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Abstract: In this study, an improved discontinuous deformation analysis method with sub-block
strategy is introduced to numerically simulate mixed-mode fractures. This approach partitions the
material domain into continuum and potential discontinuum regions, applying specialized modeling
techniques to each. In the continuum region, penalty-like bonding springs are employed to glue the
sub-blocks together to capture the elastic behavior of the material. In the potential discontinuum
region, the cohesive springs with the stiffness based on the cohesive zone model are implemented
between sub-blocks to reproduce the process of crack nucleation and propagation. The primary
advantage of this method is its capability to effectively model the transition of quasi-brittle solids from
a continuous to a discontinuous stage through the degradation of cohesive springs. This accurately
represents material failure while maintaining stability and consistency along uncracked interfaces.
Another significant benefit is the method’s efficiency, as it avoids complex contact operations along
sub-block interfaces before the cohesive spring between them fails. Validation through various
benchmark numerical examples, such as cantilever beam-bending and diverse fracture simulations,
demonstrates the method’s accuracy and robustness by comparing the results with analytical solu-
tions. These comparisons show that the proposed method effectively captures the interplay between
tensile and shear traction components in the mixed-mode crack propagation process.

Keywords: quasi-brittle fracture; discontinuous deformation analysis (DDA); sub-block; cohesive
zone model; cohesive contact spring

MSC: 74H15; 65N22; 74R10

1. Introduction

The robust and accurate simulation of fracture propagation phenomena is of paramount
importance across a wide range of applications ranging from material science to geotech-
nique engineering. Among the multitude of fracture modes encountered, mixed-mode
fractures, characterized by the simultaneous presence of tensile and shear components,
pose challenges due to their inherent complexity and the intricacies involved in capturing
the interplay between these competing fracture mechanisms.

In recent decades, researchers have proposed various analytical [1–4], experimental [5–7],
and numerical approaches [8–12] to tackle this challenge. Among these, numerical meth-
ods offer advantages in terms of cost-effectiveness and efficiency. According to the spa-
tial discretization manner adopted, the numerical methods are usually categorized into
continuum-based and discontinuum-based methods [13,14].

Continuum-based methods typically employ grid lines to discretize the domain of
interest into finite elements. Combined with appropriate failure criteria, these methods
possess high accuracy in computing material deformation and stress distribution, enabling
them to accurately predict fracture behavior in static or quasi-static problems. However,
in dynamic problems, they encounter difficulties with large-scale opening and sliding along
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discontinuous material interfaces. To address these challenges, the extended finite element
method (XFEM) [15,16] and the numerical manifold method (NMM) [17,18] were proposed
as potential solutions. Nonetheless, simulating multi-crack problems remains a complex
task for these methods.

In contrast, discontinuum-based approaches typically represent the material as an
assembly of individual particles or blocks. The distinct element method (DEM) and the
discontinuous deformation analysis (DDA) [19,20] are two widely employed techniques
within this category. Depending on the elemental computing unit, the DEM is imple-
mented in two primary forms: the bonded-particle model [21,22] and bonded-block model
(BBM) [23,24]. By interconnecting adjacent particles/blocks with contact springs, these
two models enable the DEM to reproduce the material failure process. Similarly, the DDA
simulates fracturing progress by introducing the sub-block strategy [25] to subdivide intact
blocks into smaller sub-blocks and connect them together by point contact springs [26,27]
or distributed bonds [28–30]. These kinds of approaches are well known as the sub-block
DDA (SDDA) method.

In recent years, coupling continuum–discontinuum approaches have been emerging as
a powerful technique in fracture modeling, such as finite–discrete element methods [31–37]
and FEM–DDA coupling approaches [38–42]. These methods discretize each discrete
element/block into finite elements, leveraging the high computational efficiency of con-
tinuum methods for intact regions and the ability of discontinuum methods to capture
discontinuities and fracture processes. By judiciously integrating these complementary
techniques, researchers aim to develop robust and accurate numerical frameworks for
simulating complex mixed-mode fracture problems. However, these methods may also
face the difficulties of distorted mesh and remeshing operation due to the introduction of
finite element approximation within continuum regions.

In our previous work [43], we introduced so-called bonding springs (BSs) in the SDDA
to enhance the accuracy of block deformation and stress distribution predictions. This
enriched method models each block as an assembly of triangular sub-blocks, utilizing
BSs to glue adjacent sub-blocks together along their interfaces. This approach ensures
continuity and consistency within each block and avoids the need for contact operations
between sub-blocks inside a block, thus enabling more efficient computation. However, BSs
have identical normal and shear stiffness, limiting their ability to simulate solids subjected
to both tensile and tangential tractions, especially in mixed-mode failures.

In this paper, we propose a continuum–discontinuum bonded-block model (CDBBM)
to numerically reproduce mode-I, mode-II, and mixed-mode crack processes. Inspired
by the study [41], we adopted a partitioning of the material domain into two distinct
subdomains: the continuum region and the potential discontinuum region. The mechanical
response within each subdomain was calculated using specialized modeling techniques.

Regarding the continuum region, where the material remains intact and undergoes
elastic deformation, the subdomain is discretized into sub-blocks. Adjacent sub-blocks are
glued together by a BS at their vertices. BSs remain installed throughout the computation,
capturing the elastic behavior of the solid under various loading conditions.

Regarding the potential discontinuum region, where material failure may occur, this
subdomain serves as a transitional zone between the continuum and fully discontinuum
states. Consequently, this region is subdivided into sub-blocks connected by a pair of
normal and shear cohesive springs (CSs) along the sub-block interfaces. The discrete
cohesive zone model (CZM), proposed by Xie et al. [9], is employed as the constitutive
relation for these CSs, allowing for the gradual degradation of material properties and the
nucleation of new cracks as deformation progresses. When the effective opening of a CS
exceeds the peak value, a new crack forms, and contact operations are initiated along the
crack surfaces.

Diversified benchmark numerical experiments are conducted to validate the accuracy
and robustness of the CDBBM. First, we assess the fidelity of our approach in capturing
continuum deformation by examining the cantilever beam-bending problem using differ-
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ent quadrilateral finite-element-type meshes. Then, we evaluate the performance of the
CDBBM in pure and mixed-mode fracture simulations. The numerical results obtained
by the CDBBM are compared against analytical solutions, demonstrating the efficacy and
reliability of the proposed method.

2. Framework of the CDBBM
2.1. Spatial Discretization

The CDBBM subdivides the material domain into a continuum subdomain (C-domain)
and a potential discontinuum subdomain (D-domain) to reduce computational costs, such
as remeshing and contact interactions. Such subdivision can be done in a relatively coarse
manner. As a result, the CDBBM approach relies somewhat on the a priori knowledge of
the mechanical response of the material. The schema shown in Figure 1a is taken as an
illustrative example. The material domain is partitioned into two regions, the left as the
C-domain (in yellow) and the right as the D-domain (in purple). In the CDBBM, both of the
regions are further subdivided into sub-blocks connected by two different types of springs
according to the region where sub-block interfaces are embedded, as shown in Figure 1b.

Continuum Subdomain

Potential Discontinuum Subdomain

Sample Area

(a) Discretization schema

Cohesive

Contact edges

Bonded Edges

(b) Two types of sub-block interfaces

Figure 1. Discretization diagram of CDBBM for continuum subdomain and potential discontin-
uum subdomain.

Within the C-domain, the adjacent edges of the sub-blocks are bonded by bonding
springs (BSs) at their overlapping vertices. These BSs are continuously installed throughout
the entire computational process to maintain the displacement continuity. Furthermore,
BSs are also implemented along the common boundary of the C-domain and D-domain to
prevent the erroneous prediction of cracks.

In contrast, the opposing edges of the sub-blocks within the D-domain are connected
by cohesive springs (CSs) based on the cohesive zone model (CZM), along their inter-
faces. Adopting a specific TSL as the constitutive relation, CSs represent the fracture
behavior through its failure process, encompassing the hardening stage, softening stage,
and complete fracture. To avoid unnecessary contact calculations before crack initiation,
the connection information for CSs is maintained through an array. Once a CS fails, it is
subsequently removed from the data structure.

2.2. Displacement Approximation

The CDBBM discretizes both the C-domain and D-domain into sub-blocks. The
displacement vector

u(x), x = (x, y), within the i-th sub-block has the following approximation in matrix
form:

u(x) =
(

ux
uy

)
= Tiai, (1)
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where ai = (a1, a2, a3, a4, a5, a6)
> is the unknown vector to be determined on the considered

sub-block, and Ti represents the displacement mode matrix, i.e.,

Ti =

(
T11 T12 T13 T14 T15 T16
T21 T22 T23 T24 T25 T26

)
, (2)

where T11 = T22 = 1, T12 = T15 = T21 = T24 = 0, T13 = −T25 = y0 − y, T14 = T23 = x− x0,
T16 = (y− y0)/2, and T26 = (x− x0)/2, in which (x0, y0) is the sub-block barycenter.

For the first-order approximation, as adopted in Equation (1), the components of the
unknown vector ai have the following physical interpretations: a1 and a2 indicate the
translational displacement along the x and y axes, respectively, and a3 denotes the rotation
angle of the i-th sub-block about its barycenter, while a4 and a5 represent normal strain
components of the sub-block, and a6 is its shear strain component.

2.3. Equilibrium Equations

The CDBBM subdivides the material domain, say Ω bounded by Γ, into a C-domain
and a D-domain and further discretizes the two regions into sub-blocks, which make up a
sub-block system. Minimizing the system’s potential energy leads to the following global
equilibrium equations in the matrix form:

Mä + Ka = f , (3)

where a assembles all of the unknowns of the sub-block system, M stand for the mass
matrix, and the stiffness matrix K and the right-hand side f are the summations below:

K = K + Kc + KBS + KCS, f = f + fΓ + fc + fBS + fCS. (4)

K, Kc, KBS, and KCS represent the sub-block stiffness matrix, contact spring stiffness matrix,
and the BS and CS stiffness matrices, respectively, and, additionally, f indicates the summa-
tion of sub-block initial forces and body force vectors, fc is the contact spring force vector,
and fΓ is the vector contributed to by the boundary constraints, such as fixed-point springs
and traction forces; fBS and fCS are the spring force vectors of BS and CS, respectively.

In order to solve the ordinary differential equations in Equation (3), we apply Taylor’s
expansion method for a at t = tn with the time step size ∆t, i.e.,

an ≡ a(tn) = 0, an+1 ≡ a(tn+1) = a(tn + ∆t), (5)

an+1 = an + ∆tȧn +
∆t2

2
än = ∆tȧn +

∆t2

2
än. (6)

Assuming that the acceleration remains constant during each time step, we have

än+1 = än =
2

∆t2

(
an+1 − ȧn∆t

)
. (7)

Substituting Equation (7) into Equation (3) leads to(
2

∆t2 M + K
)

an+1 = f +
2

∆t2 Mȧn. (8)

Details about the matrices M, K, Kc, f , fc, and fΓ appearing in Equations (4) and (8) can
be found in our previous work [43]. Furthermore, we will give the matrices KBS, KCS, fBS,
and fCS in the following sections.

3. Formulas of Bonding Springs (BSs)

The CDBBM installs BSs between the vertexes of adjacent sub-blocks to retain the
displacement continuity throughout the C-domain. As shown in Figure 2, Si and Sj are
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two sub-blocks connected by a BS between the vertex P and Q. We assume that P and Q
are located at pn and qn at tn. Using dn and dn+1 to represent the relative displacement
between P and Q at tn and tn+1, respectively, we have

dn = pn − qn, (9)

dn+1 = pn+1 − qn+1 = (pn + un+1
p )− (qn + un+1

q ) = dn + (un+1
p − un+1

q ), (10)

where un+1
p and un+1

q are the displacement of P and Q during the (n + 1)-th time step. We
substitute Equation (1) into Equation (10), and we have

dn+1 = dn + Tian+1
i − Tjan+1

j , (11)

𝑑𝑃

𝑄
𝑃 𝑄

𝑆𝑖

𝑆𝑗

Figure 2. Schematic diagram of BSs that glue adjacent sub-blocks within the C-domain.

The BS’s strain energy ΠBS can be computed by

ΠBS =
1
2

kBS

(
dn+1

)2
, (12)

where kBS denotes the stiffness of BSs. We substitute Equation (11) into Equation (12),
and we obtain the derivatives of ΠBS with respect to ai and aj, i.e.,

∂2ΠBS

∂a>i ∂ai
= kBST>i Ti → Kii,

∂2ΠBS

∂a>j ∂aj
= kBST>i Ti → Kjj, (13)

∂2ΠBS

∂a>i ∂aj
= −kBST>i Ti → Kij,

∂2ΠBS

∂a>j ∂ai
= −kBST>i Ti → Kji, (14)

−∂ΠBS

∂ai
= kBST>i dn → fi, −∂ΠBS

∂aj
= −kBST>i dn → f j, (15)

where ai and aj indicate an+1
i and an+1

j , respectively, whose superscripts are omitted for
convenience. The matrices Kii, Kij, Kji, and Kjj in the above equations are assembled into
KBS in Equation (4), and the vectors fi and f j are accordingly assembled into fBS.

4. Formulas of Cohesive Springs (CSs)

The CDBBM incorporates CSs along the interfaces of sub-blocks within the D-domain.
The stiffness of a CS is variable, contingent upon the separation between the two vertices
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interconnected by the CS. A bi-linear traction–separation law (TSL) is adopted to define
the CS stiffness. Consequently, the fracture process between two sub-blocks consists of an
increase of the traction up to the peak value and a subsequent decrease until a complete
failure occurs.

4.1. Potential Energy of CSs

As shown in Figure 3, we take the CS between P1 and P4 as an example. We assume
that the normal opening and shear opening of the CS are dr and ds, respectively. The strain
energy ΠCS can be computed by the summation below:

ΠCS =
1
2

krd2
r +

1
2

ksd2
s , (16)

where kr and ks are the normal and shear stiffness, respectively.
The matrices derived from the derivatives of ΠCS with respect to the unknowns will

be added to KBS and fBS in Equation (3). To this end, we first compute dr and ds. Since
P1, P2, and P3 move in each time step, the opening dr and ds have to be figured out based
on the current configuration but not that of the previous time step.

𝑑𝑠

𝑑𝑟

𝑆𝑖

𝑆𝑗

𝑃1

𝑃4

𝑃2

𝑃3

𝑃1

𝑃4 𝑃3

𝑆𝑖

𝑆𝑗

𝒔

𝒓

Figure 3. Schematic diagram of CSs that connect adjacent sub-blocks within the D-domain.

4.2. Normal Opening

We assume that the vertex Pm is located at xm(xm, ym) at tn, m = 1, 2, 3, 4, n = 1, 2, . . .,
and it moves with the displacement um(um, vm) at tn+1. From Figure 3, the normal opening
at tn+1 is

dn+1
r =

∣∣∣−−→P1P4 ×
−−→
P1P3

∣∣∣∣∣∣−−→P3P4

∣∣∣ =
1
L

∣∣∣∣∣∣
1 xn+1

1 yn+1
1

1 xn+1
4 yn+1

4
1 xn+1

3 yn+1
3

∣∣∣∣∣∣, (17)

where
xn+1

m ≡ xm + um, yn+1
m ≡ ym + vm, (18)

L ≡
∣∣∣−−→P3P4

∣∣∣ = √(xn+1
4 − xn+1

3 )2 + (yn+1
4 − yn+1

3 )2. (19)

When adopting a small enough time step size, we can simplify Equation (17) into

dn ≈
A
L′

+
1
L′

[(
y4 − y3
x3 − x4

)>
u1 +

(
y1 − y4
x4 − x1

)>
u3 +

(
y3 − y1
x1 − x3

)>
u4

]
, (20)
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where

L′ ≈
√
(x4 − x3)2 + (y4 − y3)2, A = −x1y3 + x1y4 + x3y1 − x3y4 − x4y1 + x4y3. (21)

Substituting Equation (1) into Equation (20) leads to

dn =
A
L′

+ eian+1
i + ejan+1

j , (22)

in which the coefficient vectors are

ei =
1
L′

(
y4 − y3
x3 − x4

)>
Ti(x1), ej =

1
L′

(
y1 − y4
x4 − x1

)>
Ti(x3) +

1
L′

(
y3 − y1
x1 − x3

)>
Ti(x4). (23)

4.3. Shear Opening

From Figure 3, the shear opening in the (n + 1)-th time step is

ds =

−−→
P4P1 ·

−−→
P4P3

−−→
P4P3

=
1
L

(
xn+1

3 − xn+1
4

yn+1
3 − yn+1

4

)>(
xn+1

1 − xn+1
4

yn+1
1 − yn+1

4

)
. (24)

For a small enough time step, the relative displacement of sub-blocks Si and Sj are
accordingly small. In this case, we can simplify the above equation by

ds ≈
A
L′

+
1
L′

(
x3 − x4
y3 − y4

)>
u1 −

1
L′

(
x4 − x3
y4 − y3

)
u4. (25)

Substituting Equation (1) into Equation (25) leads to

ds ≈
A
L′

+ gian+1
i + gjan+1

j , (26)

where

gi =
1
L′

(
x3 − x4
y3 − y4

)>
Ti(x1), gj =

1
L′

(
x4 − x3
y4 − y3

)
Tj(x4). (27)

4.4. CS Matrices

We substitute Equations (22) and (26) into Equation (16), and we can obtain the
derivatives of ΠCS with respect to an+1

i and an+1
j , using ai ≡ an+1

i and aj ≡ an+1
j , i.e.,

∂2ΠCS

∂a>i ∂ai
= kre>i ei + ksg>i gi → Kii,

∂2ΠCS

∂a>i ∂aj
= kre>i ej + ksg>i gj → Kij, (28)

∂2ΠCS

∂a>j ∂ai
= kre>j ei + ksg>j gi → Kji,

∂2ΠCS

∂a>j ∂aj
= kre>j ej + ksg>j gj → Kjj, (29)

−∂ΠCS
∂ai

= − kr A
L′

ei −
ks A
L′

gi → fi, −∂ΠCS
∂aj

= − kr A
L′

ej −
ks A
L′

gj → f j, (30)

in which Kii, Kij, Kji, and Kjj are added to KCS in Equation (4), and fi and f j are added
to fCS.

5. Normal/Shear Stiffness of CSs

In the CDBBM, the variation of CS stiffness are determined by the bi-linear TSL relation
as shown in Figure 4. Here, some notations are used, including the mode-I and mode-II
strain energy release rate GI and GII, the associated fracture energy GIc and GIIc, the tensile
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and shear cohesive strength σc and τc, the corresponding maximum opening δm and γm,
and the critical separation δc and γc.

According to Figure 4, we have the following relations:

δm =
2GIc

σc
, γm =

2GIIc

τc
, δc =

σc

k0
r

, γc =
τc

k0
s

, (31)

where k0
r and k0

s are the initial normal and shear CS stiffness, respectively. Xie et al. [9] have
given the formulas below to determine their values:

k0
r = EBr, k0

s = GBr, (32)

in which E and G denote material’s Young modulus and shear modulus, B is the thickness
outside the plane, and r indicates the ratio of sub-block width to its height.

𝑑𝑟
𝛿𝑐 𝛿𝑚

𝜎𝑐

𝜎

𝑜

𝑘𝑟
0

Tension

𝐺I

𝑘𝑟

(a) Normal stiffness

𝑑𝑠𝛾𝑐 𝛾𝑚

𝜏𝑐

𝜏

𝑜

𝑘𝑠

Shear

𝐺II
𝑘𝑠
0

(b) Shear stiffness

Figure 4. The bi-linear TSL relations for CS stiffness.

From Figure 4a, we can figure out kr, i.e.,

kr =


k0

r , 0 ≤ dr ≤ δc,
σc

dr
· δm − dr

δm − δc
, δc ≤ dr < δm,

0, dr ≥ δm.

(33)

From Figure 4b, ks can be solved out as follows:

ks =


k0

s , 0 ≤ ds ≤ γc,
τc

ds
· γm − ds

γm − γc
, γc ≤ ds < γm,

0, ds ≥ γm.

(34)

A CS fails once dr > δm or ds > γm, which consequently leads to a new crack between
the vertexes linked by the CS. Then, the CS should be removed, and a normal contact spring
should be installed along the crack surface to prevent possible interpenetration between
the related adjacent sub-blocks.

In a mixed-mode fracture, both tensile and shear deformations present; the effective
opening combines the individual mode separations into a single value. As illustrated in
Figure 5, we adopt the following mixed-mode fracture criteria [9]:(

GI

GIc

)2
+

(
GII

GIIc

)2
> 1. (35)

GI =
dn − δc

δm − δc
GIc, GII =

ds − γm

γm − γc
GIIc. (36)
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When the inequality in Equation (35) holds, a mixed-mode fracture occurs. Then,
the CS should be removed, and a normal contact spring has to be installed along the
sub-block interface to prevent the possible penetration.

Traction  

Mode-I

Failure

Mode-II

Failure

Mixed-mode Failure

cGII cGI

o

𝑑𝑠

𝑑𝑟

(𝛿𝑐 , 𝜎𝑐)

(𝛾𝑐 , 𝜏𝑐)

𝛿𝑚

𝑁

𝑀

𝑅

𝛾𝑚

Figure 5. Mixed-mode failure criteria for CSs.

6. Implementation Aspects

The program of the proposed CDBBM method includes four main modules, as demon-
strated in Figure 6.

• No penetration along contact interfaces
• No traction on contact springs

• Generate sub-block system, assign material properties and contact spring stiffness
• Set controlling parameters (time step size, time steps, loading rate)
• Set CDBBM parameters (fracture toughness, cohesive strength, initial BS/CS stiffness)
• Initialize the variables for position, velocity, acceleration and initial stress

• Detect contacts along material boundaries and crack surfaces 
• Judge contact types (vertex-vertex, vertex-edge) and states (open, sliding, locking)
• Allocate memory storage for M, K, f, a

• Assembling  Equation (8)
• Solving Equation (8) and update sub-block position, velocity, acceleration and stress
• Compute the elongation of BSs and normal/shear opening of CSs
• Compute contact distance along material boundaries and crack surfaces 

TRUE

• Judge the state of each CS according to Equation (33)-(35) and update CS stiffness
• If a CS stiffness equals zero, delete the CS and mark the contact state at the position as 

sliding to prevent penetration

Maximum time step?

TRUE

Save data and exit

Next 
time 

step

FALSE

Reduce 
time step 

size

FALSE

Program Start

j

k

l

m

Figure 6. Flowchart of all computational modules of the CDBBM.
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Module 1© is responsible for data input and computation initialization. The sub-block
mesh is generated from finite-element-type meshes. In the following section, we adopt
quadrilateral meshes to compare the results with those obtained by the FEM [9] and the
DEM [44]. The initial stiffness of each CS is determined according to Equation (32), while
contact spring stiffness is usually equal to material’s Young modulus. For the quadrilateral
sub-block mesh, a BS’s normal stiffness kr is usually r times larger than a BS’s shear stiffness
ks, where kr varies between 100 and 200 times the Young’s modulus of the material.

Module 2© primarily handles contact detection, identifying both contact types and
states. These contact operations follow a method similar to the traditional DDA. Notably,
in the CDBBM, contacts are confined to material boundaries and crack surfaces. This ap-
proach excludes unnecessary contact operations, thereby enhancing computational efficiency.

Module 3© is used to assemble and solve Equation (3), and, afterwards, update various
variables and parameters. Subsequently, the implementation of all contact springs has to
be checked based on two criteria: no penetration occurring along contact interfaces and
no traction being generated by contact springs. If these criteria are not met, the time step
must be reduced, and the process reverts to Module 2. This iterative procedure, known as
open–close iteration in the DDA, continues until the results satisfy both criteria.

In Module 4©, the state of each CS is assessed using Equations (33)–(35), following
which the CS stiffness is adjusted accordingly. If the CS stiffness diminishes to zero, the CS
is eliminated, resulting in the vertices and edges originally linked by the CS coming into
contact. At this juncture, the contact state is designated as sliding to prevent interface
penetration. This designation remains in place until the subsequent open–close iteration in
the subsequent time step adjusts it as needed.

7. Numerical Examples

In this section, the proposed CDBBM approach is assessed through benchmark nu-
merical examples for continuous deformation and crack propagation problems.

7.1. Continuous Deformation

As the first numerical example, the accuracy of the CDBBM for capturing continuous
deformation was validated. We consider the cantilever beam, of length L = 30 mm and
height h = 1 mm, subjected to the load P at the free end, as shown in Figure 7. Young’s
modulus and Poisson’s ratio of the beam are E = 300 GPa and ν = 0.3, respectively.
Two different quadrilateral meshes are adopted to subdivide the beam in space, as illus-
trated in Figure 8.

�

�
�

ℎ
�

Figure 7. Geometry of the cantilever.
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(a) Subdivision I: sub-blocks of size 0.1 mm × 0.25 mm

0 5 10 15 20 25 30
x/mm

0
1

y/
m

m

(b) Subdivision II: sub-blocks of size 0.3 mm × 0.1mm

Figure 8. Different uniform meshes for subdividing the cantilever beam as shown in Figure 7.
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As shown in Figure 9, we compare the mid-plane deflection of the beam computed by
the CDBBM with the analytical solution [45] given below:

∆ = − Py
6EI

[
3νy2(L− x) +

4 + 5ν

4
h2y + (3L− x)x2

]
, (37)

where x ranges from 0 to L, y = h/2, and I = h3/12 is the moment of area of the beam. The
comparison shows that our results using both of the two different subdivisions can provide
accurate results. In the following tests, we will adopt these two spatial discretizations.

Additionally, the beam deflection computed by the original DDA is illustrated in
Figure 9. Due to the use of only one block to simulate the cantilever beam in the orig-
inal DDA, a disparity between the DDA result and the analytical solution can be ob-
served. From the comparisons above, it is demonstrated that the presented CDBBM can
effectively improve the deformability of blocks and shows good accordance with the
analytical solution.
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0.000
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m
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Analytical Solution
Original DDA
CDBBM (Subdivision I)
CDBBM (Subdivision II)

Figure 9. Comparing the result computed by the CDBBM using different spatial discretization
strategies with the analytical solution and the result by the original DDA.

7.2. Mode-I Fracture

We considered the double cantilever beam (DCB), which is widely employed to
characterize mode-I fracture toughness of materials. As shown in Figure 10, the specimen
with the pre-crack is subjected to a pair of displacement-controlled forces. The length,
half-height and the out-of-plane thickness are 2L = 30 mm, h = 1 mm, and B = 10 mm,
respectively. Moreover, the length of the pre-existing crack is a0 = 9 mm. Material
properties are provided in Table 1.

To numerically reproduce the fracture process of the double beam, we apply the CDBBM
with the uniform quadrilateral subdivision, as shown in Figure 11. There are a total of 2400
sub-blocks of size of 0.1 mm × 0.25 mm. Under the loading rate v = 0.001 mm/ms, we
illustrate the snapshot of the deformed specimen at t = 1200 ms, as shown in Figure 12.
Our result is accordance with the simulations presented by the FEM [9] and the DEM [44].
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Table 1. Material parameter settings for the DCB, ENF, and MMB tests.

Parameters (Unit) DCB ENF MMB

E (GPa) 126 70 70
ν 0.2 0.25 0.25

GIc (MPa) 0.13/0.26/0.39 0.26 1.002
GIIc (MPa) 1.002 1.002 1.002
σc (MPa) 35/70/105 70 4/7
τc (MPa) 200 200/220/240 4/7/10

2L = 30 mm

P

P

2
h

=
2

m
m

2
h

=
2

m
m

a0 = 9 mm

B=10mm

Figure 10. Geometry configuration for the specimen used in the DCB test.
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Figure 11. The subdivision adopted by the CDBBM for the DCB test.
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Figure 12. The results computed by the CDBBM with the loading rate v = 0.001 mm/ms
at t = 1200 ms for the DCB test.

Below, we compare the numerical results obtained from the CDBBM with analytical
solutions to validate the accuracy of our method. The comparisons were conducted under
various conditions, including different loading rates v, different critical stresses σc, and dif-
ferent mode-I fracture toughness values GIc. The analytical solution [44] for the DCB test
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describes the variation of the traction P as the deflection ∆ at the free end increases. We use
a to denote the crack length, and the analytical solution can be expressed as follows:

∆OA =
2P(a0 + χIh)3

3EI
, a = a0, (38)

∆BCD =
2P(BEIGIc)

3/2

3EI
, a0 < a < 2L, (39)

∆OE =
Py
6EI

[
3νy2(L− x) +

1
4
(4 + 5ν)h2y + (3L− x)x2

]
, a = 2L, (40)

where I is the moment of area of one arm, (x, y) = (0, h), and χI is the correction factor, i.e.,

I =
Bh3

12
, χI =

√√√√ E
11G

(
3− 2

(
Γ

1 + Γ

)2
)

, (41)

in which Γ = 1.18E/G is the correction coefficient. The analytical solution is plotted as
shown in Figure 13, where the curves OA, BCD, and OE correspond to Equation (38),
Equation (39), and Equation (40), respectively.

Firstly, we investigated the effect of the traction P at different loading rates, including
the low rate v = 5× 10−4 mm/ms, the medium rate v = 1× 10−3 mm/ms, and the high
rate v = 2× 10−3 mm/ms. From Figure 13, we can observe that the numerical result using
the medium loading rate closely match the analytical solutions, indicating an accurate crack
propagation prediction by the CDBBM. In contrast, both low and high loading rates lead
to slight deviations from the analytical solution, which can be attributed to the dynamic
effects becoming more pronounced. The observed phenomena are consistent with the
results presented in Xie and Waas’s work [9].
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CDBBM (v = 5 × 10 4 mm/ms)
CDBBM (v = 1 × 10 3 mm/ms)
CDBBM (v = 2 × 10 3 mm/ms)

Figure 13. Results compared to analytical solutions with different loading rates v.

Secondly, we examined the influence of cohesive strength on crack behavior at a
constant loading rate of v = 0.001 mm/ms. Figure 14 presents three load-deflection
curves corresponding to low cohesive strength (σc = 35 MPa), medium cohesive strength
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(σc = 70 MPa), and high cohesive strength (σc = 105 MPa). All results demonstrate good
agreement with the analytical solution. Notably, cohesive strength does not appear in
Equations (38)–(40). However, the figure indicates that crack propagation becomes slightly
more difficult as the cohesive strength increases. These findings are consistent with the
relationship demonstrated in Figure 4, where a bigger σc means a larger critical opening δc
and a smaller maximum opening δm. In Table 2, the load P for different opening values
computed by the CDBBM is demonstrated against the analytical solutions. The accuracy of
our method is evidenced by the satisfactory relative errors presented.
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CDBBM ( c = 35 MPa)
CDBBM ( c = 70 MPa)
CDBBM ( c = 105 MPa)

Figure 14. Results compared to analytical solutions with different critical stresses σc.

Thirdly, we studied the impact of varying mode-I fracture toughness values on the
numerical results by conducting the simulations with low fracture toughness
(GIc = 0.13 N/mm), medium fracture toughness (GIc = 0.13 N/mm), and high frac-
ture toughness (GIc = 0.13 N/mm). As illustrated in Figure 15, our results for both low
and medium fracture toughness agree with the analytical solution very well. Specifically,
the crack propagates quickly when using low fracture toughness, while the crack has mod-
erate propagation rates when adopting medium fracture toughness. However, the crack
propagation is significantly slower in the case of high fracture toughness, and the numerical
results deviate slightly from the analytical solution.

Table 2. The load P computed by the CDBBM for different normal openings ∆ against the analyt-
ical solutions using diverse cohesive strengths σc for the DCB test with the constant loading rate
v = 0.001 mm/ms.

∆ (mm) Exact (N)
σc = 35 MPa σc = 75 MPa σc = 105 MPa

Numerical Error Numerical Error Numerical Error

0.50 41.708328 40.145871 3.75 × 10−2 41.405462 7.26 × 10−3 41.551019 3.77 × 10−3

0.75 34.054707 32.809289 3.66 × 10−2 33.825025 6.74 × 10−3 34.429044 1.10 × 10−2

1.00 29.492242 28.425323 3.62 × 10−2 29.202222 9.83 × 10−3 29.533051 1.38 × 10−3

1.25 26.378663 25.654516 2.75 × 10−2 26.270182 4.11 × 10−3 26.629217 9.50 × 10−3

1.50 24.080314 23.815309 1.10 × 10−2 24.305141 9.34 × 10−3 24.601673 2.17 × 10−2
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Figure 15. Results compared to analytical solutions with different fracture toughnesses GIc.

7.3. Mode-II Fracture

Next, the end-notched flexural (ENF) problem was considered. The ENF test is a
critical experiment for understanding the shear-driven crack propagation in materials
and provides valuable insights into the mode-II fracture toughness, which is essential for
designing materials that can withstand shear loads without catastrophic failure. As shown
in Figure 16, the specimen with a prescribed crack is subjected to a displacement-controlled
shearing force acting at the mid-span of the specimen. In this test, we set the loading rate
v = 0.001 mm/s. Furthermore, the material constants are supplied in Table 1.

P

L

2
h

2
h

a0a0

L

Figure 16. The geometry configuration for the ENF test: the length 2L = 30.3 mm, the half-height
h = 1 mm, the out-of-plane thickness B = 3 mm, and the length of pre-existing crack a0 = 9 mm.

To simulate the ENF test, we employed the CDBBM with the quadrilateral subdivision
as illustrated in Figure 17, where each sub-block is 0.3 mm in width and 0.1 mm in height.
In the case of using the critical shear strength τc = 220 MPa, we obtained the deformation
and stress results at t = 1800 ms, as illustrated in Figure 18. The contact effect along the
interface between the separated arms can be observed. Our results are consistent with the
simulations presented in existing studies [9,44].
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Figure 17. The uniform quadrilateral sub-block mesh for the ENF test.

Below, the results from this numerical experiment are compared with analytical so-
lutions to validate the accuracy and reliability of our method. Mi et al. [46] provided the
analytical solution for the ENF test as follows:

∆OB =
P(2L2 + 3a3)

96EI
, a = a0, (42)

∆BCD =
P

96EI

[
2L3 +

(64GIIcBEI)3/2
√

3P3

]
, a0 < a ≤ L, (43)

∆EF =
P

24EI

[
2L3 − (64GIIcBEI)3/2

4
√

3P3

]
, L < a < 2L, (44)

∆OG =
PL3

12EI
, a = 2L, (45)

where a tracks the length of the crack. As shown in Figure 19, the deflection–load curves,
i.e., OB, BCD, EF, and OG, represent Equations (42)–(45), respectively.

(a) σx (MPa)

(b) τxy (MPa)

Figure 18. The results computed by the CDBBM for the ENF test with τc = 220 MPa at t = 1800 ms.

Here, we investigated the effect of different critical shear cohesive strengths, i.e., low
strength (τc = 150 MPa), medium strength (τc = 180 MPa), and high strength (τc = 210 MPa).
As shown in Figure 19, the result computed by the CDBBM agrees with the analytical
solution very well for the medium strength. Furthermore, we can observe that higher shear
cohesive strengths possess a faster crack propagation rate. This behavior aligns with the
relation given in Figure 4. Furthermore, it is worth noting that our results deviate slightly
from the analytical curve OG. Such a deviation is due to our method accounting for the
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contact interaction between the separated arms, whereas the analytical solution is just
based on beam theory. Our simulations are consistent with the results presented by Xie
and Waas [9] and the references therein.
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Figure 19. Results compared with analytical solution for the ENF test using different critical stresses.

7.4. Mixed-Mode Fracture

In this section, the mixed-mode bending (MMB) problem is considered, with the speci-
men geometry illustrated in Figure 20. A long lever with two vertical legs is placed above
the beam to supply the displacement-controlled loading at a rate of P = 0.001 mm/ms.
One leg of the lever is fixed at the beam’s left end, while the other leg contacts the beam at
its midpoint on the top surface. The specimen’s material parameters are offered in Table 1.
Furthermore, we set the lever’s Young modulus at E0 = 700 GPa and Poisson’s ratio at
v0 = 0.3.

The proposed CDBBM method was used to simulate the MMB problem with the
uniform quadrilateral mesh as shown in Figure 21. Each sub-block’s width is 0.1 mm and
its height is 0.25 mm. The horizontal arm and the two legs of the lever are each simulated by
three intact blocks, with the two legs glued to the bottom of the horizontal arm by bonding
springs. Figure 22 illustrates the simulation results for the normal cohesive strength
σc = 4 MPa and the shear cohesive strength τc = 7 MPa at t = 2500 ms. The predictions
for the deformation and stress distribution align with the simulations conducted by the
FEM [9] and the DEM [44].
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Figure 20. Geometry configuration of the MMB test. The specimen has a length of 2L = 30 mm,
the half-height h = 1 mm, the out-of-plane thickness B = 5 mm, and the pre-existing crack length
a0 = 9 mm. The long lever above the specimen has the size parameters c = 13.1 mm.
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Figure 21. The uniform quadrilateral sub-block mesh for the MMB test. A total of 3310 quadrilateral
sub-blocks are employed.

(a) σx (MPa)

(b) σy (MPa)

(c) τxy (MPa)

Figure 22. The deformation and stress distribution computed by the improved SDDA approach in
the MMB test with the loading rate v = 0.001 mm/ms at t = 2500 ms.
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For this test, Mi et al. [46] have supplied the analytical solution for the deflection–load
relation according to the varying crack length a, i.e.,

∆OA =
2
3

(
3c− L

4L

)
Pa3

0
EI

, a = a0, (46)

∆BCD =
2PI

3EI

 8BEI
8P2

I
GIc

+
3P2

II
8GIIc

3/2

, a0 < a ≤ L, (47)

∆EF =
2
3

(
3c− L

4L

)
Pa3

EI
, a > L, (48)

where the mode-I load PI and the mode-II load PII take the following formulas:

PI =

(
3c− L

4L

)
P, PII =

(
c + L

L

)
P. (49)

In Equation (48), the crack length a is the solution of the equation below:

α

(
8P2

I
GIc

+
3P2

II
8GIIc

− 8PIPII

GIIc

)
a2 − Lα

GIIc

(
3P2

IIL
2
− 8PIPII

)
a +

3P2
IIL

2α

2GIIc
− 1 = 0, (50)

where α = 1
8BEI . As shown in Figure 23, we illustrate the deflection–load curves OA, BCD,

and EF for Equation (46), Equation (47), and Equation (48), respectively.
Below, we examine the influence of σc and τc on the crack propagation process.
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Figure 23. CDBBM simulation results against the analytical solution for the MMB test with varying
normal cohesive strengths σc = 4, 7, and 10 MPa and the shear cohesive strength τc = 7 MPa.

To investigate the effect of normal cohesive strength, we adopted the shear cohesive
strength τc = 7 MPa, and used three different normal cohesive strengths, i.e., low normal
strength (τc = 4 MPa), medium normal strength (τc = 7 MPa), and high normal strength
(τc = 10 MPa). As shown in Figure 23, the results obtained by our method are compared
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with the analytical solution. It is evident that the CDBBM method accurately captures the
overall trend of the load-deflection behavior, as predicted by the analytical curves as well as
the simulations presented in the literature [9]. For the low normal cohesive strength σc = 4,
the computing results slightly underestimate the peak load, while the CDBBM results can
better approximate the peak load as σc increases to 7 MPa. When σc increases to 10 MPa,
the crack propagation rate is slower than the cases of smaller normal cohesive strengths. It
should be noted that our simulation deviates slightly from the analytical solution, i.e., the
curve EF, during the post-peak stage. This discrepancy reveals the influence of the crack
closure effect along the interface of the separated arms.

Then, we used the normal cohesive strength σc = 7 MPa and adopted varying shear co-
hesive strengths, i.e., low shear strength (τc = 4 MPa), medium shear strength (τc = 7 MPa),
and high shear strength (τc = 10 MPa). Figure 24 compares the results against the analytical
solution. The comparison shows that our results align with the analytical curve very well.
Additionally, we can also notice that a lower shear cohesive strength leads to a slight
derivation from the critical loading and a faster crack propagation rate.
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Figure 24. CDBBM simulation results against the analytical solution for the MMB test with the
normal cohesive strength σc = 7 MPa and the varying shear cohesive strengths τc = 4, 7, and 10 MPa.

8. Conclusions

In this paper, a continuum–discontinuum bonded-block model (CDBBM) was devel-
oped for simulating mixed-mode fracture of quasi-brittle solids. The CDBBM enriches
the DDA with the partitioning of material into a continuum region and a potential dis-
continuum region, employing bonding springs (BSs) and cohesive springs (CSs) to glue
the sub-blocks within the two regions, respectively. Diversified benchmark numerical
experiments were conducted to examine the proposed method for modeling continuous
deformation, pure mode-I/-II and mixed-mode fractures. From the simulation results and
the comparisons against analytical solutions, a few attractive features of the CDBBM can
be outlined:

(1) By adopting specialized modeling techniques for both continuum and potential
discontinuum regions, the CDBBM can accurately and effectively predict both continuous
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deformation and material failure. Additionally, utilizing an implicit time integration
scheme ensures highly stable computation results, even when using large time steps.

(2) Material continuity is maintained by the BSs and CSs along adjacent sub-block
interfaces, confining contact interactions to the discontinuities within the material. This
approach allows the CDBBM to achieve high computational efficiency by avoiding complex
contact operations, such as determining contact types and states, transferring parameters
between steps, and repeatedly assembling contact sub-matrices.

(3) In the CDBBM, the transition of material from a continuous to a discontinuous
stage is effectively modeled by the degradation of CSs. This degradation process accurately
represents material failure, ensuring stability and consistency along uncracked interfaces.
By avoiding the need for frequent mesh updates typically required in cohesive element
approaches, the CDBBM maintains correct contact simulation across closed crack surfaces,
thus circumventing common issues such as mesh distortion and maintaining the integrity
of the simulation throughout the fracture process.

(4) The numerical simulation results presented in Section 7 showcase the versatility and
robustness of the CDBBM. The method accurately simulates mode-I, mode-II, and mixed-
mode cracks through various benchmark numerical examples, demonstrating its broad
applicability. By effectively managing the complexities inherent in mixed-mode fractures,
the CDBBM accurately captures the interactions between tensile and shear components.

The merits outlined above underscore the method as a powerful tool for capturing
the interplay between continuum deformation, crack initiation, and fracture propagation.
This makes it highly applicable for reliably modeling complex fracture behaviors across
diverse engineering applications. However, it should be acknowledged that our research
findings are still in their initial stages. For instance, while our proposed method shows
promise and potential for application in multi-crack growth simulations, this has not yet
been explored in the current study. We are committed to addressing these challenges in our
ongoing research and look forward to advancing our method in these areas.
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