-state control [34]. To avoid such
a classic two-step control design and reduce the computational cost, we will tackle the
OTCP through an augmented system that only needs a one-step design. Currently, the
conventional approach to solving the OTCP involves constructing an augmented system.
This transforms the original OTCP into a related optimal regulation problem, which is
subsequently tackled using the existing methods for such problems. The solution to the
OTCP, namely, the Nash equilibrium, can thus be obtained through this process. In [35],
an identifier—critic NN based on RL and NZS game theory was proposed to address
the OTCP for nonlinear multi-input systems. However, in that paper, they used NN
identification, which inevitably introduced identification errors, and the discount factor
was not considered in its value function. Wen [36] solved the OTCP for discrete-time linear
two-player NZS game systems by using model-free RL, in which the value function takes
the discount factor into account. In [37], a new adaptive critic design was proposed to
approximate the online Nash equilibrium solution for the robust trajectory tracking control
of NZS games for continuous-time uncertain nonlinear systems. Zhao [38] solved the
OTCP of NZS games of nonlinear CT systems through RL. However, in that paper, the
tracking error is bounded, which is not ideal. In this paper, an offline IRL algorithm based
on a single-layer critic NN is proposed to address the OTCP of N-player NZS games with
nonlinear CT systems.

Compared to the existing literature, the innovations of this paper are primarily re-
flected in the following aspects:

1.  To the best of our knowledge, no offline learning algorithm has been used to tackle
the OTCP of nonlinear CT NZS differential game systems.

2. In this paper, the discount factor is considered in the cost function, which relaxes the
requirement of the reference signal and does not need to require the reference signal
to be an asymptotically stable signal.

3. Inthis paper, only the critic NN is considered to avoid the identification errors and to
reduce the computational burden.

4.  The offline IRL algorithm designed in this paper enables the weight error of the
NN to converge to zero and the approximate solution to converge to a Nash equi-
librium. In addition, the stability of the tracking error in the closed system is
asymptotically guaranteed.

The subsequent sections of this paper will proceed as follows. In Section 2, an aug-
mented system is developed to convert the OTCP into an optimal regulation problem, and
a model-based PI algorithm is introduced. In Section 3, an IRL technique is proposed to
approximate the value function, and the equivalence between the proposed method and
this model-based policy iteration is proven. Section 4 presents the offline iterative learning
algorithm and proves its convergence. Section 5 provides a simulation example. And
Section 6 concludes this paper.

The following notations will be used throughout this paper:
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Symbols Meaning of Symbols
R real number set
R" n-dimensional vector
Rrxm the set of real n x m matrices
\Y gradient operator

|- absolute value
Il 2-norm of a matrix or vector
sup supremum
cl(Q) a function space on () with continuous first derivatives

2. Preliminaries
2.1. Problem Description

A class of nonlinear CT NZS differential game systems consisting of N-players is
given by

N
x(t) = f(x(t) + Z;gj(X(t))uj(f) ©)
i=

where u; € R" is the control input for player j, x € R" denotes the measurable system
state, and f(x) € R" and gj(x) € R"*"/ are both smooth nonlinear functions. Assume
that g;(x) is known and Lipschitzcontinuous. u_; is the set of control inputs for all players
except player i: u_; = {uy, up, ..., uj_1,Ujy1,..., UN}-

Assumption 1 ([39]). For the OTCP, we need the following basic assumptions:

(a)  The drift dynamics system f(x) is unknown and Lipschitz-continuous on a compact set
Q € R* with f(0) = 0.

(b)  gj(x) is bounded by a constant byj, i.e., |[g;(x)|| < by;.

Remark 1. Assumption 1 (a) is a standard assumption that guarantees that the solution x(t) of
system (1) is unique for any finite initial condition. For Assumption 1 (b), although this assumption
is somewhat strict, in practice, there are still many systems that meet such a condition, such as
robot systems.

The bounded reference signal is generated by a Lipschitz-continuous command generator

P(t) = fa(r(t)) (2)

where f;(0) = 0, r(t) € R" denotes the reference signal. Note that the reference dynamics
only need to be stable in the Lyapunov sense and are not required to be asymptotically
stable. Sine and cosine waves are some examples of such signals.

The purpose of tracking control is to achieve x(t) following the r(t). Then, the tracking
error is given by

er(t) = x(t) —r(f). 3)

Define the cost function of player i as

Jiler(£),uy, tia, ..., uN) = /t e~ M= (el (1) Qier (17)
N . (4)
+ 2”}' (m)Rijuj(n))dn,i € N
=
where N = {1,2,...,N}, Q; = Qf > 0,R; = R} > O,R;; = Rg > 0,and A > 0is the
discount factor.
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Take the derivative of Equation (3):
ér(t) = f(r(t) +e(t "’Z& t) 4 er(t))u j(t)_fd(”(t))- 5)

The objective of the OTCP is to determine the optimal control inputs {u],u;, ..., u}y}
that ensure e, (t) asymptotically converges to zero, and the predetermined cost function (4)
for each player i is minimized.

Next, we introduce the augmented state including tracking error e,(¢) and reference
signal r(t) expressed by u(t) = [ef (t),rT(t)]T € R?", and the corresponding augmented
system can be obtained by using Equations (2) and (5):

N
j(t) = F(u(t)) + 21 Gi(u(t))u;(t) (6)
=

where

Fipty = [0 0 Jar )] gy = [s5000) e0)],

Redefine the cost function of player i as

()2, i) = [ €O (T () Qi)
N

where Q; = [ Qi O"X"}.

OHXVL OHXH

Definition 1 ([39]). (Admissible control.) The feedback control policy u; = u;(p) € ®(Q) is
admissible with respect to (7) on Q) € R™ if u;(u) is continuous on Q, u;(0) = 0, u;(u) stabilizes
the tracking error dynamics (5) on Q), and (7) is finite Yy € Q).

Remark 2. As observed from (6), because the augmented system states contain r(t), this state is
uncontrollable. However, because the reference signal is assumed to be bounded, the admissible
control policy means that y(t) is bounded.

For the simplicity of description, we denote admissible control as u; = u;(i). Given
admissible control u;, the value functions for player i are given by the following;:

Vi(u(t)) = /too EA(”t)< () Qip(n) + Z” Rz]”])‘l’?,l eN. (8)

The goal of the optimal regulation problem is to find a set of admissible control se-
quences {uj,u3,...,uy} that minimizes the value functions (8) for each player. {uj,u3,...,
uy; } also represents the Nash equilibrium of NZS games.

Definition 2 ([40]). (Nash equilibrium.) An N-tuple of control policies {u7,u3, ..., uy} is called
the Nash equilibrium of an N-player game if the following N inequalities are satisfied:

Ji=Tiui,uy, . uf, .o uy) < Ji(uj,us, .o u;. . ,uy),i €N 9)
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Remark 3. The valuefunction (8) must use a discount factor A > 0 because r(t) does not go to
zero and then the input cost Z] 14 leu] does not go to zero either, and therefore, the performance
function is unbounded.

Remark 4. The cost function (4) for the OTCP of system (1) has been transformed into a cost
function (7) for the related problem of partial optimal requlation (i.e., only adjust the tracking error)
by building an augmented system (6). Therefore, we can solve the OTCP of system (1) by using the
method of dealing with the optimal regulation problem.

Assume that the value function V;(u(t)) € C}(Q), where C!(Q) is a function space

on () with continuous first derivatives for i € N. By differentiating V; along the system
trajectories (6), we can write Equation (8) as follows:

%) a B B _ N
=/t P <VTQ1‘H+Z%”]‘TR1‘J‘MJ‘>‘7Z’7
]:

(10)
— U;(p, uq,up,...,un),i € N.
Equation (10) can be written as
0= U;(p,u1, iy, ..., ux) — AV + VVI (.F(y) + igj(y)u]),i eN (11)
=

where V;(0) = 0, VV; = %—‘:f, VVI is the transpose of VV;, and U;(p, u1, 1z, ..., uy) =
}lTQj}l + Zjl\il M]TRIJMJ
Define the Hamiltonian functions:

Hi(y,VVi,ul,uz,. ..,MN) = ul'(]/l, uq, Uy, .. .,MN)

N
— AV + vVl (]—"(y) + 2 gj(y)u]),i €N
=1

(12)

The optimal value functions V;* can be given:

Vi (u(t)) = min /t we“’”( (1) Qi +Zu Rw;)vln,z eN. (13)

uj

Using the stationarity conditions aH’ = 0 [41], the optimal control inputs can be obtained:

* 1. * -
ui (n) = —ERiilgiT(y)VVi ,ieN. (14)

Substituting Equation (14) into Equation (11), the N coupled HJ equations are obtained:

0 =(VV;") T F(p) +p" Qipt — AV*~ VVi) Zg] (W)VV;
(15)
+ = Z (VVATGi(u )( ].]1) GRSGT (1) VV/, Vi(0) = 0,i € .

It is clear from Equation (14) that V;*(x) must be known if u} () is to be obtained.
That is, solving the OTCP for NZS games is ultimately a question of solving the coupled HJ
Equation (15). However, because the coupled HJ equation is an NPDE, it is very difficult
to solve it directly. Next, we will apply IRL to try to address the coupled HJ equations for
augmented systems (6).
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2.2. Policy Iteration Solution for NZS Games

It is essential to recognize that solving the coupled HJ equation (15) requires the
information of all the other players’ policies. Thus, Equation (15) is difficult to solve. Next,
we try to obtain the solution with the PI technique.

The following Algorithm 1 is actually an infinite iterative process that is only suitable
for theoretical analysis in this paper. For practical systems, it is common to set a termination
condition on the value function in step 4. According to [28], the convergence of Algorithm 1
is proven, i.e., VF(u) — V¥ (u) and {uf(p), u .(u)} — {ur (), u* (n)} as k — co.

It is clear that Equation (16) still requires a full system model because Algorithm 1 does
not provide a solution for the HJ equation with unknown drift dynamics. References [35,42]
used the identifier technique to solve unknown NZS games. To avoid the identification
process, we adopt the IRL method to tackle NZS games with multiple inputs, where F (j)
is unknown.

Algorithm 1 Model-based PI for solving the HJ equation

1: Start with an initial policies {u{,u3,...,u%} € ®(Q), and set k = 0.
2: According to the control policies of the N-tuple {u’l‘, ué, el “]1(\]}/ find the N-

tuple of value functions {VE™ (i), VAT (u),..., V& (1)} successively approximated
by solving

(Vv T )+ Z Gi(u VL LW (pub, ik ) = 0,
(16)
m“%m:oﬂeN
3: Revise the N-tuple of control policies as follows
1
W (1) = = RGT () VVE () 17)

4: Letk = k+ 1, and return to Step 2.

3. IRL Method for NZS Games

In this section, we adopt an IRL method to tackle NZS games and prove the conver-
gence of the IRL method.
3.1. IRL Method

Inspired by [43], we can rewrite system (6) as follows:
> k y k
)+ Y G500 (=) + 1 G0 a8)
j=1 j=1

where Vu; € ®(Q),j €N, u;.‘ represents the kth iteration of the jth control input.

Let VF™1(u) be the solution of Equation (16). The time derivative of V() along
the system trajectory (18) is

AV (p)

k+1
T = (Vv

N
)+ Zg] uf + 3 G () (uj — uf)
= (19)

N
= AVE U )+ (TVET Y G0 = o).
=1
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According to the IRL technique, taking integrals on both sides of Equation (19) over
the time interval [t, t + At],

k41 Uk _ [T Sk T ok
VET (u(t+A) = Vi (u(t)) /t (VVI (u(n)) ;Qz(ﬂ(ﬂ))(uj uj)dn
= (20)

t+At t+At
— [ (ot Yan + [ AV ul)an,

From Equation (20), it is evident that dynamics knowledge F(y) is not needed.
Therefore, by replacing Equation (16) in Algorithm 1 with Equation (20), the NZS games
with unknown F(y) are solved. Next, we will prove that Equation (16) is equivalent to
Equation (20).

Theorem 1. Let VS (1) € C1(Q), VI (1) > 0, and V/F1(0) = 0. VET(u) is the solution of
Equation (20) if and only if V¥ (1) is the solution of Equation (16).

Proof of Theorem 1. From the derivation of Equation (20), it is obvious that if Vl-kJrl is

the solution of Equation (16), then Vik+1 satisfies Equation (20). If we can prove that
Equation (20) has only one solution, then Equation (20) is equivalent to Equation (16). We
use the contradiction method to derive that Equation (20) has only one solution. Before
embarking on the proof of contradiction, let us derive the following fact:

. 1 t+Ath p
lim /t (i7)dy

At—0
. 1 At I P th p
T A0 A (/o (n)dn - /o () 17) (21)

d th d
=7 /0 (i7)dyy
=h(t).
From Equation (20), we can obtain
dvi (u(h))
dt
= Jim (VI e+ 80) — VI (1))

At—=0 At \ !
t+A N (22)

t+At

i k 1k ~ AL ke
lim [ (), )+ lim [ AV (u()) .

By using fact (21), Equation (22) can be written as Equation (19). Suppose that there is
another solution Z;(y(t)) of Equation (20) with Z;(u(t)) > 0 and Z;(0) = 0. So, Z;(p(t))
also satisfies Equation (20), i.e.,

A \7 () ~ U (o), ) + 92T () Y G, oy~ ). 23)

From Equations (20) and (23), we can obtain
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2 (Ve 0) = Ziu(9)) = AVE () = Z4((9)
N (24)
(VYT = VZE () 1 610000 (1~ )
£
then
LVE ) = Ziu(1)) = MV () = Zu)
25)

_ k+1\T _ T - . ok
(VD () = V2L (u(0)) 1 650 () = ).
]:

t

Multiplying e~ on both sides of Equation (25), we can rewrite Equation (25) as follows:

S () — ziu0)) = e ((VVEDT (1) - V2 ()

N (26)
X Z Qj(y(t)) (u]- — u;‘)
j=1
Equation (26) always holds Vu; € ®(Q)). When we select u; = u;-‘, then
d
(e (VI w(n) - Ziu(1) ) = 0,9u(1) € O (27)
Thus,
M (VER (u(t) = Zi(u(1))) = ¢, (1) € O (28)

where c is a real constant.
Now, considering the condition Vf™1(0) = 0 and Z;(0) = 0, it follows that

c = e’)‘t(VikH(O) — Zi(0)> = 0. According to e > 0, it can be deduced that

Vf“(y(t)) = Z;j(u(t)) Vu(t) € Q. This contradicts the existence of another solution.
Then, Equation (20) has only a solution, which means that its solution is equivalent to that
of Equation (16). Thus, the proof is complete. [

From Theorem 1, it follows that the solution of Equation (16) is equivalent to the
solution of Equation (20), so the convergence of the IRL iterative method (20) is guaranteed.
That is, the equivalence between Algorithm 1 and the IRL method is proven, which ensures
the convergence of the IRL method.

3.2. Single-Layer Critic NN

A single-layer critic NN is utilized for approximating the solution to Equation (20).
According to the Weierstrass approximation theorem, the approximate form of the value
function Vl.kJrl (u) and its gradient VVik+1 () can be given as follows:

VI (1) = ol i) + 0igia (29)
YV () = VYl () wigs + Voig1,i € N (30)

where ¢; : R? — RKi are linearly independent activation functions, K; denotes the
number of hidden neurons, w41 € RXi are the unknown ideal weights, and 0; k+1 are the
approximation errors. It is shown in [8] that as K; — oo, the approximation error ¢; y1
converges to zero.
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Assumption 2 ([39]).

(1) The approximation error 0; 1 (p) and its gradient Vo, ;1 (p) are bounded on O3, specif-
ically, |01 (p)|| < by, and ||Vojriq (1)|| < boy;, where by, and bgy,, i € N, are
positive constants.

(2)  The activation functions ;(u) and their gradients Vp; () are bounded, i.e., ||;(p)|| < by,
and ||V p;(u)|| < byy,, with by, and by,,,, i € N, being positive constant.

Remark 5. For Assumption 2 (1), it is known that as the number of neurons K; — oo, the error
i k+1(p) — 0. In addition, for fixed K;, there exist ||0; 11 () || < bo, and || Vo1 (1)|] < boy;-
For Assumption 2 (2), this condition is mild in practice because many activation functions, such as
the sigmoid function and tanh function, satisfy Assumption 2 (2).
According to Equation (29), Equation (20) can be written as
(Wi(u(t+ A1) = i (p(1)) T wijen

t+At N
— [ LG i) = o))V (1w

j=1
1
BAE N FLAL : (31)
[ Qi L) Rk )y = A [ i) Tty
=1
= ejjer1(p(t))
where e; 1 ((t)) is the error from the NN approximation error:
Cijer1(1(1)) = Oijer1 (1)) — Gijesn (u(t + At))
(32)

t+At N t+At
+/t " Y (Gj(u;(n) —uf(ﬂ))TWi,kH(V(n)))dﬂ+?\/t o ik (p(17))dny.
j=1

Denote by @; ;11 the estimations of w; ;1. Thus, Vl.k+1 () can be approximated as

VI () = @jentip), i €N (33)
Based on Equation (17), the approximate control policies are

A 1, L
7 (1) = =5 Ry G (1) V] ()i, i € N. (34)

Remark 6. Because the input dynamics G;(u) are known, we directly use the critic NN
approximation (19) to obtain the approximated optimal control (20). Therefore, the single-layer
critic structure is adopted instead of the actor—critic structure, reducing the computational cost and
avoiding approximation errors from the action NN.

Due to the estimation error of Equation (29), V¥ (y) is replaced by V¥ (1) in Equation (20).
Therefore, the residual error for player i is given by
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Cijr1(p(t), ui(t), u_i(t))
= (i(p(t) — pi(p(t + A1) Dj ey

t+At N
+/t ;(gj(ﬂ(’?))(”j(’?)*”( M)V (1)@ pesar

(35)
t+At t+At N
_/t+ D d77 /Jr TRz]uf(U))dﬂ
t+AL
+A /t ¥ (1)) @i jey 1.
Note that
t+At N
/t Y- (G () (i () — s ()T (1)) i ealy
j=1
t+At N T T T
- L7 )] () V] ) (36)
t N
o[ L@ I B G BT ()
and
t+At N t+At N
/t ],ZE((”?( ) R (1 d’7_4/ Z @V ((1)Gi ()R )

XRinj}lng( )V (1)) @j ).

For notation simplicity, define

Dij(p) =V ()G ()R} RyR ;G (1) V] ()
Eij(1) =Vi(0)Gi ()R ;1G] () V! (1)
Gui(p(t)) =(9i(u(t)) — #’z( (t+Aan)"

t+at N
D= R g el i

t+At
t+At

h
et |
-

€21

€31

t+At )
€51 1 “I/t 77
JEA Dy (u(n))dy 0 0
Coiu(t)) = 0 :
0 . f:+At Din(p(n))dy.

Equation (35) can be written as

i1 (pu(t),ui(t), u_i(t)) = pi(u(t), ui(t), u_;(t))@ixy1 —si(pu(t)) (38)
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where
pi(p(t),ui(t),u—i(t)) = Cu,i(u(t)) + Co,i(p(t), ui(t), u_i(t))
1.
+ §W1<T§3,i(}l(t)) + Cai(p(t))
1. N
si(r(£)) = G5, (D) + W Go,i (u (1)) Wi
Wi = @], ..., op "
Consider the objective function
1o
Eijt1 = §€i,k+1' (39)

In the following section, an algorithm is proposed to update the weights @; ;1 by
minimizing E; ;1 and to prove the convergence of the algorithm.

4. Offline Iterative Learning
4.1. Offline Algorithm for Updating the Weights

The LS method will be used for updating @; j 1. {tm}Z:O represents a strictly in-
creasing time series, where p represents the number of samples and is a sufficiently
large integer. M; = {(pm, tim, t_im)} _, denotes the sample set, where pu,, = p(tm)
is the state at time t, and u;,, = u;(tym) and u_;, = u_;(t;) represent the control
input at time t,, with m = 0,1,...,p. For simplicity, let p; ,, = p;(Um, Uiy, U_;m) and
Sim = si(.um/ Ui ms ufi,m)/ where

Pim = C1i(p(tm)) + Co,i(p(tm), i, i) + %WkTgB,i(V(tM)) + Ca(p(tm))

Sipn = C5,i(1(tm)) + %ngé,i(y(tm))wk'

(40)

The following persistence of excitation (PE) condition is used for ensuring the conver-
gence of @; 1.

Assumption 3. There exist py > 0and B > 0 such that for all p > po, we have
10
~ Y PiPim = Blik, 20 (41)
p m=0

where I; x, € RX>Ki denotes the identity matrix.
Based on [8,43], the updating law of @; ;11 is given by
-1
@1 = [PIR) P “2)
where

P = [PiT,o/- : -/ngfﬂTr Si = [Si,O/'“/Si,pfl]T'

An offline algorithm is presented based on the weight updating law (42). In Algorithm 2,
we can see that steps 1-2 are a measurement process that is used to collect real data.
Steps 3—4 are an offline learning process, which is used to approximate real weights.



Mathematics 2024, 12, 2555 13 of 21

Algorithm 2 NN-based offline learning for updating weights

1: For each player i, let {u?,u®.} € ®(Q) and initial weight @; 0, set k = 0, a small
constant € > 0;

2: Then, collect the data (pm, Ujm ti_iy,) for M;, and compute {y;(u(tm)),
Ca (1 (), s 1), T (), o (b)), G (b)), andl (i (b))

3: Compute P; and S; and update @; ;1 with Equation (42);

4 If ||@ix1 — @ixl[* < €, Stop iterating and bring @; ;41 back into Equation (34) for
optimal control input; else, let k = k + 1, and return to Step 3.

Remark 7. In on-policy learning algorithms [26,38], approximate control policies (not real policies)
are usually used for generating data and then learning the value function. This means that during
the strategy learning process, “incorrect” data are employed, leading to the accumulation of errors.
According to reference [43], Algorithm 2 can be regarded as an off-policy learning algorithm. In this
algorithm, control u; can be arbitrarily selected on ®(Q)), and ensures error-free data generation,
thereby preventing cumulative errors.

Remark 8. As seen from (42), updating the weight requires the inverse of [PI P| ™, necessitating
the PE condition to ensure the invertibility of this matrix. Thus, in practical applications, it becomes
essential to add detection noise, such as random noise or sine waves of different frequencies, to make
the given control input meet the PE assumption.

4.2. Convergence Analysis for the Offline Algorithm
To show the effectiveness of the updating law (42), the following theorem is given.

Theorem 2. Fori € N, assume that Vl.k+1 is the solution of Equation (20) and Assumption 3 holds.
Vu(t) € O, V6 > 0, there 3K € N such that

(sup [VF1 () = VL (o) < 6 (43)
neQ

(2)sup [V 1) = Vi ()] < 0 (44)
ueQ

for K;i > Kf (K; is the number of neurons) and the approximate optimal tracking control
{#1y, 1y, ..., 4N} in Equation (34) will converge to the Nash equilibrium, i.e., the tracking er-
ror dynamics system can be stabilized.

Proof of Theorem 2. A similar proof has already been provided in references [32,44]. To
avoid repetition, we omit some similar proof steps.

From Theorem 2, Vl.k+1 is the solution of iteration Equation (20). Then, with the same
procedure used in Theorem 3.1 of reference [44] and Theorem 2 of reference [32], result (43)
can be proven.

In other words, there exists K > 0, Vu € (3,6 > 0 such that if K; > K7, then

7k+1 k+1
Vit ) = Vit (w| <. (45)
According to Theorem 4 of reference [8], the result of sup,, ., | \7;‘“ () =Vi(u)| <o

can be proven directly.
The optimal input error of tracking control can be obtained by using Equations (14) and (34):

_ N 1 __ N
= _§RiilgiT(P‘)VVi (1) + ERiilgiT(.u)VlPiT(V)wi,k (46)

= SR Gl () (VVE(u) = YV ()i € N.
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Because ; is linearly independent, using [27] Theorem 2, we know that
supHeQ|VVik(y) — V'V (u)| < 6. We know from Assumption 1 (b) that g;(x) is bounded,
so it is clear that G;(y(t)) is also bounded. Therefore, the errors e,; will eventually converge
to zero. In other words, ﬁf will converge to u;, the N-tuple control inputs {t,f2,..., 0N}
constitute a Nash equilibrium for the NZS games, and the tracking error dynamics (5) will
be asymptotically stable. [

Remark 9. From Theorem 2, we can easily obtain the following conclusions. The critic weight
error converges to zero. The optimal control inputs {uy,u;, ..., u,} can enable x(t) to track the
reference signal r(t), and 01; converges to u’; then, the N-tuple control outputs {1, 1, ..., iiN } can
guarantee that the stability of the tracking error of the closed systems will be asymptotically stable.

5. Simulation Results

We will verify the feasibility of the IRL method through a numerical simulation
example. Consider the nonlinear CT differential game with two players as below [35]:

X = f(x)+g1(x)ug + g2(x)up
where

(%) = [ 2

fx) = —xp —0.5x7 — 0.25x,(sin(4x1) + 2)2 + 0.25x5(cos(2x1) + 2)2
. 0 _ 0

g1(x) = Los(2x1) + 2} 82(%) = Lin(‘ix%) + 2}

u1,uy € R are the control inputs and x = [x1, xp]T € R? is the system state.
The reference signals are given by the following commands:

M) = {_01 é} ().

Select the initial state xg = [2,0]T, rp = [-0.1168,0.2763]", Q1 = diag[1,1],

Qo = diag[2,2], A = 0.1, ¢ = 1074, Ry; = Ry = 2, and Ry; = Ry = 1. Set the ini-

tial probing control input u; = uy = 1.4(sin(8t)%cos(2t) + sin(20t)*cos(7t)). We set the

interval of integration as 0.05 and the number of samples collected as p = 100. The aug-

mented system states are u(t) = [u1, 2, 43, #a]” = [e1,€2,71,72]7, and select the following
activation functions

Pr(p() = Pa(u(t)) = (7, erea, e1r1, 172, €3, €211, €272, 17, 7172, 15

and the initial NN weights
wip =1[-1,1,0,0,1,0,0,1,1,0]7, wyo = [-1,-1,1,-1,0,-1,1,1,0,0]".

In order to verify the effectiveness of the proposed method, we will compare it with the
method in [38] under the same conditions. To save space, this article presents a comparison
of only some of the important results. Figure 1 shows the convergence curve of evaluating
the weights of the critic NN, which finally converges to

@ = [—0.0213,0.6304, —0.3745, —0.6673,1.5467,0.1415, 0.0455, —1.6452,0.9663, 1.2640] "

@y, = [—0.0247,0.6392, —0.3716, —0.7285,1.5715,0.1891, 0.0372, —1.7302,1.1982, —1.3978]T.
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(a) Weights of critic NN for player 1.
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(b) Weights of critic NN for player 2.

Figure 1. Critic NN weight convergence curve.

Figure 2 shows the system state x(t) and reference trajectory r(t) of the proposed
method in this paper. It can be seen that the system state x(t) can track the reference
trajectory r(t) after 20 s. Figure 3 shows the system state x(t) and reference trajectory
r(t) of the method given in [38]. It can be seen that the reference trajectory r(t) can be
tracked in the system state x () only after 90 s. In Figure 4a,b are the evolution curves of the
tracking error of the proposed method in this paper and that of the proposed method in [38],
respectively. From Figure 4, it is easy to see that the tracking error convergence speed of the
proposed method in this paper is faster than that used in [38]. Figure 5 shows a comparison
between the value function obtained by the proposed method and that obtained by the
method used in [38]. It is easy to see that the value function of the proposed method in
this paper is smaller both at the initial moment and the final moment, that is, the optimal
control obtained in this paper is better than that obtained by the comparison method.
The control inputs of the proposed method are compared with that of the comparison
method in Figure 6. Figure 7 is an evolution curve approximating the HJ equation. For
Equation (15), optimal control can make the left end of Equation (15) equal to zero, but for
a non-optimal control it is not necessarily possible to make the left end of Equation (15)
equal to zero. In this paper, approximate optimal control is used to approximate optimal
control, so it is necessary to bring the obtained approximate optimal control back to the
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right end of Equation (15) to verify whether it is equal to zero. By observing Figure 7, it
can be seen that the optimal approximate control obtained by this method makes the left

end of Equation (15) equal to zero, i.e., the optimal approximate control ﬁ;‘ converges to
the optimal control u.

0 10 20 30 40 50 60 70 80 90 100
Time (s)

(a) The system state x; and the reference trajectory r1.
0.8 T

0.6 |-

0.4 +

0.2

-0.2

-0.6

-0.8 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
Time (s)

(b) The system state x; and the reference trajectory r,.

Figure 2. The system state x(t) of the proposed method is compared with the reference trajectory r(t).
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(b) The system state x;, and the reference trajectory ro.

Figure 3. The system state x(f) of the comparison method is compared with the reference trajectory r(t).
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(a) The tracking error of the proposed method.

Figure 4. Cont.
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(b) The tracking error of the comparison method.

Figure 4. The evolution curve of the tracking error of the proposed method is compared with that of
the comparison method.
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(a) The value function of the proposed method.
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(b) The value function of the comparison method.

Figure 5. The comparison between the value function of the proposed method and that of the
comparison method.
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(a) Control inputs for the proposed method.
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(b) Control inputs for the comparison method.

Figure 6. The control inputs of the proposed method are compared with that of the comparison method.

40

Eq.(15) for player 1
20 | — — — Eq.(15) for player 2| -

-20

-40

-60

-80

-100 F —

-120 . . . . . . . . .
0 10 20 30 40 50 60 70 80 90 100

Time (s)

Figure 7. The evolution of (15).
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6. Conclusions

To tackle the OTCP for nonlinear CT NZS differential game systems with unknown
drift dynamics, an IRL method based on PI is proposed. Because the H]JB equation is an
NPDE that cannot be solved directly, the single-layer critic NN is used for approximating
the value function of each player, and the LS method is used to update the weight of the
NN. Due to the stability of the tracking error dynamics system, the approximate solutions
converge to a Nash equilibrium, and the convergence of the weights of the NN is strictly
proven. Finally, the validity of Algorithm 2 is verified by MATLAB simulation, and the
comparison yields faster convergence and shows the higher convergence accuracy of
this method.
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