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Abstract: In this study, we examine how the strategies of the players over multiple time scales impact
the decision making, resulting payoffs and the costs in non-cooperative strategic games. We propose
a dynamic generalized Nash equilibrium problem for non-cooperative strategic games which evolve
in multidimensions. We also define an equivalent dynamic quasi-variational inequality problem.
The existence of equilibria is established, and a spot electricity market problem is reformulated in
terms of the proposed dynamic generalized Nash equilibrium problem. Employing the theory of
projected dynamical systems, we illustrate our approach by applying it to a 39-bus network case,
which is based on the New England system. Moreover, we illustrate a comparative study between
multiple time scales and a single time scale by a simple numerical experiment.

Keywords: game theory; dynamic generalized Nash equilibrium problem; dynamic quasi-variational
inequality problem; spot electricity market problem; projected dynamical system
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1. Introduction

In order to simplify our presentation and emphasize the novelty of our work, we divide
the introduction into two subsections. We start with the background and the relationship
to previous works, and then present our own contribution.

1.1. Background and Relationship to Previous Works

A game is a tool for modeling any situation in which players interact and take decision
to attain a certain goal. In game theory, there are two different approaches. One is the
cooperative game approach started by von Neumann and Morgenstern [1], and the other is
the non-cooperative game approach initiated by Nash [2,3]. In the non-cooperative game
approach, the players are supposed to choose their actions individually, and selfishly seek
their own goals and maximize their own profits. However, this does not mean that players
are essentially antagonistic to other players. In fact, they are just not interested in the welfare
of other players. In contrast, the cooperative game approach involves the players’ alliances
and their willingness to share their benefits obtained from the cooperation. The difference
between these two approaches can be concisely formulated as follows: a non-cooperative
game describes the various available options of actions for players, while a cooperative
game sets out the consequences when the players join each other in different combinations.
In continuation of the study of these strategic games, the study of equilibrium problems
was initiated by Cournot [4], who considered an oligopolistic economy. However, it was
Nash [5,6] who introduced this concept formally. Subsequently, Arrow and Debreu [7]

Mathematics 2024, 12, 2453. https://doi.org/10.3390/math12162453 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12162453
https://doi.org/10.3390/math12162453
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-3011-766X
https://orcid.org/0000-0002-2150-553X
https://orcid.org/0000-0003-0780-1559
https://doi.org/10.3390/math12162453
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12162453?type=check_update&version=2


Mathematics 2024, 12, 2453 2 of 30

extended it to the generalized Nash equilibrium problem. For getting an overview of
generalized Nash equilibrium problems, we refer the interested readers to the survey
papers [8,9] and references therein. The generalized Nash equilibrium problem (GNEP)
is very useful in mathematical modelings of various real world problems. We can find
some of its recent applications in [10–13], to name but a few. In addition, time-dependent
generalized Nash equilibrium problems are also investigated in [14,15]. Generalized Nash
equilibrium problems are connected to quasi-variational inequality problems, a fact which
was first observed by Bensoussan [16]. Thereafter, Harker [17] investigated these problems
in Euclidean spaces. Quasi-variational inequality problems have been proven to be an
efficient tool for studying the GNEP; see, for example, Aussel et al. [18]. Recently, Beuno
and Cotrina [19] have shown the existence of projected solutions to the GNEP by using a
generalization of Berge’s maximum theorem and Himmelberg’s fixed point theorem; see
also [20] and references therein. We would also like to mention the very recent interesting
relevant articles [21,22], which deal with the GNEP, its reformulation in terms of variational
inequality problems, and its applications to the COVID-19 pandemic.

Several patterns of electricity market networks have been structured and studied in
the literature. The main concern of this work is the electricity market centralized by an
independent system operator (ISO) and the supply chain network perspective. Indeed,
the role of the ISO is crucial in spot electricity markets, where the electrical energy is
traded for immediate physical delivery, and the ISO schedules the dispatch quantities,
prices, and the transmission of electricity. This kind of electricity structure is running
successfully in the electric power industry of the United States, United Kingdom, and the
Nordic countries. Hu and Ralph [23] studied a bilevel non-cooperative game-theoretic
model for the ISO centralized spot electricity market by utilizing the mathematical model
of equilibrium programs with equilibrium constraints (EPECs). Later, Aussel et al. [24]
studied this bilevel optimization structure of electricity markets involving the influence
of transmission losses. For more studies of the spot electricity market operated by an
ISO, we refer interested readers to [14,25–27] and references therein. On the other hand,
an electric power supply chain network model works with the decision-makers which
operate in a decentralized manner. In particular, the mechanism of a supply chain network
involves power generators, power suppliers (including power marketers, traders, and
brokers), transmission service providers, and consumers (demand markets, or end users).
Nagurney and Matsypura [28] studied this structure in detail, where the ISO controls the
function of transmission service providers so that the prices of the transmission services
are reasonable and not discriminatory. However, the price of transmission services is not
constant, since it depends on the amount of electric power transmitted, the distance, and so
on. Projected differential inclusions and pertinent existence results were first introduced
by Henry [29]. Moreover, the book of Nagurney and Zhang [30] provides a study of
projected dynamical systems, which not only permit to incorporate constraints, but are
also related to the variational inequality problem. Indeed, the stationary points of the
ordinary differential equation involved in the projected dynamical system coincide with the
solutions to the associated variational inequality problem. Consequently, any equilibrium
problem that can be reformulated as a finite-dimensional variational inequality problem
can now also be studied as a projected dynamical system. These authors also developed
iterative algorithms for computing stationary points of projected dynamical systems and
used them to solve oligopolistic market, spatial price, and elastic and fixed demand traffic
equilibrium problems. Later, Nagurney et al. [31] used this to study dynamic electric power
supply chains as well. For more relevant works, see [32–36].

In parallel, the concept of a multidimensional optimization problem was also being
studied. It originated in the calculus of variations in the context of functions of several
independent variables. The study of this concept was initiated by Ekeland and Temam [37]
in the 1970s. Such problems are also known as multidimensional control problems. Sub-
sequently, the study of the notion of multidimensional optimization problems continued
gradually. For example, Guseĭnov [38] investigated an extension of the multidimensional
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optimization problem, and Fonseca and Marcellini [39] studied the lower semicontinuity
and relaxation of the multiple integrals which appear in multidimensional optimization
problems. For more relevant studies, we refer the interested readers to [40–44]. In recent
decades, Udrişte and Ţevy [45] have introduced the basic optimization problems involving
path-independent curvilinear integrals and multiple integrals. They named them multi-
time (multiple parameters of evolution) optimal control problems. These problems have
evolved from the above-mentioned multidimensional optimization problems. However, the
techniques developed and the results established by the research group of Udrişte [46–48]
are different from those in the aforementioned papers regarding multidimensional op-
timization problems. It turns out that several science and engineering problems can be
converted into optimization problems that are defined as m-flow type PDEs (multi-time evo-
lution systems), where the associated cost functionals are expressed as path-independent
curvilinear integrals or multiple integrals. Such cost functionals originated in physics and
are known as mechanical work type integrals. For some recent relevant works, we refer the
interested reader to [49,50] and references therein.

1.2. Our Contribution

Here, we explain in detail the novelty of our contributions.

1. We introduce a dynamic generalized Nash equilibrium problem (DGNEP) in the
terms of a path-independent curvilinear integral, which is a functional, and a dynamic
quasi-variational inequality problem (DQVIP) over multiple time scales, which we
call multiple parameters of evolution. First, we establish an equivalent relationship
between the DGNEP and the DQVIP by using the classic tools of convex analysis.
However, in this work, we exploit the form of the functionals, given in the terms
of path-independent curvilinear integrals, by using the convexity of the considered
functional. Furthermore, we also prove the existence of solutions to the DGNEP by
exploiting its equivalence with the DQVIP, and by using the techniques of proving exis-
tence results for generalized vector quasi-variational inequality and quasi-equilibrium
problems, studied in [51,52]. We note that papers [51,52] deal with functions of a finite
number of independent variables, but our work deals with functions of a number
of independent functions, i.e., functionals, and there is no such ‘universal’ space;
indeed, problems are defined in a function space. Moreover, if all the functions are
independent of the multiple parameters of evolutions t, then our introduced problems
and established results can be converted into the problems and results of the static
case, which were studied in [8,9,17–22,51–53]. In essence, our results can be seen
as dynamic generalizations of the corresponding (static) derived results of the afore-
mentioned papers. This outcome promotes a new approach aimed at relationships
between mathematical programming and the classical calculus of variations. We recall
that Hanson [54], who was the first to observe such kind of relationships, emphasized
that some of the duality theorems of mathematical programming have analogues in
the variational calculus.

2. Our intention is to open a window to understanding and exploring the performance
of the decision making models of non-cooperative strategic games with respect to
multiple time scales, where we can investigate how the strategy of players over
multiple time scales impact the decision making, resulting payoffs, and costs in this
kind of games. We emphasize that neither theoretical results, nor experimental results
related to generalized Nash equilibrium problems and concerning their applications
to electricity market problems, have been investigated so far in the setting of multiple
time scales (multiple parameters of evolution). In our recent study [55], we managed
to formulate a multi-time generalized Nash equilibrium problem involving multiple
integrals, and investigated its theoretical and experimental applications to solving
traffic network problems, the aim of which is to minimize the traffic cost of each route,
and to solving a river basin pollution problem.
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3. Motivated by the works of [14,23,24], we formulate a dynamic spot electricity market,
which is managed by an ISO in the terms of our DGNEP.

4. Following the works of [29–36], we formulate a projected dynamical system (PDS)
which pertains to a set-valued map and establish an equivalence relationship between
the solutions to the DGNEP and the critical points of the PDS.

5. Using the developed PDS theory and synthesizing the data of a 39-bus network case
of the New England system taken from the technical report [56], and articles [23,57],
we perform several numerical experiments for the dynamic spot electricity market
which we formulated.

6. We also present a comparative numerical experiment for checking the evolution of
resulting payoffs in multiple time scales in comparison to a single time scale. We find
that the maximum profit value of each generator in the case of multiple time scales is
higher than the corresponding value in the single time scale case.

7. Our results also demonstrate how the three theories, (1) ISO-operated spot electricity
markets, (2) projected dynamical system theory, and (3) multidimensional optimiza-
tion problems, which have almost been developed in parallel, can be connected in the
single frame of ‘Nash equilibrium problems’ in order to enhance the modeling and
analysis of problems that arise in the disciplines of engineering, operations research
and management, and economics. More precisely, we use the multidimensional op-
timization formulations, studied by the research group of Udrişte [46–48], to study
the GNEP and its application to the ISO centralized dynamic spot electricity market,
influenced by [14,23,24] and references therein, by using the techniques of projected
dynamical system theory developed by Nagureny’s research group [30–36]. We would
like to mention here that projected dynamical system theory [30–36] has also been
used to study the electricity market from the perspective of supply chain networks.

8. Today’s decisions can affect the long-run future. For example, companies like Nike,
Disney, Walmart, MacDonald’s, Nestlé, Johnson & Johnson, and many more have
realized that their actions in purchasing and supply chain management strongly affect
their reputation and long-term success. They have suffered damage to their repu-
tations and sales as a result of public awareness campaigns, external pressure from
activists, and internal pressure from investors demanding that companies acknowl-
edge responsibility for labor rights abuses in factories that make their products [58].
The same phenomena also occur in the setting of decision making problems in other
industrial areas such as electricity markets and oligopoly markets, and we could go on.
Aussel et al. [14], and Cotrina and Zúñiga [15] studied the decision making problem
via the GNEP in single time settings, but the above-mentioned long-run effects are
not considered by them. The mathematical framework of a decision making problem
over multiple time scales makes us capable of capturing the long-term effects, and
observing how the decision making, resulting payoffs, and costs evolve in a deci-
sion making game when players of such a game make their strategies over multiple
time scales. These facts motivated us to study the GNEP in multiple time settings
and to examine its application to solving spot electricity market network problems.
Multi-period decision making problems with applications in supply chain networks
are studied in [59,60] and in the references therein, but our approach and results are
completely different from theirs.

The outline of our paper is as follows: preliminaries and formulations of the problem
are presented in Section 2. The equivalence of the dynamic generalized Nash equilibrium
problem with the quasi-variational inequality problem is established in Section 3. In
Section 4, the existence of equilibria is obtained. The formulation of the dynamic spot
electricity market model is given in Section 5. The development of a theory of projected
dynamical systems is given in Section 6. Numerical experiments with a test case are
presented in Section 7. A comparative numerical experiment between multiple time scales
and a single time scale is provided in Section 8. Finally, Section 9 concludes our work.
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2. Preliminaries and Problem Formulations

We begin our analysis by introducing the following important notations and mathe-
matical tools; for better and deeper insights, we refer the readers to [61].

(i) The abbreviation “a.e.” stands for “almost everywhere”, and Rm
+ represents the set

of non-negative vectors in Rm;
(ii) The non-cooperative strategic game comprises N players;
(iii) Ωs1,s2 in Rm

+ is the planning horizon of players. It is an m-dimensional hypercube
with the fixed opposite diagonal points s1 = (s1

1, s2
1, . . . , sm

1 ) and s2 = (s1
2, s2

2, . . . , sm
2 )

in Rm
+, which with the product order relation can be written as Ωs1,s2 = ∏m

i=1 [s
i
1, si

2];
(iv) Γs1,s2 ⊂ Ωs1,s2 is a piecewise smooth curve joining the opposite diagonal points s1

and s2 in Ωs1,s2 ;
(v) The point Ωs1,s2 ∋ t = (tα) = (t1, t2, . . . , tm) is the multiple parameters of evolution,

which we call (t1, t2, . . . , tm) = m time periods, where t1 ∈ R+ is the given time,
t2 ∈ R+ is another given time, and so on. It follows that the evolution is m-dimensional,
which leads us to say that the evolution is multidimensional;

(vi) The dynamic behavior of the non-cooperative strategic game is described by the
strategy vector x ∈ L2(Ωs1,s2 ,Rn) of all the players. In fact, x(t) ∈ Rn at a given
point t ∈ Ωs1,s2 ;

(vii) xw ∈ L2(Ωs1,s2 ,Rnw) is the strategy vector of the player w, i.e., xw(t) ∈ Rnw at a given
point t ∈ Ωs1,s2 ;

(viii) x−w ∈ L2(Ωs1,s2 ,Rn−nw) is the strategy vector of all the players except player w, i.e.,
x−w(t) ∈ Rn−nw at a given point t ∈ Ωs1,s2 ;

(ix) n =
N
∑

w=1
nw;

(x) To emphasize the strategy vector of the player w, we write the strategy vector x
of all the players as x = (xw, x−w). This is just another way of writing the vector
x = (x1, x2, . . . , xw−1, xw, xw+1, . . . , xN) ∈ L2(Ωs1,s2 ,Rn);

(xi) We recall that L2(Ωs1,s2 ,Rn) = L2(Ωs1,s2 ,Rnw)× L2(Ωs1,s2 ,Rn−nw);
(xii) K ⊂ L2(Ωs1,s2 ,Rn) is a nonempty, closed, and convex subset;
(xiii) Kw(x−w) ⊂ L2(Ωs1,s2 ,Rnw) is the nonempty, closed and convex feasible set of the

player w for any given strategy vector x−w of the rival players;
(xiv) We say that the strategy vector x of all the players is feasible if for all w = 1, 2, . . . , N

and for all t ∈ Ωs1,s2 , we have xw ∈ Kw(x−w);
(xv) We use the following notation, which we need in Section 6, to denote the value of the

functional represented by p at the point q:

⟨⟨p, q⟩⟩ =
∫

Γs1,s2

⟨p(t), q(t)⟩dtα =
∫

Γs1,s2

⟨p(t), q(t)⟩dt1 + . . . +
∫

Γs1,s2

⟨p(t), q(t)⟩dtm

for all p, q ∈ L2(Ωs1,s2 ,Rn), where ⟨·, ·⟩ represents the Euclidean inner product;
(xvi) Each player w has an objective function, which is known as the cost/loss function and

which depends on both the player’s own decision variable xw and on the rival players’
decision variables x−w. We interpret the total cost/loss function that the player w
incurs when the rival players have chosen the strategy x−w, Fw : L2(Ωs1,s2 ,Rn) → R,
in terms of the path-independent curvilinear integral

Fw(x) =
∫

Γs1,s2

f w
α (xw(t), x−w(t))dtα,

where dtα = (dt1, dt2, . . . , dtm) is the differential element of the multiple parameters
of evolution tα, f w

α (xw(t), x−w(t)) is a real-valued continuously differentiable func-
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tion for every α and the running cost/loss of the player w, and we use summation
over the repeated indices α = {1, 2, . . . , m}, i.e.,

f w
α (xw(t), x−w(t))dtα = f w

1 (xw(t), x−w(t))dt1 + · · ·+ f w
m (xw(t), x−w(t))dtm.

We also assume that the condition Dα f w
β = Dβ f w

α , α, β = 1, 2, . . . , m and α ̸= β,
where Dα and Dβ are the total derivative operators, is satisfied.

We now provide the following example in order to illustrate and clarify the above
discussion.

Example 1. We compute a path-independent curvilinear integral for two-time parameters, i.e., for
m = 2 and α = 2. We let Ωs1,s2 be a square with the fixed opposite diagonal points s1 = (s1

1, s2
1) = (0, 0)

and s2 = (s1
2, s2

2) = (1, 1), i.e., Ωs1,s2 = {(x, y) ∈ R2
+ : 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1}; see Figure 1.

Let the value of the strategy vector x ∈ L2(Ωs1,s2 ,R) at the point t = (t1, t2) ∈ Ωs1,s2 be
x(t) = t1 + t2, and fα(x(t)) = ( f1(x(t)), f2(x(t))) = (−x(t),−1 − x(t)). Now, we con-
sider the following two paths of integration, i.e., Γs1,s2 , just to illustrate the definition of a path-
independent curvilinear integral.

1. Γs1,s2 is the line segment from (0, 0) to (1, 1);
2. Γs1,s2 is a parabola from (0, 0) to (1, 1).

Figure 1. The square ABCD = Ωs1,s2 with the diagonal points D = s1 = (0, 0) and B = s2 = (1, 1),
and the line connecting these points is BD = Γs1,s2 .

Case 1. For t = (t1, t2) ∈ Ωs1,s2 , on the diagonal connecting the points (0, 0), (1, 1), we have
t1 = t2. Thus, the value of the integral is∫

Γs1,s2

fα(x(t))dtα =
∫

Γs1,s2

(−t1 − t2)dt1 + (−1 − t1 − t2)dt2

=
∫ 1

0
−2t1dt1 + (−1 − 2t1)dt1

= −3.
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Case 2. Again, for t = (t1, t2) ∈ Ωs1,s2 , we consider the parabola t2 = (t1)2 connecting the points
(0, 0), (1, 1). Thus, the value of the integral is∫

Γs1,s2

fα(x(t))dtα =
∫

Γs1,s2

(−t1 − t2)dt1 + (−1 − t1 − t2)dt2

=
∫ 1

0
(−t1 − (t1)2)dt1 + (−1 − t1 − (t1)2)2t1dt1

= −3.

Evidently, the condition Dα fβ = Dβ fα = −1 for α, β = 1, 2 and α ̸= β is satisfied, and
this explains in a simple calculus language that the given vector field fα(x) = ( f1(x), f2(x)) is

conservative, and the line integral
∫

Γs1,s2

fα(x(t))dtα is path-independent.

Remark 1. From the above example, we deduce the following two evident facts:

I We need to use the condition Dα fβ = Dβ fα for α, β = 1, 2, . . . , m and α ̸= β for numerical
experiments;

II We can integrate the integrals over Γs2,s1 and, using a simple calculus rule, we see that the value
of the integral is ∫

Γs2,s1

fα(x(t))dtα = −
∫

Γs1,s2

fα(x(t))dtα.

Next, we formulate the dynamic generalized Nash equilibrium problem as follows:
(DGNEP) find a feasible strategy x ∈ L2(Ωs1,s2 ,Rn) such that, for all w = 1, 2, . . . , N, we

have xw ∈ Kw(x−w) and∫
Γs1,s2

f w
α (xw(t), x−w(t))dtα ≤

∫
Γs1,s2

f w
α (pw(t), x−w(t))dtα ∀ pw ∈ Kw(x−w).

Special cases:

(1) If the multiple parameters of evolution t = (tα) = (t1, t2, . . . , tm) ∈ Ωs1,s2 are reduced
to the single time scale, i.e., m = 1 and t = t1, t2 = t3 = . . . = tm = 0, then Ωs1,s2

and Γs1,s2 are simply the closed real interval [s1, s2] in R+ (the set of non-negative
real numbers). We may then write [s1, s2] = [0, T], where T denotes an arbitrary
time. Now, the DGNEP reduces to the time-dependent generalized Nash equilibrium
problem, which is studied by Aussel et al. in [14].

(2) If all the functions are independent of the multiple parameters of evolution t, then the
DGNEP reduces to the generalized Nash equilibrium problem, which is investigated,
for example, in [8,9,17–22,53].
For the formulation of the dynamic quasi-variational inequality problem, we first
consider a nonempty, closed and convex subset K of L2(Ωs1,s2 ,Rn), and define a
set-valued map A : K → 2K by

A(x) :=
N

∏
w=1

Kw(x−w) ∀ x ∈ K.

We also define a functional Z : K → R by Z(x) :=
∫

Γs1,s2

zα(x(t))dtα, where zα is a

real-valued continuously differentiable function, zα(x)dtα = z1(x)dt1 + . . . + zm(x)dtm,

and Dαzβ = Dβzα for α, β = 1, 2, . . . , m and α ̸= β. Moreover, we denote by
∂zα

∂x
(y) the

partial derivative of the function zα with respect to the argument x at the strategy vector
y ∈ K. The dynamic quasi-variational inequality problem is now formulated as follows.
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(DQVIP) to find a vector y ∈ K, such that y ∈ A(y) and∫
Γs1,s2

〈
∂zα

∂x
(y(t)), x(t)− y(t)

〉
dtα ≥ 0 ∀ x ∈ A(y).

Keeping in mind the definitions of generalized convexities formulated in [62,63], we
present the following definition of convexity for the aforementioned functional Z(x).

Definition 1. The functional Z(x) is said to be convex on the set K if for all x, y ∈ K, the following
inequality holds:∫

Γs1,s2

zα(x(t))dtα −
∫

Γs1,s2

zα(y(t))dtα ≥
∫

Γs1,s2

〈
∂zα

∂x
(y(t)), x(t)− y(t)

〉
dtα.

Next, we recall two definitions and a theorem (compare with [51,52]), which are used
in the proofs of our results.

Definition 2. A subset D of K is said to be compactly open (respectively, compactly closed) in K if
for any nonempty compact subset L of K, D ∩ L is open (respectively, closed) in L.

Remark 2.

(a) It is evident from the above definition that every open (respectively, closed) set is compactly
open (respectively, compactly closed).

(b) The union or intersection of a finite number of compactly open (respectively, compactly closed)
sets is compactly open (respectively, compactly closed).

(c) If D ⊂ K1 and E ⊂ K2 are compactly open (respectively, compactly closed) in K1 and K2,
respectively, then D × E ⊂ K1 × K2 is compactly open (respectively, compactly closed) in
K1 × K2.

Definition 3. A family {gw
α }N

w=1 of maps gw
α : K → L2(Ωs1,s2 ,Rnw), α = 1, 2, . . . , m, is called

hemicontinuous if, for all x, y ∈ K and λ ∈ [0, 1], the mapping λ →
N
∑

w=1
⟨⟨gw

α (x + λv), vw⟩⟩ with

vw = yw − xw is continuous, where vw is the wth component of v.

Theorem 1 ([51]). Assume that S, T : K → 2K are set-valued maps, and the following hypotheses
are satisfied:

1. ∀ x ∈ K, S(x) ⊆ T(x);
2. ∀ x ∈ K, S(x) ̸= ∅;
3. ∀ x ∈ K, T(x) is convex;
4. ∀ y ∈ K, S−1({y}) = {x ∈ K : y ∈ S(x)} is compactly open;
5. There exists a nonempty, closed and compact subset D of K and y ∈ D such that K \ D ⊂

S−1({y}).
Then, there exists x ∈ K such that x ∈ T(x).

3. The Dynamic Generalized Nash Equilibrium Problem as a Quasi-Variational
Inequality Problem

Our aim in this section is to present an equivalent form of the dynamic generalized
Nash equilibrium problem in the terms of a dynamic quasi-variational inequality problem.
This equivalent formulation will be beneficial for proving more results later. From now

onwards,
∂ f w

α

∂xw (y) stands for the partial derivative of the function f w
α of a player w for

α = 1, 2, . . . , m with respect to the argument xw at the strategy vector y ∈ K.
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Theorem 2. Let ∂zα
∂x (x) =

(
∂ f w

α
∂xw (x)

)N

w=1
for any x ∈ K, and for each w = 1, 2, . . . , N and each

xw, assume that the cost functional Fw is convex on K in the argument xw. Then, y ∈ K is a
dynamic generalized Nash equilibrium if and only if it is a solution to the DQVIP.

Proof. Assume that y ∈ K is a solution to the DQVIP. In order to prove our assertion,
we shall first prove that, for α = 1, 2, . . . , m, and for each w = 1, 2, . . . , N, yw ∈ Kw(y−w)
satisfies the following inequality:〈

∂ f w
α

∂xw (y(t)), xw(t)− yw(t)
〉

≥ 0, ∀ xw ∈ Kw(y−w) and a.e. on Γs1,s2 . (1)

To this end, suppose to the contrary that there exists a ν ∈ {1, 2, . . . , N} and a strategy
vector hν ∈ Kν(y−ν) together with a piecewise smooth curve γ ⊂ Γs1,s2 of positive measure,
such that, for yν ∈ Kν(y−ν), the following inequality holds:〈

∂ f ν
α

∂xν
(y(t)), hν(t)− yν(t)

〉
< 0, a.e. on γ. (2)

Now, we take a strategy vector q ∈ L2(Ωs1,s2 ,Rn), defined by

q =


qw(t) = yw(t), t ∈ Γs1,s2 and w ̸= ν,
qw(t) = hν(t), t ∈ γ and w = ν,
qw(t) = yν(t), t ∈ Γs1,s2 \ γ and w = ν.

Then, q ∈ A(y). Thus, we have

∫
Γs1,s2

〈
∂zα

∂x
(y(t)), q(t)− y(t)

〉
dtα =

N

∑
w=1

∫
Γs1,s2

〈
∂ f w

α

∂xw (y(t)), qw(t)− yw(t)
〉

dtα

=
N

∑
w=1 (w ̸=ν)

∫
Γs1,s2

〈
∂ f w

α

∂xw (y(t)), qw(t)− yw(t)
〉

dtα

+
∫

Γs1,s2

〈
∂ f ν

α

∂xν
(y(t)), qν(t)− yν(t)

〉
dtα

=
∫

γ

〈
∂ f ν

α

∂xν
(y(t)), hν(t)− yν(t)

〉
dtα.

(3)

By combining inequalities (2) and (3), we obtain∫
Γs1,s2

〈
∂zα

∂x
(y(t)), q(t)− y(t)

〉
dtα < 0,

which yields a contradiction with the fact that y ∈ K solves the DQVIP. Consequently,
inequality (1) is validated. Furthermore, for each w = 1, 2, . . . , N, the convexity of the cost
functional Fw on the set K in the argument xw yields that∫

Γs1,s2

f w
α (xw(t), y−w(t))dtα −

∫
Γs1,s2

f w
α (yw(t), y−w(t))dtα

≥
∫

Γs1,s2

〈
∂ f w

α

∂xw (y(t)), xw(t)− yw(t)
〉

dtα ∀ xw ∈ Kw(y−w).
(4)

Inequalities (1) and (4) imply that∫
Γs1,s2

f w
α (xw(t), y−w(t))dtα −

∫
Γs1,s2

f w
α (yw(t), y−w(t))dtα ≥ 0 ∀ xw ∈ Kw(y−w). (5)
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Therefore, y ∈ K is the dynamic generalized Nash equilibrium.
Conversely, we suppose that y ∈ K is a dynamic generalized Nash equilibrium, which

yields inequality (5). Since Kw(y−w) is a convex set, for all xw ∈ Kw(y−w) and λ ∈ [0, 1],
inequality (5) can be rewritten as∫

Γs1,s2

[ f w
α (yw(t) + λ(xw(t)− yw(t)), y−w(t))− f w

α (yw(t), y−w(t))]dtα ≥ 0.

Dividing the above inequality by λ, taking the limit as λ → 0, and using Taylor’s
series, we obtain∫

Γs1,s2

〈
∂ f w

α

∂xw (y(t)), xw(t)− yw(t)
〉

dtα ≥ 0 ∀ xw ∈ Kw(y−w).

By the hypothesis,
∂zα

∂x
(y) =

(
∂ f w

α

∂xw (y)
)N

w=1
, and so we have, for any x ∈ A(y),

∫
Γs1,s2

〈
∂zα

∂x
(y(t)), x(t)− y(t)

〉
dtα =

N

∑
w=1

∫
Γs1,s2

〈
∂ f w

α

∂xw (y(t)), xw(t)− yw(t)
〉

dtα ≥ 0.

Since we already have y ∈ A(y), it follows that y is a solution to the DQVIP.

4. Existence of Equilibria

In this section, we establish the existence of dynamic generalized Nash equilibria. The
equivalence of the dynamic generalized Nash equilibrium problem with the dynamic quasi-
variational inequality problem allows us to take advantage of the techniques of [51,52].
Throughout this section, we consider the strategy vectors xw of each player w, and the strat-
egy vectors x−w of rival players excluding the player w, and the subset K ⊂ L2(Ωs1,s2 ,Rn) is

given as K =
N
∏

w=1
Yw and Y−w =

N
∏

ν=1, (ν ̸=w)
Yν, where {Yw}N

w=1 is a family of nonempty, closed

and convex subsets with each Yw ⊂ L2(Ωs1,s2 ,Rnw). Now, the entire strategy vector x ∈ K can
be written as x = (xw, x−w) ∈ Yw ×Y−w. Furthermore, for all x−w ∈ Y−w, the strategy set of
each player w, Kw(x−w) is a subset of Yw, and for all yw ∈ Yw, K−1

w ({yw}) ⊂ Y−w. Using the
above mathematical framework, we easily find the following fact:

A−1({y}) =
N⋂

w=1

[Yw × K−1
w ({yw})] ∀ y ∈ K.

We assume that, for each w = 1, 2, . . . , N, the set Yw is compactly open, and for all
yw ∈ Yw, the set K−1

w ({yw}) is compactly open in Y−w. Therefore, Remark 2 (b) and (c)
yield that A−1({y}) is compactly open for all y ∈ K. Moreover, we also assume that the set
B = {x ∈ K : x ∈ A(x)} is compactly closed.

Theorem 3. Let y ∈ K be an arbitrary strategy vector, ∂zα
∂x (y) =

(
∂ f w

α
∂xw (y)

)N

w=1
, and for each

w = 1, 2, . . . , N and a given y−w, let the cost functional Fw be convex on K in the argument yw.
Assume that there exists a nonempty, closed and compact set D ⊂ K and ŷ ∈ D, such that

N

∑
w=1

∫
Γs1,s2

〈
∂ f w

α

∂xw (ŷ(t)), ŷw(t)− xw(t)
〉

dtα < 0 ∀ x ∈ K \ D with ŷ ∈ A(x). (6)

Then, the DQVIP has a solution.

Proof. In order to prove this result, we first define two set-valued maps T1, T2 : K → 2K as
follows: for each y ∈ K, let
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T1(y) :=

{
z ∈ K :

N

∑
w=1

∫
Γs1,s2

〈
∂ f w

α

∂xw (z(t)), zw(t)− yw(t)
〉

dtα < 0

}
and

T2(y) :=

{
z ∈ K :

N

∑
w=1

∫
Γs1,s2

〈
∂ f w

α

∂xw (y(t)), zw(t)− yw(t)
〉

dtα < 0

}
.

The convexity of the cost function Fw of each player w on the set K in the arguments
of Yw implies that, for all x1 and x2 in K, the following inequality holds:

∫
Γs1,s2

f w
α (x1(t))dtα −

∫
Γs1,s2

f w
α (x2(t))dtα ≥

∫
Γs1,s2

〈
∂ f w

α

∂xw (x2(t)), xw
1 (t)− xw

2 (t)
〉

dtα. (7)

Interchanging the variables x1 and x2 in inequality (7), we are led to the following
inequality:∫

Γs1,s2

f w
α (x2(t))dtα −

∫
Γs1,s2

f w
α (x1(t))dtα ≥

∫
Γs1,s2

〈
∂ f w

α

∂xw (x1(t)), xw
2 (t)− xw

1 (t)
〉

dtα. (8)

Adding inequalities (7) and (8), we obtain∫
Γs1,s2

〈
∂ f w

α

∂xw (x1(t)), xw
2 (t)− xw

1 (t)
〉

dtα ≤
∫

Γs1,s2

〈
∂ f w

α

∂xw (x2(t)), xw
2 (t)− xw

1 (t)
〉

dtα,

which also implies the following inequality:
N

∑
w=1

∫
Γs1,s2

〈
∂ f w

α

∂xw (x1(t)), xw
2 (t)− xw

1 (t)
〉

dtα ≤
N

∑
w=1

∫
Γs1,s2

〈
∂ f w

α

∂xw (x2(t)), xw
2 (t)− xw

1 (t)
〉

dtα. (9)

Inequality (9) implies that T1(y) ⊂ T2(y) for all y ∈ K. Next, we define two more
set-valued maps S, T : K → 2K by

S(y) :=

{
A(y) ∩ T1(y), if y ∈ B
A(y), if y ∈ K \ B,

T(y) :=

{
A(y) ∩ T2(y), if y ∈ B
A(y), if y ∈ K \ B.

It is evident that the point images of the set-valued maps A(y) and T2(y) are convex
for all y ∈ K, a fact which implies the convexity of the point images of the set-valued map
T(y) for all y ∈ K. Moreover, S(y) ⊂ T(y) for all y ∈ K. Now, for all points z ∈ K, we have

S−1({z}) = {x ∈ K : z ∈ S(x)}
= {x ∈ B : z ∈ A(x) ∩ T1(x)} ∪ {x ∈ K \ B : z ∈ A(x)}
= [B ∩ (A−1({z}) ∩ T−1

1 ({z}))] ∪ [K \ B ∩ A−1({z})]
= [(B ∩ (A−1({z}) ∩ T−1

1 ({z}))) ∪ K \ B]

∩ [(B ∩ (A−1({z}) ∩ T−1
1 ({z}))) ∪ A−1({z})]

= [K ∩ ((A−1({z}) ∩ T−1
1 ({z})) ∪ K \ B)]

∩ [(B ∪ A−1({z})) ∩ (A−1({z}) ∩ T−1
1 ({z}))]

= [(A−1({z}) ∩ T−1
1 ({z})) ∪ K \ B] ∩ A−1({z})

= (A−1({z}) ∩ T−1
1 ({z})) ∪ (K \ B ∩ A−1({z})).
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Furthermore, for each z ∈ K, the complement of T−1
1 ({z}) in K can be written as

[T−1
1 ({z})]c =

{
x ∈ K :

N

∑
w=1

∫
Γs1,s2

〈
∂ f w

α

∂xw (z(t)), zw(t)− xw(t)
〉

dtα ≥ 0

}
,

which is closed in K. Consequently, T−1
1 ({z}) is open in K. Remark 2 (a) implies that

T−1
1 ({z}) is compactly open for all z ∈ K. We also see that, for all z ∈ K, A−1({z}) and

K \ B are compactly open. Hence, using the above formulation of S−1({z}), we find that it
is also compactly open for all z ∈ K. Now, suppose that, for all x ∈ B, A(x) ∩ T1(x) ̸= ∅.
On the other hand, we already know that the point images of the set-valued map A(x) are
nonempty and convex for all x ∈ K. It follows that S(x) ̸= ∅ for all x ∈ K. Our hypothesis
yields that there exist a nonempty and compact set D ⊂ K and a point ŷ ∈ D, such that
K \ D ⊂ S−1({ŷ}). Thus, all the hypotheses of Theorem 1 are satisfied. This implies that
there exists a point z ∈ K such that z ∈ T(z). The definitions of the set B and the set-valued
map T imply that {x ∈ K : x ∈ T(x)} ⊂ B. Therefore, z ∈ B and z ∈ A(z) ∩ T2(z).
Consequently, z ∈ T2(z). It follows that

N

∑
w=1

∫
Γs1,s2

〈
∂ f w

α

∂xw (z(t)), zw(t)− zw(t)
〉

dtα < 0,

which is impossible. Thus, we have reached a contradiction, and so there does exist a point
x̂ ∈ B such that A(x̂) ∩ T1(x̂) = ∅. That is, x̂ ∈ A(x̂) and

N

∑
w=1

∫
Γs1,s2

〈
∂ f w

α

∂xw (y(t)), yw(t)− x̂w(t)
〉

dtα ≥ 0 ∀ y ∈ A(x̂).

By using the convexity of both sets Kw(x̂−w) and A(x̂), we can, for all λ ∈ [0, 1],
rewrite the above inequality as

N

∑
w=1

∫
Γs1,s2

〈
∂ f w

α

∂xw (x̂(t) + λ(y(t)− x̂(t))), yw(t)− x̂w(t)
〉

dtα ≥ 0 ∀ y ∈ A(x̂).

Since
∂ f w

α

∂xw (·) is hemicontinuous, by taking the limit as λ → 0 in the above inequality,
we obtain

N

∑
w=1

∫
Γs1,s2

〈
∂ f w

α

∂xw (x̂(t)), yw(t)− x̂w(t)
〉

dtα ≥ 0 ∀ y ∈ A(x̂).

Using the hypothesis, we can rewrite the above inequality as∫
Γs1,s2

〈
∂zα

∂x
(x̂(t)), y(t)− x̂(t)

〉
dtα ≥ 0 ∀ y ∈ A(x̂).

In other words, x̂ is a solution to the DQVIP, as asserted.

5. The Dynamic Spot Electricity Market Problem

In this section, we first give some arguments in favor of the key element of this work,
i.e., “multiple parameters of evolution t = (t1, t2, . . . , tm) ∈ Ωs1,s2”. Moreover, we also
explain what we model with the help of these multiple parameters of evolution, and
why this is interesting and applicable. Furthermore, we demonstrate how the introduced
concept of the DGNEP is associable with electricity markets.

In order to describe multiple parameters of evolution in a real world situation, we take
a simple electricity spot market scenario, which is centralized by an independent system
operator (ISO), the only agents in the market are generators/producers and the demands on
each generator are inelastic and known. The non-cooperative strategic game model in this
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section is profit-seeking by each agent, which entails a bilevel optimization problem. This
works as follows: each agent bids the cost of production of electricity to the ISO. This is a
function of the multiple parameters of evolution t = (t1, t2, . . . , tm). The ISO determines the
best possible quantities of electricity at a given parameter t = (t1, t2, . . . , tm) by minimizing
the social cost and then sends them off to each agent. Our model determines how much
each agent should bid as the cost of production of electricity at a given t = (t1, t2, . . . , tm)
to the ISO, so that the agents could maximize their own profit. The ISO’s social cost
minimization problem is the lower-level program, while the profit maximization problem
of the agents is a bilevel optimization. For a deeper understanding of this kind of a model,
we refer the readers to [14,23], where Hu and Ralph [23] studied this electricity market
model in the static case and Aussel et al. [14] studied it in the dynamic case only for a single
time-parameter of evolution t ∈ R+. We are also studying it in the dynamic case, but for
multiple parameters of evolution t = (t1, t2, . . . , tm) ∈ Rm

+.
Now, our arguments are as follows in order to gain the maximum profit for the long

run future, the bidding strategy of producing electricity in the present time can depend
on several factors such as the uncertain situation of the markets, the capacities of the
generators, and many more, which here we could call the multiple parameters of evolution.
This is why the multiple parameters of evolution t = (t1, t2, . . . , tm) ∈ Ωs1,s2 could also be
motivated differently. For instance, t1 could be the time period of generation/delivery of
electricity, t2 could be the capacity of the generator to produce electricity, t3 could be the
uncertainty of the future. For example, in wind farms, the electricity generation situation
depends on the uncertainty of the availability of natural wind. However, in our work, we
take all of the parameters (t1, t2, . . . , tm) as time periods, and the strategy vectors, which
are the bidding parameters of producing electricity, depend on (t1, t2, . . . , tm) or, simply
said, are a function of (t1, t2, . . . , tm). The motivation behind taking multiple parameters of
evolution is to check the long-run effects of our current decisions. For example, if agents
have to gain maximum profit by the end of the year 2050, for that, they have to make
decisions for bidding the price of producing electricity here-and-now (say, in 2024). In this
case, agents probably make decisions according to the first year, second year, third year,
and so on up to the year 2050. Mathematically, we can consider the multiple parameters
t1 ∈ [2024, 2025], t2 ∈ [2025, 2026], t3 ∈ [2026, 2027], . . . , t· ∈ [·, 2050]. At this point, one
can ask “why not to take the multiple parameters of evolution t = (t1, t2, . . . , tm) as a
single time parameter, i.e., t ∈ [2024, 2050] ⊂ R+, and study the model according to Aussel
et al. [14]?”. We would like to emphasize here that we do not oppose this single time
parameter approach, but as a matter of fact, the here-and-now decision cannot be taken
directly for the long term future in one shot, because we also have to deal with other factors
and uncertain situations of the future. This kind of situation can also be modeled using
stochastic optimization by considering several possible scenarios of the future, but we do
not use stochastic optimization in the present work. It is beneficial to take the decision
according to small time periods by dividing long future time periods into several small
periods of times, i.e., according to the multiple parameters of evolution, so that we can
capture all the factors, which probably change every year and affect our current decisions
in order to gain the maximum profit for the long run. This is what we try to illustrate
in Section 8 by providing a simple numerical example, which shows that the maximum
profit in the terms of multiple parameters of evolution is greater than the one obtained in
the single time parameter case. However, in the present work, because we did not apply
any real world data to check this fact, we plan to do this in our future work. We just try
to justify the use of multiple parameters of evolution in the context of Nash equilibrium
problems by providing some simple numerical evidence and by exploiting the structure
of multidimensional optimization problems in the terms of curvilinear path-independent
integrals, which were studied in [46–48,61] and references therein.

In order to define the model in terms of the DGNEP, we assume that the dynamic
spot electricity market has N nodes and evolves over the multiple parameters of evo-
lution t = (tα) = (t1, t2, . . . , tm) ∈ Ωs1,s2 , defined as in Section 2. We also assume that
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each node consists of only one generator/producer w ∈ M = {1, 2, . . . , N}. Let R+ de-
note the set of nonnegative real numbers, Dw ∈ L2(Ωs1,s2 ,R+) be the demand function,
pw ∈ L2(Ωs1,s2 ,R+) be the quantity of generated electricity (production function) by the
generator w, p−w ∈ L2(Ωs1,s2 ,RN−1

+ ) be the quantity of generated electricity by all the
generators except the generator w, and Aw pw + Bw(pw)2 be the true cost to generate pw

units of electricity by the generator w, where Aw and Bw ∈ L2(Ωs1,s2 ,R+) are the true
parameter values. Next, we consider the dynamic spot electricity market problem in the
terms of a bilevel optimization problem, where the following ISO problem is known as the
lower-level program of the bilevel program.

5.1. The ISO Problem

Each generator bids an electricity generating cost to the ISO. Thus, the wth generator
provides the bid function (bid generation cost) aw pw + bw(pw)2 to the ISO, where the
parameters aw, bw ∈ L2(Ωs1,s2 ,R+) are the bid parameters. Then, the ISO computes the
production function pw ∈ L2(Ωs1,s2 ,R+) for each generator w. Keeping in mind a fact
pointed out by Aussel et al. [24], namely that if the distance between the generators is quite
small, then it is reasonable to assume that there are no thermal losses, we assume that the
thermal losses are negligible, and thus the total demand function on the whole network is

given by D =
N
∑

w=1
Dw. Now, clearly, the bid vectors a = (a1, a2, . . . , aw−1, aw, aw+1, . . . , aN)

and b = (b1, b2, . . . , bw−1, bw, bw+1, . . . , bN), given by the generators, are known to the ISO.
Thus, the ISO computes a production vector p = (pw)w∈M in order to minimize the total
generation cost bidden by all the generators. In other words, the ISO has to solve the
following optimization problem:

minimizep

N

∑
w=1

∫
Γs1,s2

(aw(t)pw(t) + bw(t)(pw(t))2, . . .︸︷︷︸
m times

, aw(t)pw(t) + bw(t)(pw(t))2)dtα

subject to pw(t) ≥ Dw(t), ∀ w ∈ M, a.e. on Γt1,t2 . (10)

The solution set of the optimization problem (10) is denoted by SISO. In order to
continue our study, we define the following set for a given p−w:

Sw(p−w) := {pw ∈ L2(Ωs1,s2 ,R+) : (pw, p−w) ∈ SISO}.

5.2. The Generator Problem

Evidently, generators are dependent on each other, at least because of the finiteness
of the demand, and they want to maximize their profit. Every generator w bids an elec-
tricity generating cost aw pw + bw(pw)2 to the ISO, and then each generator w receives
the best quantity of electricity pw from the ISO. Moreover, the market price of the gen-
erating electricity for the generator w is the marginal price, which is the derivative of
the bid generation cost of the generator w, i.e., aw + 2bw pw. Thus, the generator w re-
ceives the revenue (aw + 2bw pw)pw. Therefore, the profit of the generator w is defined by
(aw pw + 2bw(pw)2) − (Aw pw + Bw(pw)2). We note here that the production vector p is
supplied by the ISO problem (10). In short, the dynamic spot electricity market problem for
each generator w is to solve the following optimization problem:

maximizeaw ,bw ,p

∫
Γs1,s2

([(aw(t)pw(t) + 2bw(t)(pw(t))2)− (Aw(t)pw(t) + Bw(t)(pw(t))2)],

. . .︸︷︷︸
m times

, [(aw(t)pw(t) + 2bw(t)(pw(t))2)− (Aw(t)pw(t) + Bw(t)(pw(t))2)])dtα
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subject to


aw(t) ∈ [Ew(t), Fw(t)], a.e. on Γs1,s2 ,
bw(t) ∈ [Pw(t), Qw(t)], a.e. on Γs1,s2 ,
p(t) = (pw(t))w∈M = (pw(t), p−w(t)) ∈ SISO, a.e. on Γs1,s2 ,

(11)

where 0 ≤ Ew ≤ Fw and 0 ≤ Pw ≤ Qw define the feasible range for the bids (aw, bw). An
equilibrium of the generator problem (11) is a dynamic generalized Nash equilibrium in
the sense of our DGNEP, if we adopt the following notation:

x = (a, b, p), xw = (aw, bw, pw), x−w = (a−w, b−w, p−w),

f w
α (x) = ( f w

1 (x), f w
2 (x), . . . , f w

m (x))

= ([(Aw pw + Bw(pw)2)− (aw pw + 2bw(pw)2)], . . .︸︷︷︸
m times

,

[(Aw pw + Bw(pw)2)− (aw pw + 2bw(pw)2)]),

Kw = {(aw, bw) : Ew(t) ≤ aw(t) ≤ Fw(t) and Pw(t) ≤ bw(t) ≤ Qw(t), a.e., on Γs1,s2},

Kw(x−w) = Kw × Sw(p−w).

Remark 3. The production vector for each generator w depends on the bids of all the other generators,
and these bid vectors are given by a−w = (aj)w ̸=j and b−w = (bj)w ̸=j, j ∈ M and t ∈ Ωs1,s2 .
Moreover, the optimization problem {(11)}N

w=1 is the bilevel optimization problem with (10) as the
lower-level task.

6. The DGNEP as a Projected Dynamical System

This section concerns a study of the DGNEP via a projected dynamical system (PDS).
Singh and Reich [64] have recently explored a projected dynamical system pertaining to
a single-valued map in the context of a multi-time variational inequality problem. This
section deals with the investigation of a projected dynamical system, which pertains to
a set-valued map in the context of a dynamic quasi-variational inequality problem over
a multiple time period. More precisely, we consider the following projected dynamical
system (PDS) for α = 1, 2, . . . , m:

dx(·, τ)

dτ
= ΠA(x(·))

(
x(·, τ),−∂zα

∂x
(x(·, τ))

)
,

x(·, 0) = x0(·) ∈ A(x(·)),
(12)

where ΠA(x(·)) : L2(Ωs1,s2 ,Rn)× L2(Ωs1,s2 ,Rn) → L2(Ωs1,s2 ,Rn) is the operator defined by

ΠA(x(·))(x(·), v(·)) := lim
δ→0+

projA(x(·))(x(·) + δv(·))− x(·)
δ

,

for all x(·) ∈ A(x(·)) and v(·) ∈ L2(Ωs1,s2 ,Rn). The term projA(x(·))(·) is the nearest point
projection of a given vector onto the set A(x(·)) (see the definition below).

Remark 4. In order to avoid the confusion between the multiple parameters of evolution t and the
time τ in the PDS (12) formulation, we denote the elements of the space L2(Ωs1,s2 ,Rn) at fixed
points t ∈ Ωs1,s2 by x(·). Indeed, the characteristics of the parameter τ are different from the
multiple parameters of evolution t in PDS (12). In fact, at each instant t ∈ Ωs1,s2 , the solution of the
DQVIP represents a static state of the underlying system. As t varies over Ωs1,s2 , the static states
describe one or more curves of the equilibria. On the other hand, τ represents the time that describes
the dynamics of the system over the interval [0, ∞) until it reaches one of the equilibria of the curve.
It is evident that the solutions of PDS (12) lie in the class of absolutely continuous functions with
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respect to τ, from [0, ∞) to A(x). An excellent explanation of the difference between these two times,
i.e., t and τ, is provided by Cojocaru et al. in [33]. They literally found the mathematical relationship
between these two times, and also calculated the value of τ in a dynamic traffic network example.

In order to describe the relationship between the DGNEP and the PDS, we need the
following definitions, for each t ∈ Ωs1,s2 . They are inspired by [32,35,36,65].

Definition 4. A point y ∈ K is called a critical point of (PDS) if y ∈ A(y) and for α = 1, 2, . . . , m,
we have

ΠA(y)

(
y,−∂zα

∂x
(y)
)
= 0.

Definition 5. The nearest point projection of a point x ∈ L2(Ωs1,s2 ,Rn) onto a set K is defined by

projK
(
x
)

:= arg min
y∈K

∥∥x − y
∥∥.

Remark 5. For each x ∈ L2(Ωs1,s2 ,Rn), projK(x) enjoys the following property:

⟨⟨x − projK(x), y − projK(x)⟩⟩ ≤ 0 ∀ y ∈ K.

Definition 6. The polar set K◦ associated with K is defined by

K◦ :=
{

y ∈ L2(Ωs1,s2 ,Rn) : ⟨⟨y, x⟩⟩ ≤ 0 ∀ x ∈ K
}

.

Definition 7. The tangent cone to the set K at a point x ∈ K is defined by

TK(x) := cl

(⋃
λ>0

K − x
λ

)
,

where cl denotes the closure operation.

Definition 8. The normal cone of K at a point x is defined by

NK
(

x
)

:=

{
{y ∈ L2(Ωs1,s2 ,Rn) : ⟨⟨y, z − x⟩⟩ ≤ 0 ∀ z ∈ K}, x ∈ K,
∅, x /∈ K.

This can also be written as TK
(
x
)
=
[
NK
(
x
)]◦.

Lemma 1 (Lemma 1.2.8. of [66]). For each i = 1, 2, . . . , p, let Hi be a Hilbert space, Ci ⊂ Hi be
convex, C = C1 × C2 × . . . × Cp ⊂ H = H1 × H2 × · · · × Hp and let x = (x1, x2, . . . , xp) ∈ H.
If metric projections projCi (xi) exist, then a metric projection projC(x) also exists and projC(x) =
(projC1(x1), projC2(x2), . . ., projCp(xp)).

We present the following propositions for each player w = 1, 2, . . . , N and t ∈ Ωs1,s2 ,
and a given strategy y−w ∈ L2(Ωs1,s2 ,Rn−nw) of the rival players except the one of player
w. They are direct consequences of Proposition 2.1 and 2.2 in [32].

Proposition 1. For all yw ∈ Kw(y−w) and vw ∈ L2(Ωs1,s2 ,Rnw), ΠKw(y−w)(yw, vw) exists and
ΠKw(y−w)(yw, vw) = projTKw(y−w)(y

w)(vw).

Proposition 2. For all yw ∈ Kw(y−w) there exists nw ∈ NKw(y−w)(yw) such that
ΠKw(y−w)(yw, vw) = vw − nw ∀ vw ∈ L2(Ωs1,s2 ,Rnw).
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The following theorem provides a strong relationship between the DGNEP and
the PDS.

Theorem 4. Assume that ∂zα
∂x (x) =

(
∂ f w

α
∂xw (x)

)N

w=1
for any x ∈ K, and that for each

w = 1, 2, . . . , N and each x−w, the cost functional Fw is convex on K in the argument xw.
Then, y ∈ K is a dynamic generalized Nash equilibrium if and only if it is a critical point of PDS.

Proof. Let y ∈ K be a dynamic generalized Nash equilibrium. Then, it follows from the
converse part of Theorem 2 that for each w = 1, 2, . . . , N, we have∫

Γs1,s2

〈
∂ f w

α

∂xw (y(t)), xw(t)− yw(t)
〉

dtα ≥ 0 ∀ xw ∈ Kw(y−w).

For α = 1, 2, . . . , m, the above inequality can be rewritten as〈〈
∂ f w

α

∂xw (y), xw − yw
〉〉

≥ 0 ∀ xw ∈ Kw(y−w).

Therefore, we have the following inequality:

−∂ f w
α

∂xw (y) ∈ NKw(y−w)(y
w). (13)

Proposition 2 yields that

ΠKw(y−w)

(
yw,−∂ f w

α

∂xw (y)
)
= 0. (14)

The convexity of the set Kw(y−w) for each w = 1, 2, . . . , N, when combined with the
hypothesis and Lemma 1, easily implies the following equality for α = 1, 2, . . . , m:

ΠA(y)

(
y,−∂zα

∂x
(y)
)
= 0. (15)

Thus, y is a critical point of PDS, as claimed.
Conversely, assume that y ∈ K is a critical point of PDS. Then, it follows that we have

inequality (15) and also (14). Proposition 1 gives

projTKw(y−w)(y
w)

(
−∂ f w

α

∂xw (y)
)
= 0.

In view of Remark 5, the above expression yields〈〈
−∂ f w

α

∂xw (y), zw
〉〉

≤ 0 ∀ zw ∈ TKw(y−w)(y
w),

which implies that

−∂ f w
α

∂xw (y) ∈ NKw(y−w)(y
w).

This, in its turn, implies that y is a solution to DQVIP with ∂zα
∂x (y) =

(
∂ f w

α
∂xw (y)

)N

w=1
.

Furthermore, using the first part of the proof of Theorem 2, we can conclude that y is a
dynamic generalized Nash equilibrium, as claimed.

Remark 6. Keeping in mind the proof techniques of Theorem 4 and using the fact that the normal
cone of the product set is equal to the product of the normal cones (see [67], Proposition 6.41), we
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can write PDS (12), for ∂zα
∂x (x(·, τ)) =

(
∂ f w

α
∂xw (x(·, τ))

)N

w=1
, w = 1, 2, . . . , N and α = 1, 2, . . . , m,

in the form of the following N × m dynamical system:

dxw(·, τ)

dτ
= ΠKw(x−w(·))

(
xw(·, τ),−∂ f w

α

∂xw (x(·, τ))

)
,

xw(·, 0) = xw
0 (·) ∈ Kw(x−w(·)).

(16)

7. Solving the DGNEP

In this section, we solve the dynamic spot electricity market problem of Section 5. More
precisely, this section aims to present a method for solving DGNEP by taking advantage
of Theorem 4, which tells us that any point of a dynamic generalized Nash equilibria
curve is a critical point of PDS (12), and vice versa. To use this information in applications,
we proceed by discretizing the planning horizon Ωs1,s2 = ∏m

i=1 [s
i
1, si

2]. The algorithmic
procedure is described as follows:

Step 1. Consider a partition of Ωs1,s2 such that

(s1
1, s2

1, . . . , sm
1 ) = (l1

1 , l2
1 , . . . , lm

1 ) < (l1
2 , l2

2 , . . . , lm
2 ) < . . . < (l1

i , l2
i , . . . , lm

i ) < . . .

< (l1
n, l2

n, . . . , lm
n ) = (s1

2, s2
2, . . . , sm

2 ),

which satisfies the following convention of equalities and inequalities:

for any e = (e1, e2, . . . , em), f = ( f 1, f 2, . . . , f m) ∈ Rm, e < f if and only if ei < f i

for all i = 1, 2, . . . , m, and e = f if and only if ei = f i for all i = 1, 2, . . . , m.

Step 2. For each α = 1, 2, . . . , m, and li = (l1
i , l2

i , . . . , lm
i ), i = 1, 2, . . . , n, we consider PDS (16)

as follows:
dxw(li, τ)

dτ
= ΠKw(x−w(li))

(
xw(li, τ),−∂ f w

α

∂xw (x(li, τ))

)
,

xw(li, 0) = xw
0 (li) ∈ Kw(x−w(li)),

(17)

where, in accordance with the terminologies of Section 5,

x(li) = (a(li), b(li), p(li)), xw(li) = (aw(li), bw(li), pw(li)),

x−w(li) = (a−w(li), b−w(li), p−w(li)),

f w
α (x(li)) = ( f w

1 (x(li)), f w
2 (x(li)), . . . , f w

m (x(li)))

= ([(Aw(li)pw(li) + Bw(li)(pw(li))2)− (aw(li)pw(li) + 2bw(li)(pw(li))2)],

. . .︸︷︷︸
m times

, [(Aw(li)pw(li) + Bw(li)(pw(li))2)− (aw(li)pw(li) + 2bw(li)(pw(li))2)]),

Kw(li) = {(aw(li), bw(li)) : Ew(li) ≤ aw(li) ≤ Fw(li) and Pw(li) ≤ bw(li) ≤ Qw(li)},

Sw(p−w(li)) := {pw(li) ∈ R+ : (pw(li), p−w(li)) ∈ SISO},

Kw(x−w(li)) = Kw(li)× Sw(p−w(li)). (18)

Step 3. According to Euler’s method for finding a critical point of a projected dynamical
system, studied in [30,31], we have the following algorithm for finding critical points of
PDS (17) at each discrete point li:

xn+1(li) = projKw(x−w(li))

(
xn(li)− λn

∂ f w
α

∂xw (xn(li))
)

, (19)

where {λn, n ∈ N} is a sequence of positive scalars. Since f w
1 (x(li)), f w

2 (x(li)), and
. . . , f w

m (x(li)) are all equal in the dynamic spot electricity market structure of Section 5, we
can find a critical point of PDS (17) for any α = 1, 2, . . . , m. Moreover, the solution to the
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ISO problem is unique for bw(t) > 0; the reason behind this is explained in the further test
case paragraph. Therefore, we take advantage of this and solve our problem for bw(t) > 0.
Keeping in mind the terminologies given in (18), at each li and the uniqueness the solution
to the ISO problem, we obtain

∂ f w
1

∂xw (x(li)) = (−pw(li),−2(pw(li))2, 0). (20)

By using (18) and (20) in (19), we obtain

(aw
n+1(li), bw

n+1(li), pw
n+1(li))

= projKw(li)×Sw(p−w(li))
(aw

n (li) + λn pw
n (li), bw

n (li) + 2λn(pw
n (li))

2, pw
n (li)).

(21)

The uniqueness of pw(li) in (21) yields

(aw
n+1(li), bw

n+1(li)) = projKw(li)
(aw

n (li) + λn pw
n (li), bw

n (li) + 2λn(pw
n (li))

2). (22)

Step 4. Now, by employing algorithm (22) for each discrete point li, i = 1, 2, . . . , n, we
obtain a sequence of critical points of each PDS (17). Then, we interpolate all the critical
points and obtain the approximate curves of the dynamic generalized Nash equilibria.

Test case: To test the above-mentioned algorithmic procedure in practice, we apply it
to a 39-bus network case which is based on the New England system from the technical
report [56] and from Alvarado et al. [57], and Hu and Ralph [23]. In this test system, the
word “bus” stands for nodes such as generators and consumers. Originally the 39-bus
network consists of 46 links and 39 nodes. This system is described as being typical of the
New England electricity market; see Figure 6.1 in [56], and Figure 5 in Hu and Ralph [23],
where 10 nodes represent the generators indicated by the bold dots and 17 nodes stands
for the consumers displayed by the withdrawal arrows, and the remaining 12 nodes are
reference nodes. Since, for simplicity, each node of our dynamic spot electricity market
problem (11) only has a unique generator, we consider the 39-bus network to only have one
generator at each node w = 1, 2, . . . , 39, and these generators play the role of players. This
is indicated by small horizontal and vertical lines; see Figure 2. Moreover, every generator
at each node w plays a non-cooperative game to maximize its own profit in the same way
as mentioned in Section 5.
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Figure 2. The 39-bus test diagram based on the New England system.

Further, let m = 2 and the multiple time parameters t = (tα) = (t1, t2) ∈ Ωs1,s2 ,
where t1 and t2 are two moments of the given spot electricity market. We consider
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Ωs1,s2 = Ω(1,1),(2,2) = [1, 2]× [1, 2], and let Γ(1,1),(2,2) be the piecewise smooth curve that
links (1, 1), (2, 2) in Ω(1,1),(2,2). The constraint set of the ISO problem is given as

KISO = {p ∈ L2(Ωs1,s2 ,R39
+ ) : pw(t) ≥ Dw(t) ∀ w = 1, 2, . . . , 39 and a.e. on Γs1,s2}.

For α = 1, 2 and w = 1, 2, . . . , 39, we consider the following functional:∫
Γs1,s2

zw
α (p(t))dtα =

∫
Γs1,s2

(aw(t)pw(t) + bw(t)(pw(t))2,

aw(t)pw(t) + bw(t)(pw(t))2)(dt1, dt2).

Now, for all p and q ∈ KISO, we have∫
Γs1,s2

zw
α (p(t))dtα −

∫
Γs1,s2

zw
α (q(t))dtα

−
∫

Γs1,s2

〈
∂zw

α

∂p
(q(t)), pw(t)− qw(t)

〉
dtα

=
∫

Γs1,s2

bw(t)(pw(t)− qw(t))2(dt1 + dt2)

> 0, if bw > 0 and pw ̸= qw.

From the above expression, it is clear that if bw > 0, then the functional
∫

Γs1,s2

zw
α (p(t))dtα

is strictly convex on the constraint set KISO for each w, a fact which implies that
39

∑
w=1

∫
Γs1,s2

zw
α (p(t))dtα is also strictly convex for b > 0 on the constraint set KISO. Con-

sequently, the objective function of the ISO problem is strictly convex and, moreover, the
constraint set KISO is convex. Hence, the ISO’s optimization problem (10) has a unique
solution, i.e., SISO is a singleton set. In this way, the dynamic spot electricity market problem
(the generator’s problem) (11) has a single value for p. Moreover, the cost functional Fw

of the DGNEP in the terms of dynamic spot electricity market problem (11) of Section 5 is
given as

Fw(x) =
∫

Γs1,s2

f w
α (xw(t), x−w(t))dtα

=
∫

Γs1,s2

([(Aw(t)pw(t) + Bw(t)(pw(t))2)− (aw(t)pw(t) + 2bw(t)(pw(t))2)],

[(Aw(t)pw(t) + Bw(t)(pw(t))2)− (aw(t)pw(t) + 2bw(t)(pw(t))2)])(dt1, dt2),

and, for any yw = (âw, b̂w, p), we have∫
Γs1,s2

f w
α (xw(t), x−w(t))dtα −

∫
Γs1,s2

f w
α (yw(t), y−w(t))dtα

−
∫

Γs1,s2

〈
∂ fα

∂x
(y(t)), xw(t)− yw(t)

〉
dtα = 0,

which implies that Fw is convex in the argument xw. Now, for solving (11) with the
help of above-mentioned PDS theory, we discretize Ω(1,1),(2,2) by selecting the points

li = (l1
i , l2

i ) =
{(

k
2 , k

2

)
: k ∈ {2, 3, 4}

}
. Regarding the true cost parameters Aw and Bw for

each generator w, it is generally accepted for such quadratic models (Saadat [68]) that Bw

is much smaller than Aw in the units that are commonly employed for electricity market
models. By keeping this fact in mind, we synthesized the cost parameter values given in
(Appendix Table V, Alvarado et al. [57]) in terms of the multi-parameters of time t for the



Mathematics 2024, 12, 2453 21 of 30

bounds of bidding prices aw and bw at each discrete point li, which are given in Table 1.
Moreover, after a simple calculation, we find the unique solution of the ISO problem at
each li as pw(li) = Dw(li), which is also given in Table 1 for each generator. Further,
we chose the sequence λn = 0.1

{
1, 1

2 , 1
2 , 1

3 , 1
3 , 1

3 , . . .
}

and initialized the algorithm (22) at

(aw
0 (li), bw

0 (li)) = (49.5000l1
i l2

i , 0.0004l1
i l2

i ) for each generator w. Using a simple MATLAB
v13 computation, we obtain the convergence of the algorithm (22) to the critical points of
PDS (17) for each li and w, which are given in Table 1, and the interpolation of these points
yields the approximate curves of equilibria x = (xw)39

w=1 = (aw, bw, pw)39
w=1 of DGNEP

for the 39-bus network of the New England system, which are displayed in Figures 3–5.
Moreover, we can also obtain the explicit formula for the curve of equilibria x over the
two-time scale t = (t1, t2) ∈ [1, 2]× [1, 2], which is given in Table 2. In Table 3, we present
the convergence of algorithm (22) to the critical point of PDS (17) for each li and for the
generator w = 1, where the algorithm required 57 iterations and only a negligible amount
of CPU time for its convergence. Since it is not possible to show all the iterative steps
needed for the convergence of each generator, we only mention the number of iterations
for all generators in Table 2.

Figure 3. Curves of equilibria for aw(t).
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Figure 4. Curves of equilibria for bw(t).

Figure 5. Curves of equilibria for pw(t).
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Table 1. Numerical results ((xw(li) = (aw(li), bw(li), pw(li)), for w = 1, 2, . . . , 39).

w Dw(li) = pw(li) [Ew(li), Fw(li)] [Pw(li), Qw(li)] xw(li), li = (1, 1) xw(li), li = (1.5, 1.5) xw(li), li = (2, 2) No. of Iter.

1 0.5000l1
i l2

i [2l1
i + 2l2

i , 50l1
i l2

i ] [0.0002l1
i + 0.0002l2

i , 0.5000(l1
i l2

i )
2] (50, 0.5000, 0.5000) (112.5000, 2.5312, 1.1250) (200, 8, 2) 57

2 0.4900l1
i l2

i [2l1
i + 2l2

i , 50.1144l1
i l2

i ] [0.0002l1
i + 0.0002l2

i , 0.6000(l1
i l2

i )
2] (50.1144, 0.6000, 0.4900) (112.7574, 3.0375, 1.1025) (200.4576, 9.6000, 1.9600) 86

3 0.4800l1
i l2

i [2l1
i + 2l2

i , 50.2290l1
i l2

i ] [0.0002l1
i + 0.0002l2

i , 0.7000(l1
i l2

i )
2] (50.2290, 0.7000, 0.4800) (113.0152, 3.5437, 1.0800) (200.9160, 11.2000, 1.9200) 124

4 0.4700l1
i l2

i [2l1
i + 2l2

i , 50.3534l1
i l2

i ] [0.0002l1
i + 0.0002l2

i , 0.8000(l1
i l2

i )
2] (50.3534, 0.8000, 0.4700) (113.2952, 4.0500, 1.0575) (201.4136, 12.8, 1.8800) 174

5 0.4600l1
i l2

i [2l1
i + 2l2

i , 50.4785l1
i l2

i ] [0.0002l1
i + 0.0002l2

i , 0.9000(l1
i l2

i )
2] (50.4785, 0.9000, 0.4600) (113.5766, 4.5563, 1.0350) (201.9140, 14.4000, 1.8400) 237

6 0.4500l1
i l2

i [2l1
i + 2l2

i , 50.6124l1
i l2

i ] [0.0002l1
i + 0.0002l2

i , (l1
i l2

i )
2] (50.6124, 1, 0.4500) (113.8779, 5.0625, 1.0125) (202.4496, 16, 1.8000) 318

7 0.5100l1
i l2

i [2l1
i + 2l2

i , 50.0425l1
i l2

i ] [0.0002l1
i + 0.0002l2

i , 0.5500(l1
i l2

i )
2] (50.0425, 0.5500, 0.5100) (112.5956, 2.7843, 1.1475) (200.1700, 8.8000, 2.0400) 63

8 0.5200l1
i l2

i [2l1
i + 2l2

i , 50.0389l1
i l2

i ] [0.0002l1
i + 0.0002l2

i , 0.5600(l1
i l2

i )
2] (50.0389, 0.5600, 0.5200) (112.5875, 2.8350, 1.1700) (200.1556, 8.9600, 2.0800) 59

9 0.5300l1
i l2

i [2l1
i + 2l2

i , 50.0396l1
i l2

i ] [0.0002l1
i + 0.0002l2

i , 0.5700(l1
i l2

i )
2] (50.0396, 0.5700, 0.5300) (112.5891, 2.8856, 1.1925) (200.1584, 9.1200, 2.1200) 57

10 0.5400l1
i l2

i [2l1
i + 2l2

i , 50.0400l1
i l2

i ] [0.0002l1
i + 0.0002l2

i , 0.5800(l1
i l2

i )
2] (50.0400, 0.5800, 0.5400) (112.5900, 2.9362, 1.2150) (200.1600, 9.2800, 2.1600) 55

11 0.5500l1
i l2

i [2l1
i + 2l2

i , 50.0300l1
i l2

i ] [0.0002l1
i + 0.0002l2

i , 0.5900(l1
i l2

i )
2] (50.0300, 0.5900, 0.5500) (112.5675, 2.9868, 1.2375) (200.1200, 9.4400, 2.2000) 53

12 0.3900l1
i l2

i [2l1
i + 2l2

i , 50.3474l1
i l2

i ] [0.0002l1
i + 0.0002l2

i , 0.6600(l1
i l2

i )
2] (50.3474, 0.6600, 0.3900) (113.2816, 3.3412, 0.8775) (201.3896, 10.56, 1.5600) 248

13 0.3800l1
i l2

i [2l1
i + 2l2

i , 50.3490l1
i l2

i ] [0.0002l1
i + 0.0002l2

i , 0.6500(l1
i l2

i )
2] (50.3490, 0.6500, 0.3800) (113.2852, 3.2906, 0.8550) (201.3960, 10.4000, 1.5200) 265

14 0.5800l1
i l2

i [2l1
i + 2l2

i , 50.0568l1
i l2

i ] [0.0002l1
i + 0.0002l2

i , 0.6400(l1
i l2

i )
2] (50.0568, 0.6400, 0.5800) (112.6278, 3.2400, 1.3050) (200.2272, 10.24, 2.3200) 51

15 0.5700l1
i l2

i [2l1
i + 2l2

i , 50.0529l1
i l2

i ] [0.0002l1
i + 0.0002l2

i , 0.6300(l1
i l2

i )
2] (50.0529, 0.6300, 0.5700) (112.6190, 3.1893, 1.2825) (200.2116, 10.0800, 2.2800) 52

16 0.5600l1
i l2

i [2l1
i + 2l2

i , 50.0539l1
i l2

i ] [0.0002l1
i + 0.0002l2

i , 0.6200(l1
i l2

i )
2] (50.0539, 0.6200, 0.5600) (112.6213, 3.1387, 1.2600) (200.2156, 9.9200, 2.2400) 54

17 0.5900l1
i l2

i [2l1
i + 2l2

i , 50.0179l1
i l2

i ] [0.0002l1
i + 0.0002l2

i , 0.6100(l1
i l2

i )
2] (50.0179, 0.6100, 0.5900) (112.5403, 3.0881, 1.3275) (200.0716, 9.7600, 2.3600) 43

18 0.6000l1
i l2

i [2l1
i + 2l2

i , 50.1436l1
i l2

i ] [0.0002l1
i + 0.0002l2

i , 07700(l1
i l2

i )
2] (50.1436, 0.7700, 0.6000) (112.8310, 3.8981, 1.3500) (200.5744, 12.3200, 2.4000) 63

19 0.6100l1
i l2

i [2l1
i + 2l2

i , 50.1266l1
i l2

i ] [0.0002l1
i + 0.0002l2

i , 0.7600(l1
i l2

i )
2] (50.1266, 0.7600, 0.6100) (112.7849, 3.8475, 1.3725) (200.5064, 12.1600, 2.4400) 58

20 0.6200l1
i l2

i [2l1
i + 2l2

i , 50.1076l1
i l2

i ] [0.0002l1
i + 0.0002l2

i , 0.7500(l1
i l2

i )
2] (50.1076, 0.7500, 0.6200) (112.7421, 3.7968, 1.3950) (200.4304, 12, 2.4800) 53

21 0.5550l1
i l2

i [2l1
i + 2l2

i , 50.1703l1
i l2

i ] [0.0002l1
i + 0.0002l2

i , 0.7400(l1
i l1

i )
2] (50.1703, 0.7400, 0.5550) (112.8831, 3.7462, 1.2487) (200.6812, 11.8400, 2.2200) 80

22 0.5540l1
i l2

i [2l1
i + 2l2

i , 50.1602l1
i l2

i ] [0.0002l1
i + 0.0002l2

i , 0.7300(l1
i l2

i )
2] (50.1602, 0.7300, 0.5540) (112.8604, 3.6956, 1.2465) (200.6408, 11.6800, 2.2160) 78
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Table 1. Cont.

w Dw(li) = pw(li) [Ew(li), Fw(li)] [Pw(li), Qw(li)] xw(li), li = (1, 1) xw(li), li = (1.5, 1.5) xw(li), li = (2, 2) No. of Iter.

23 0.4440l1
i l2

i [2l1
i + 2l2

i , 50.3109l1
i l2

i ] [0.0002l1
i + 0.0002l2

i , 0.7200(l1
i l2

i )
2] (50.3109, 0.7200, 0.4440) (113.1995, 3.6450, 0.9990) (201.2436, 11.5200, 1.7760) 177

24 0.4410l1
i l2

i [2l1
i + 2l2

i , 50.3077l1
i l2

i ] [0.0002l1
i + 0.0002l2

i , 0.7100(l1
i l2

i )
2] (50.3077, 0.7100, 0.4410) (113.1923, 3.5944, 0.9922) (201.2308, 11.36, 1.7640) 177

25 0.4420l1
i l2

i [2l1
i + 2l2

i , 50.4955l1
i l2

i ] [0.0002l1
i + 0.0002l2

i , 0.8800(l1
i l2

i )
2] (50.4955, 0.8800, 0.4420) (113.6148, 4.4550, 0.9945) (201.9818, 14.0800, 1.7680) 265

26 0.4430l1
i l2

i [2l1
i + 2l2

i , 50.4823l1
i l2

i ] [0.0002l1
i + 0.0002l2

i , 0.8700(l1
i l2

i )
2] (50.4823, 0.8700, 0.4430) (113.5852, 4.4044, 0.9967) (201.9292, 13.9200, 1.7720) 257

27 0.6660l1
i l2

i [2l1
i + 2l2

i , 50.1460l1
i l2

i ] [0.0002l1
i + 0.0002l2

i , 0.8600(l1
i l2

i )
2] (50.1460, 0.8600, 0.6660) (112.8285, 4.3537, 1.4985) (200.5840, 13.7600, 2.6640) 52

28 0.6610l1
i l2

i [2l1
i + 2l2

i , 50.1478l1
i l2

i ] [0.0002l1
i + 0.0002l2

i , 0.8500(l1
i l2

i )
2] (50.1478, 0.8500, 0.6610) (112.8325, 4.3031, 1.4872) (200.5912, 13.6000, 2.6440) 54

29 0.6620l1
i l2

i [2l1
i + 2l2

i + 50.1355l1
i l2

i ] [0.0002l1
i + 0.0002l2

i , 0.8400(l1
i l2

i )
2] (50.1355, 0.8400, 0.6620) (112.8049, 4.2525, 1.4895) (200.5420, 13.4400, 2.6480) 51

30 0.7770l1
i l2

i [2l1
i + 2l2

i , 50.0439l1
i l2

i ] [0.0002l1
i + 0.0002l2

i , 0.8300(l1
i l2

i )
2] (50.0439, 0.8300, 0.7770) (112.5988, 4.2019, 1.7482) (200.1756, 13.2800, 3.1080) 28

31 0.7710l1
i l2

i [2l1
i + 2l2

i , 50.0397l1
i l2

i ] [0.0002l1
i + 0.0002l2

i , 0.8200(l1
i l2

i )
2] (50.0397, 0.8200, 0.7710) (112.5893, 4.1513, 1.7347) (200.1588, 13.1200, 3.0840) 28

32 0.7720l1
i l2

i [2l1
i + 2l2

i , 50.0294l1
i l2

i ] [0.0002l1
i + 0.0002l2

i , 0.8100(l1
i l2

i )
2] (50.0294, 0.8100, 0.7720) (112.5661, 4.1006, 1.7370) (200.1176, 12.9600, 3.0880) 28

33 0.3330l1
i l2

i [2l1
i + 2l2

i , 50.2659l1
i l2

i ] [0.0002l1
i + 0.0002l2

i , 0.5100(l1
i l2

i )
2] (50.2659, 0.5100, 0.3330) (113.0983, 2.5819, 1.0800) (201.0636, 8.1600, 1.3320) 276

34 0.4400l1
i l2

i [2l1
i + 2l2

i , 50.0909l1
i l2

i ] [0.0002l1
i + 0.0002l2

i , 0.5200(l1
i l2

i )
2] (50.0909, 0.5200, 0.4400) (112.7045, 2.6325, 0.9900) (200.3636, 8.3200, 1.7600) 98

35 0.5500l1
i l2

i [2l1
i + 2l2

i , 49.9365l1
i l2

i ] [0.0002l1
i + 0.0002l2

i , 0.2610(l1
i l2

i )
2] (49.9365, 0.2610, 0.2990) (112.3571, 1.3213, 1.0800) (199.7460, 4.1760, 2.2000) 114

36 0.6600l1
i l2

i [2l1
i + 2l2

i , 50.2315l1
i l2

i ] [0.0002l1
i + 0.0002l2

i , .9600(l1
i l2

i )
2] (50.2315, 0.9600, 0.6600) (113.0209, 4.8600, 1.4850) (200.926, 15.3600, 2.6400) 67

37 0.7700l1
i l2

i [2l1
i + 2l2

i , 50.1502l1
i l2

i ] [0.0002l1
i + 0.0002l2

i , 0.9900(l1
i l2

i )
2] (50.1502, 0.9900, 0.7700) (112.8380, 5.0119, 1.7325) (200.6008, 15.8400, 3.0800) 40

38 0.4990l1
i l2

i [2l1
i + 2l2

i , 50.4830l1
i l2

i ] [0.0002l1
i + 0.0002l2

i , 0.9800(l1
i l2

i )
2] (50.4830, 0.9800, 0.4990) (113.5867, 4.9612, 1.1227) (201.9320, 15.6800, 1.9960) 204

39 0.3990l1
i l2

i [2l1
i + 2l2

i , 50.2860l1
i l2

i ] [0.0002l1
i + 0.0002l2

i , 0.6277(l1
i l2

i )
2] (50.2860, 0.6277, 0.3990) (113.1435, 3.1777, 0.8977) (201.1440, 10.0432, 1.5960) 205
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Table 2. Curve of equilibria x = (xw)39
w=1, for t = (t1, t2) ∈ [1, 2]× [1, 2].

w xw(t) = (aw(t), bw(t), pw(t))

1 (50t1t2, 0.5000(ttt2)2, 0.5000t1t2)

2 (50.1144t1t2, 0.6000(ttt2)2, 0.49000t1t2)

3 (50.2290t1t2, 0.7000(ttt2)2, 0.48000t1t2)

4 (50.3534t1t2, 0.8000(ttt2)2, 0.47000t1t2)

5 (50.4785t1t2, 0.9000(ttt2)2, 0.46000t1t2)

6 (50.6124t1t2, (ttt2)2, 0.45000t1t2)

7 (50.0425t1t2, 0.5500(ttt2)2, 0.5100t1t2)

8 (50.0389t1t2, 0.5600(ttt2)2, 0.5200t1t2)

9 (50.0396t1t2, 0.5700(ttt2)2, 0.5300t1t2)

10 (50.0400t1t2, 0.5800(ttt2)2, 0.5400t1t2)

11 (50.0300t1t2, 0.5900(ttt2)2, 0.5500t1t2)

12 (50.3474t1t2, 0.6600(ttt2)2, 0.39000t1t2)

13 (50.3490t1t2, 0.6500(ttt2)2, 0.3800t1t2)

14 (50.0568t1t2, 0.6400(ttt2)2, 0.5800t1t2)

15 (50.0529t1t2, 0.6300(ttt2)2, 0.5700t1t2)

16 (50.0539t1t2, 0.6200(ttt2)2, 0.5600t1t2)

17 (50.0179t1t2, 0.6100(ttt2)2, 0.5900t1t2)

18 (50.1436t1t2, 0.7700(ttt2)2, 0.6000t1t2)

19 (50.1266t1t2, 0.7600(ttt2)2, 0.6100t1t2)

20 (50.1076t1t2, 0.7500(ttt2)2, 0.6200t1t2)

21 (50.1703t1t2, 0.7400(ttt2)2, 0.5500t1t2)

22 (50.1602t1t2, 0.7300(ttt2)2, 0.5540t1t2)

23 (50.3109t1t2, 0.7200(ttt2)2, 0.4440t1t2)

24 (50.3077t1t2, 0.7100(ttt2)2, 0.4410t1t2)

25 (50.4955t1t2, 0.8800(ttt2)2, 0.4420t1t2)

26 (50.4823t1t2, 0.8700(ttt2)2, 0.4430t1t2)

27 (50.1460t1t2, 0.8600(ttt2)2, 0.6660t1t2)

28 (50.1478t1t2, 0.8500(ttt2)2, 0.6610t1t2)

29 (50.1355t1t2, 0.8400(ttt2)2, 0.6620t1t2)

30 (50.0439t1t2, 0.8300(ttt2)2, 0.7770t1t2)

31 (50.0397t1t2, 0.8200(ttt2)2, 0.7710t1t2)

32 (50.0294t1t2, 0.8100(ttt2)2, 0.7720t1t2)

33 (50.2659t1t2, 0.5100(ttt2)2, 0.3330t1t2)

34 (50.0909t1t2, 0.5200(ttt2)2, 0.4400t1t2)

35 (49.9365t1t2, 0.2610(ttt2)2, 0.5500t1t2)

36 (50.2315t1t2, 0.9600(ttt2)2, 0.6600t1t2)

37 (50.1502t1t2, 0.9900(ttt2)2, 0.7700t1t2)

38 (50.4830t1t2, 0.9800(ttt2)2, 0.4990t1t2)

39 (50.2860t1t2, 0.6277(ttt2)2, 0.3990t1t2)
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Table 3. Numerical results ((xw(li) = (aw(li), bw(li), pw(li)), for w = 1).

n (Iterations) xw(li), li = (1, 1) xw(li), li = (1.5, 1.5) xw(li), li = (2, 2)

1 (49.5500, 0.0504 , 0.5000) (111.4825, 0.2537, 1.125) (198.2000, 0.8008, 2)

2 (49.5750, 0.0754, 0.5000) (111.5388, 0.3802, 1.125) (198.3000, 1.2008, 2)

3 (4.9600, 0.1004 , 0.5000) (111.5950, 0.5068, 1.125) (198.4000, 1.6008, 2)

4 (49.6166, 0.1170, 0.5000) (111.6325, 0.5912, 1.125) (198.4667, 1.8674, 2)

5 (49.6333, 0.1337, 0.5000) (111.6700, 0.6756, 1.125) (198.5333, 2.1341, 2)

6 (49.6500, 0.1504 , 0.5000) (111.7075, 0.7599, 1.125) (198.6000, 2.4008, 2)

7 (49.6625, 0.1629, 0.5000) (111.7356, 0.8232, 1.125) (198.6500, 2.6008, 2)

8 (4.9675, 0.1754, 0.5000) (111.7638, 0.8865, 1.125) (198.7000, 2.8008, 2)

9 (49.6875, 0.1879, 0.5000) (111.7919, 0.9498, 1.125) (198.7500, 3.0008, 2)

10 (49.7000, 0.2004, 0.5000) (111.8200, 0.1013, 1.125) (198.8000, 3.2008, 2)

11 (49.7100, 0.2104, 0.5000) (111.8425, 0.1063, 1.125) (198.8400, 3.3608, 2)

12 (49.7200, 0.2204, 0.5000) (111.8650, 0.1114, 1.125) (198.8800, 3.5208, 2)

13 (49.7300, 0.2304, 0.5000) (111.8875, 0.1164, 1.125) (198.9200, 3.6808, 2)

14 (49.7400, 0.2404, 0.5000) (111.9100, 0.1215, 1.125) (198.9600, 3.8408, 2)

15 (49.7500, 0.2504, 0.5000) (111.9325, 0.1266, 1.125) (199.0000, 4.0008, 2)

16 (49.7583, 0.2587, 0.5000) (111.9512, 0.1308, 1.125) (199.0333, 4.1341, 2)

17 (49.7666, 0.2670, 0.5000) (111.9700, 0.1350, 1.125) (199.0667, 4.2674, 2)

18 (49.7750, 0.2754, 0.5000) (111.9887, 0.1392, 1.125) (199.1000, 4.4008, 2)

19 (49.7833, 0.2837, 0.5000) (112.0075, 0.1434, 1.125) (199.1333, 4.5341, 2)

20 (49.7916, 0.2920, 0.5000) (112.0262, 0.1477, 1.125) (199.1667, 4.6674, 2)

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

50 (49.9750, 0.4754, 0.5000) (112.4387, 2.4052, 1.125) (199.9000, 7.6008, 2)

51 (49.9800, 0.4804, 0.5000) (112.4500, 2.4306, 1.125) (199.9200, 7.6808, 2)

52 (49.9850, 0.4854, 0.5000) (112.4612, 2.4559, 1.125) (199.9400, 7.7608, 2)

53 (49.9900, 0.4904, 0.5000) (112.4725, 2.4812, 1.125) (199.9600, 7.8408, 2)

54 (49.9950, 0.4954, 0.5000) (112.4837, 2.5065, 1.125) (199.9800, 7.9208, 2)

55 (50, 0.5000, 0.5000) (112.4950, 2.5312, 1.125) (200, 8, 2)

56 (50, 0.5000, 0.5000) (112.5000, 2.5312, 1.125) (200, 8, 2)

57 (50, 0.5000, 0.5000) (112.5000, 2.5312, 1.125) (200, 8, 2)

8. A Comparative Study

This section deals with the following question: “why do we need to consider multiple
parameters of evolution instead of single parameter of evolution?”. In order to answer this
question, we are going to compare our DGNEP with the single time-dependent general-
ized Nash equilibrium problem by solving the dynamic spot electricity market problem
(11) and the dynamic spot electricity market problem of Aussel et al. [14] in terms of a
simple numerical illustration. In the test case, we perform the numerical experiments for
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39 generators. However, for the sake of simplicity, in this section we perform the numerical
experiments only for three generators.

Case 1. We use the terminologies of Section 5 for three generators, and define the two-time
parameters of evolution t = (t1, t2) ∈ Ωs1,s2 and Γs1,s2 as in the test case of Section 7. We
consider the arguments of Section 5 for each w = 1, 2, 3 as follows:

Ew(t) =
wt1 + wt2

2
, Fw(t) = wt1 + wt2, Pw(t) =

0.02wt1 + 0.02wt2

2
,

Qw(t) = 0.02wt1 + 0.02wt2, Aw(t) =
wt1 + wt2

3
, Bw(t) =

0.02wt1 + 0.02wt2

3
,

Dw(t) = 3wt1 + 3wt2.

We have already observed in Section 7 that SISO is a singleton if bw > 0. For simplicity
of the calculations, in this section, we will also perform the numerical experiments for
bw > 0. The dynamic spot electricity market problem is that each generator aims to
maximize its profit by solving (11) in the sense of DGNEP. It is not difficult to prove
that, for generator w = 1, 2, 3, (a1(t), b1(t), p1(t)) = (t1 + t2, 0.02t1 + 0.02t2, 3t1 + 3t2),
(a2(t), b2(t), p2(t)) = (2t1 + 2t2, 0.04t1 + 0.04t2, 6t1 + 6t2) and (a3(t), b3(t), p3(t)) = (3t1 +
3t2, 0.06t1 + 0.06t2, 9t1 + 9t2), respectively, are the equilibria of (11). Now, for calculating
the maximum profit of each generator, we consider the piecewise smooth curve Γ(1,1)(2,2)

as a straight line connecting the diagonals points (1, 1) and (2, 2), i.e., t1 = t2 = s (say) for
1 ≤ s ≤ 2. For A1(t) = t1+t2

3 , B1(t) = 0.02t1+0.02t2

3 , the maximum profit of the generator
w = 1 can be calculated as follows:∫

Γ(1,1),(2,2)

[(a1(t)p1(t) + 2b1(t)(p1(t))2)− (A1(t)p1(t) + B1(t)(p1(t))2)](dt1 + dt2)

=
∫ 2

1
(16s2 + 4.8s3)ds

= 55.333 . . . .

Similarly, for the generators w = 2, 3, their maximum profit can be calculated and the
relevant values are 293.333 . . . and 822, respectively.

Case 2. We assume the multiple parameters of evolution t reduce to a single parameter of
evolution, i.e., t1 = t ∈ [1, 2], t2 = 0, and that Ω(1,1),(2,2) is simply a closed interval [1, 2].
Now, our formulated dynamic spot electricity market problem (11) becomes the dynamic
spot electricity market problem of [14]. We have the corresponding arguments of Case 1,
for each generator w = 1, 2, 3, as follows:

Ew(t) =
wt
2

, Fw(t) = wt, Pw(t) = 0.01wt, Qw(t) = 0.02wt, Dw(t) = 3wt,

Aw(t) =
wt
3

, Bw(t) =
0.02wt

3
.

It is not difficult to calculate that for the generators w = 1, 2, 3, (a1(t), b1(t), p1(t)) =
(t, 0.02t, 3t), (a2(t), b2(t), p2(t)) = (2t, 0.04t, 6t) and (a3(t), b3(t), p3(t)) = (3t, 0.06t, 9t),
respectively, are the equilibria of the dynamic spot electricity market problem of [14]. For
A1(t) = t

3 , B1(t) = 0.02t
3 , the maximum profit of the generator w = 1 can be calculated

as follows: ∫ 2

1
[(a1(t)p1(t) + 2b1(t)(p1(t))2)− (A1(t)p1(t) + B1(t)(p1(t))2)]dt

=
∫ 2

1
(2t2 + 0.3t3)dt

= 5.791.
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Similarly, for the generators w = 2, 3, their maximum profit can be calculated and the
relevant values are 27.666 . . . and 72.375, respectively.

This shows conclusively that the maximum profit value of each generator in the case of
two-time parameters of evolution is higher than the corresponding value in the single time
parameter of evolution case. This brings out the necessity and the advantage of formulating
our DGNEP.

9. Conclusions and Further Developments

This paper is concerned with the areas of non-cooperative games and electricity
market problems. We formulated a dynamic generalized Nash equilibrium problem and a
dynamic quasi-variational inequality problem. We proved an equivalence between these
two problems, as well as the existence of equilibria. Furthermore, as an application of our
dynamic generalized Nash equilibrium problem, we reformulated a spot electricity market
problem in the terms of such a problem. Moreover, we also presented a numerical method
for solving the reformulated dynamic spot electricity market problem by using the theory
of projected dynamical systems, and numerically solved a 39-bus network which is based
on the New England system. We also presented a numerical experiment comparing the
resulting payoffs of the multiple parameters and the single parameter cases.

The model developed in this paper provides a foundation for future studies that
attempt to test the numerical comparison between the resulting payoffs/cost of GNEP
in single and multiple time settings on the bigger and real-world data level. Our future
research will also include the extension of the framework developed in the present paper
to the supply chain network problems studied by Nagureny’s research group [12,21,28,31].
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