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Abstract: Research on recommendation methods using multimodal graph information presents
a significant challenge within the realm of information services. Prior studies in this area have
lacked precision in the purification and denoising of multimodal information and have insufficiently
explored fusion methods. We introduce a multimodal graph recommendation approach leveraging
cross-attention fusion. This model enhances and purifies multimodal information by embedding the
IDs of items and their corresponding interactive users, thereby optimizing the utilization of such
information. To facilitate better integration, we propose a cross-attention mechanism-based multi-
modal information fusion method, which effectively processes and merges related and differential
information across modalities. Experimental results on three public datasets indicated that our model
performed exceptionally well, demonstrating its efficacy in leveraging multimodal information.

Keywords: multimodal graph; recommendation method; multimodal information purification;
cross-attention mechanism; information fusion

MSC: 68T05

1. Introduction

As the storage and retrieval of multimodal information becomes increasingly easy and
standardized, and with the continuous improvement in computational power, multimodal
graph networks have emerged as a popular research direction in the field of informa-
tion recommendation. Information recommendation tasks aim to predict information or
products that users might be interested in by analyzing their historical behavior, prefer-
ences, and contextual data. This is crucial for various online service platforms, including
e-commerce, news aggregation, and social media. Although traditional recommendation
systems, such as collaborative filtering and content-based methods, have shown promising
results, they primarily rely on explicit user feedback (e.g., ratings) or text content analysis,
often neglecting multimodal information within user interactions, such as images, audio,
and video content.

Despite the advancements in traditional recommendation systems like collaborative
filtering and content-based methods, these approaches demonstrate limitations in effec-
tively incorporating multimodal information within user interactions. For instance, while
collaborative filtering relies heavily on explicit user feedback (e.g., ratings), it often fails to
capture the nuances inherent in user-generated content such as images and videos. This
was noted in research by Cinar et al., which highlighted the inadequacies of user feedback
mechanisms [1]. Furthermore, traditional systems tend to overlook how multimodal signals
can enhance user personalization, as discussed in the research by Lei et al. [2].

Recently, with the rapid advancement of machine learning and deep learning tech-
nologies, researchers have started exploring how to leverage the rich multimodal data in
user-generated content to improve recommendation system performance. For instance,
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by integrating convolutional neural networks for image processing, recurrent neural net-
works for sequential text processing, and self-attention mechanisms to better capture users’
long-term and short-term interests. However, effectively fusing and utilizing multimodal
information remains a challenging problem, involving complex tasks such as feature extrac-
tion, representation learning, and cross-modal semantic mapping of different data types.

Multimodal information contains a significant amount of noise that is irrelevant to
user interests, such as background environments in images and irrelevant expressions in
text. Current multimodal recommendation methods for data denoising and purification
often rely on cross-domain self-supervised learning or generative adversarial networks to
capture correlations between different modalities, exemplified by the MMBT model [3].
However, these methods tend to be highly dependent on large datasets and require substan-
tial computational resources. In the realm of multimodal information fusion, the prevailing
approaches typically employ simple linear parallel or series combinations to fuse differ-
ent modalities with uniform or predefined weights [4-6]. This method has significant
limitations, as it does not consider the diverse preferences of users, where individuals
may prioritize different modalities based on personal preferences. Research documented
in Hu et al. emphasized the necessity for adaptive fusion strategies to accommodate
user-specific inclinations [7].

To address the highlighted issues, we present a multimodal graph recommendation
model based on cross-attention fusion. Initially, we utilize a multimodal information
purification and denoising method, enhanced by item and user interaction ID features,
to purify and augment the image and text features corresponding to the items. Subsequently,
these purified features undergo further processing and fusion through a multimodal feature
fusion module employing a cross-attention mechanism.

We conducted experiments on three publicly available benchmark datasets. The re-
sults of our experiments indicated that our model surpassed the performance of existing
baseline methods.

In summary, the contributions of this paper are as follows:

¢ Weintroduce a multimodal information purification and denoising approach based
on item and user interaction ID features, aimed at exploring more effective ways to
enhance multimodal information.

*  We utilize a multimodal feature fusion module based on a cross-attention mech-
anism, allowing for more comprehensive and efficient processing and fusion of
multimodal information.

*  Our model’s performance was compared against baseline methods in the field of
multimodal recommendation on three public benchmark datasets, demonstrating
superior performance over existing baseline models.

2. Related Work

In this section, we briefly review three types of research relevant to our work, namely
multimodal graph recommendation, multimodal information denoising, and cross-attention
mechanisms.

2.1. Multimodal Graph Recommendation

In recent years, the advancement of data acquisition technologies and the enhancement
of computational power have led to an evolution from simple data fusion techniques to
complex deep learning models capable of processing and analyzing rich multimodal data.
Subsequently, we will delve into the latest research achievements in the two primary
methods of multimodal graph representation learning: multimodal graph recommendation
based on graph embeddings, and multimodal graph recommendation based on graph
neural networks.

Traditional graph recommendation methods based on graph embeddings encom-
pass various approaches, such as graph factorization, graph distribution representation,
and graph neural embeddings. With the widespread use of multimodal data, many re-
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searchers have integrated these multimodal information types into graph representation
features through various feature extraction methods and aggregation techniques. He et al.
proposed an extended factorization model, VBPR [8], which significantly improved the
accuracy of personalized ranking methods by learning an additional layer to reveal the
visual dimensions that best explain the changes in user feedback using visual features
extracted from product images via deep networks. Tang et al. proposed the AMR model [9],
which further improved VBPR by enhancing the robustness of the model through adversar-
ial learning.

In the context of multimodal graph data, graph neural networks can integrate these
different modalities of information to learn richer representations by performing feature
fusion and propagation on the nodes and edges within the graph. Multimodal graph rec-
ommendation methods based on graph neural networks are generally classified according
to the fusion methods of different modalities of information, such as direct fusion, hetero-
geneous graph fusion, and homogeneous graph fusion. Liu et al. proposed the PMGT [10]
strategy, which uses two objectives, graph structure reconstruction and masked node fea-
ture reconstruction, to pre-train and effectively utilize multimodal information, thereby
improving the accuracy of recommendation systems and click-through rate prediction.
Sun et al. proposed the MKGAT [11] model, which processes information in multimodal
knowledge graphs through multimodal graph attention techniques and utilizes aggregated
embedding representations for recommendation, successfully enhancing the quality of
feature extraction.

Although the aforementioned methods have successfully applied multimodal infor-
mation in the recommendation field, there is still room for improvement in aspects such as
the denoising and fusion of this information. Due to the differences in feature distribution
among different modalities, we proposed a new multimodal information denoising and
fusion module and achieved promising performance results.

2.2. Multimodal Information Denoising

Given the significant noise present in real-world datasets, constructing a high-quality
multimodal dataset is fraught with challenges and unresolved issues. This noise can be
broadly categorized into two types: single-modal noise, which stems from errors in acquisi-
tion devices, environmental background influences, or compression during transmission;
and cross-modal semantic noise, which arises from poor alignment of distributions during
the fusion of different modalities.

For the first category of noise, numerous mature and effective methods have been
developed. One straightforward approach is to denoise multimodal data using mean
fusion. Rajalingam et al. [12] decomposed images into low-frequency and high-frequency
components, applying mean fusion to the low-frequency parts and full fusion to the
high-frequency parts to reduce noise. However, since the degree of noise varies across
different modalities, weighted averaging methods have also been introduced. Xue et al. [13]
proposed a gating function that adaptively fuses multimodal data features, effectively by-
passing certain noisy instance paths and mitigating the impact of noise. Another approach
is joint optimization denoising, which addresses specific optimization problems using
data from different modalities. Wang et al. [14] achieved excellent results by using varia-
tional models in the pixel and wavelet domains to fuse and denoise multi-focus images.
Quan et al. [15] proposed the relative total variation structure analysis method (RTVSA),
which integrates various features obtained from HIS and LiDAR data, effectively mitigating
the impact of noise on the model.

Most multimodal tasks require training with aligned data across modalities; however,
real-world data are generally weakly aligned or unaligned. Such training data can be
viewed as cross-modal noise, a type of semantic-level noise. Some researchers filtered
noise from a data perspective. Radenovic et al. [16] proposed the CAT filtering strategy;,
reducing the impact of cross-modal noise by extracting highly important data samples.
Other researchers focused on model correction to identify noise. Li et al. [17] proposed
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the BLIP framework, which uses a subtitler to generate subtitles and a filter to remove
noise, effectively enhancing the data quality of training subtitle samples and excelling in
downstream tasks. Noise regularization is another method used to reduce the impact of
cross-modal noise. Huang et al. [18] proposed a pre-training framework, NLIP, which
employs noise-adaptive regularization to improve and enhance weakly aligned cross-
modal data.

In summary, the research on denoising multimodal information is relatively mature.
However, in the recommendation domain, methods using ID embeddings of users and
items for denoising still need exploration. Constraining multimodal information through
attribute embedding not only effectively denoises but also focuses attention on parts with
stronger user preferences, enhancing data features.

2.3. Cross-Attention-Based Fusion Methods

Cross-attention is a widely-utilized method in multimodal models for integrating in-
formation from different modalities [19-21]. It has found extensive application in computer
vision and natural language processing and has demonstrated its efficacy in information
fusion within the transformer architecture.

In the domain of image vision, numerous researchers have employed cross-attention
to merge various types of image features. Kim et al. [22] utilized a cross-attention module to
adaptively fuse local features with global dependencies, effectively preserving the unique
characteristics of each modality. Tang et al. [23] introduced an image registration fusion
method, SuperFusion, which leverages a cross-attention mechanism to blend complemen-
tary information from source images, thereby avoiding artifacts caused by misalignment
of different image types. Xie et al. [24] enhanced the complementary representation of
semantic information through a cross-attention approach and mitigated the interference
noise caused by overlapping edges of aligned images.

Contemporary fusion methods effectively integrate the transformer architecture with
cross-attention mechanisms to enhance model representation. Ma et al. [25] employed self-
attention to fuse intra-domain information and cross-attention to combine inter-domain in-
formation, thereby fully integrating complementary information across domains.
Jha et al. [26] proposed a global attention fusion network (GAF-Net), which amalgamates
self-attention and cross-attention modules, preserving their distinct characteristics and
demonstrating the superiority of this approach.

Despite the significant advancements of the cross-attention mechanism in these tasks,
the exploitation of differential and common information between modalities remains
underexplored. Consequently, this paper designed a cross-attention module to fuse cross-
domain differential and common information.

3. Formulation of CAmgr

We propose a multimodal graph recommendation model based on cross-attention
fusion. Figure 1 illustrates an overview of the model. Initially, we extract features from
images using VGG-16 and from text using Sentence2Vec. Subsequently, we enhance and
refine the multimodal information leveraging item and user ID features. Next, we construct
semantic edges between items of different modalities and use a graph neural network
encoder to enhance the structural information of these modal embeddings along with
user-item ID embeddings. The modal features and ID features are then entered into
the multimodal feature fusion module, resulting in the final fused representation. This
representation is ultimately used in downstream information recommendation tasks via a
prediction layer.
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Figure 1. (I) The overall framework. (II) The multimodal information refinement method enhanced
by item and interaction user ID features. (III) The multimodal feature fusion module based on
cross-attention mechanism.

3.1. Problem Definition

Initially, let U denote the set of all users and I denote the set of all items. For any
user u# € U and any item i € I, their ID embeddings are denoted as H,, € R**IU| and
H; € R, where d is the embedding dimension. We then introduce the concept of feature
embeddings for different modalities, focusing on image and text modalities in this study.
For each item, the image and text modality features are represented as H; , € R¥% >l and
H;; € R4*! with dp and d; being the respective embedding dimensions.

Subsequently, we define the historical interaction matrix A € RIU/*I| between users
and items, where a,,,, € {0,1} indicates whether user u,, has interacted with item i,,. If such
an interaction has occurred, a,,;, = 1; otherwise, a,;; = 0. The aim of the recommendation
task is to predict the preference scores 7,,; for various items and generate a recommendation
list for each user that maximizes their satisfaction.

3.2. Multimodal Information Refinement Method Enhanced by Item and Interaction User
ID Features

Although modality information contains many meaningful item feature details, it also
includes a significant amount of useless noise that can mislead the model. To enhance the
purification of this information and reduce its negative impact on the model, we propose a
multi-modal information refinement method based on item and interaction user ID features.
Specifically, we first encode the image and text information of items using VGG-16 and
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Sentence2Vec models, respectively, to obtain H; , and H; ;. Then, we input these encodings
into a linear layer for alignment, resulting in Hl/ p and H; b

H;, = Wi ,H;, + by, H;; = Wi H;j; + by 1)

where Wy, € RY*dp, Wi, € R4%d: and b1y b1 € R? are trainable weight matrices
and biases.

Next, we process the ID embeddings of items and the users who have interacted
with them. For each item i, we derive a corresponding user interaction embedding matrix
u; € R through a historical interaction matrix:

u,=H,A 2)

Every column of U; represents the sum of the embedding vectors of all users who
interacted with item i. To normalize, we average each column by the number of users who
interacted with item i. Let B € R'*/Ul be an all-ones matrix, then we obtain the user count
for each item N,, € R/l

N, =BA 3)

Thus, we can compute the average user embedding matrix for each item U; € R?*I1l:

. 1
u, = 4)
nq ‘ uzq

wheren; € Ny, uy €Uy, z=1,...,d,9=1,..., 1.
Finally, utilizing the combined effect of item and historical interaction user ID embed-
dings, we refine and enhance the image and text modality information:

H;, = (H;+ ;) © 0(Wy, H; , + b)) (5)

H, = (H;+ ;) © 0(Wa,H;, + bay) ©6)

Here, H; p and H; , are the refined image and text embeddings; ® denotes the Hadamard
product, indicating element-wise multiplication of two matrices; o is the Sigmoid activation
function; and W, ;,, Wa 4, b, and by ; are trainable weight matrices and biases.

3.3. Multimodal Structure Enhanced Encoder

From previous research [27-29], it is evident that incorporating historical interactions
between users and items, as well as semantic relatedness between items, can significantly
enhance the performance of recommendation models. Therefore, we propose to further
enhance the structural information in extracted features using a multi-modal structure-
enhanced encoder.

To extract interaction information between users and items, we employ the GAT
method to directly extract ID embedding features from the interaction graph:

Hy = 0(Y i prmy @niWH ) (7)

In this bipartite graph, both users and items are represented as nodes. Hence, we use
H!, to denote the embedding representation of node 1 in layer I. Here, /(1) represents the
set of neighboring nodes, ocil ; is the attention coefficient between a node and its neighbors,
W! is the weight matrix for layer I, and ¢ is the ReLU activation function. The attention
coefficients are computed as follows, and enhance the image and text modality information:

exp (LeakyReLU (wT [WlHifl ‘Wle‘Fl } ) )

- LjcN (n) EXP (LeakyReLl,I (wT [wl H 1 ’Wl H]H ] ) )

1

&y

(8)
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The ID embeddings of items and users exchange information across layers, resulting
in the final embedding representation H,, after [ layers of GAT:

1 L 1
Hi = g Laco ©)

To extract multi-modal semantic structural information, we first construct a multi-
modal semantic graph based on the similarity of item embeddings. We calculate the
similarity matrix S, using cosine similarity:

L () w0
f8 1]

where * represents either the image modality p or text modality f, and s}/ o Tepresents the
cosine similarity between the embeddings of item f and item g.

We then perform a top-K operation, retaining only the top-K similarity values and
setting the rest to zero, thus obtaining the top-K similarity matrix S, :

g = Jsiesieetor=K([sp]) e an
18 0,otherwise

Here, s}* o Tepresents the retained semantic edge weights. Next, we apply Laplacian
normalization to the similarity matrix:

S =D;'s. (12)

where D, is the diagonal matrix of S.. We use a single-layer graph convolutional network
to avoid introducing excessive multi-modal noise, yielding the final multi-modal item
information embedding representation H; .

H;, =S.H,, (13)

Finally, we aggregate and normalize the multi-modal item embeddings to obtain the
user modality representation H,, .:

. 1 .
by = N i n(n) i (14)

By concatenating the user and item modality representations along the row dimension,
we obtain H, = [H,.|H;.] € R>(UHID,

3.4. The Multimodal Feature Fusion Module Based on Cross-Attention Mechanism

To effectively utilize the combined item feature information from various modalities
and historical collaborative interaction information, we designed a multi-modal feature
fusion module based on a cross-attention mechanism. Additionally, we employed a self-
supervised learning method to maximize the mutual information between the fused multi-
modal information and the user-item ID information, thereby leveraging user preferences
to guide the model training [30-33].

Each modality’s features contain both distinct and common information. Distinct
information refers to the unique characteristics and details that are specific to each modality,
which are not found in other modalities. Common information, on the other hand, refers to
the shared or overlapping features that are present across multiple modalities. First, for the
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common information part, we use a linear projection layer to convert the multi-modal
features into the corresponding K, Q, and V:

K = Linearg(Hp) (15)
Q= LinearQ(FIt) (16)
V = Lineary (Hp) (17)

where Linear(-) denotes the linear projection function.

Next, we illustrate the structure of our module for extracting common information
between modalities. We employ a cross-attention mechanism to extract information from
different modalities. To integrate the obtained common information into the modal in-
formation, we first pass it through a linear layer and then add it to Q. Finally, through
layer normalization, a multi-layer perceptron, and residual connections, we obtain the final
embedded representation of the common modal information Hey;:

CA = softmax(?}%) (18)
CR = Linear(CA) + Q (19)
Hep = MLP(LN(CR)) + CR (20)

Next, we analyze how to extract the distinct information of modalities, with a structure
similar to the previous one. After passing through the cross-attention module, we first
remove the common information from the modalities to obtain the distinct information,
and then proceed with subsequent operations:

DA = softmax < Q\/Ig ) (21)
DR = Linear(V — DA) + Q (22)
Hys = MLP(LN(DR)) + DR (23)

Subsequently, the distinct and common information is further enhanced through the
user and item ID embeddings:

Hy com = U(Wz,comHn + b2,c0m> (24)

H, 4if = 0(WagisHu + by 4if) (25)
where Hycom and H,, 4;¢ represent the user’s preference-extracted features for common
and distinct modal information, respectively. Wy com, Wa 4if € R¥*@ are learnable weight
matrices, by com, bz,dif € R4 are learnable bias parameters, and ¢ is the Sigmoid nonlin-
ear function.

Finally, we fuse the previously obtained features, combining the distinct and common
information across modalities to obtain the final modal feature H,,:

Hm — (Hgom @ Hn,cgm + Hdlf @ Hi’l,dlf) (26)

NI~

3.5. Prediction Layer

Based on the user and item embeddings H,, and modality features H,, obtained from
the previous sections, we can derive the final representations of the user and item by
summing these embeddings and features:

h, = hu,n + hu,m/ h; = hi,n + hi,m 27)
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The predicted score (jui) is then calculated as the dot product of the user and
item embeddings:
Pui = I i (28)

3.6. Loss Function

In the final stage of multimodal feature fusion, we employ a self-supervised learning
auxiliary training method using the InfoNCE loss [34] function to obtain Ly, ¢,. This loss
consists of the user self-supervised loss L, and the item self-supervised loss L;:

Llnfo =Lu+L; (29)
exp(hu/im : hu/in/T)
Luyi = —lo ’ : (30)
" u/iezull Yo s1cun P (e yim - My 10/ T)

Subsequently, we use Bayesian personalized ranking loss Lppr as the main training ob-
jective and add an L2 regularization term to control model complexity, prevent overfitting,
and improve generalization. The final loss function L is then given b

L:thL[nfo‘FLBPR"'“ZHw”% (31)

where a1 and wy are hyperparameters that control the self-supervised loss and regular-
ization strength, respectively, and ||w||3 is the squared L2 norm of the weight vector w,
representing the sum of the squares of the model parameters.

4. Experiment
4.1. Research Question

To examine the performance of CAmgr, we put forward and resolved four research
questions:

(RQ1) Can the proposed CAmgr model exceed other task baselines in the context of
information recommendation tasks?

(RQ2) Do the innovative components within the CAmgr model make a significant
contribution to its performance?

(RQ3) How does the performance of the CAmgr model fluctuate under varying
hyperparameter settings?

(RQ4) How does the proposed denoising enhancement technique affect the distribution
of multimodal information embeddings?

4.2. Datasets

In our work, we used three types of data from the Amazon dataset, which is commonly
applied in recommendation tasks: baby, sports, and clothing.

¢ Baby: This dataset contains e-commerce interaction data for baby products, including
multimodal data such as images and reviews.

*  Sports: This dataset includes interaction data for sports products, with data spanning
recent years.

*  Clothing: This dataset comprises a bipartite interaction graph for various clothing
items, along with reviews and interaction records from recent years.

Table 1 provides detailed statistical information about the datasets. To optimize model
training, we divided each dataset into training, validation, and test sets, with a split ratio of
0.8/0.1/0.1. For the multimodal information in each dataset, we employed pre-extracted
embedding features from the MGCN model [35].
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Table 1. Statistics of the experimental datasets.
Datasets Users Items Ratings Density Rating Scale
Baby 19,445 7050 160,792 0.117% [1-5]
Sports 35,598 18,357 296,337 0.045% [1-5]
Clothing 39,387 23,033 278,677 0.031% [1-5]

4.3. Model Summary

We compared Camgr with nine popular baseline models in recommendation tasks.
These baselines were categorized into two groups: general models that rely solely on histor-
ical interaction data (MF, LightGCN), and multimodal models that incorporate additional
multimodal information (VBPR, MMGCN, GRCN, SLMRec, BM3, MICRO, and MGCN).

*  MF [36]: A widely used collaborative filtering model in recommendation systems,
employing matrix factorization to learn user and item representations.

e LightGCN [37]: Combines GCN with collaborative filtering, simplifying the GCN
model to better suit recommendation tasks.

e VBPR [8]: Introduces visual modality information by extracting image features via
CNN and integrating them with item ID embeddings for recommendations.

*  MMGCN [38]: Effectively utilizes multimodal information to assist in solving ERC
tasks by constructing dependencies within and across modalities.

*  GRCN [39]: Investigates the impact of implicit feedback in GCN-based recommenda-
tion models and improves the user—item interaction graph structure using GAT.

¢ SLMRec [40]: Incorporates self-supervised learning in multimedia recommendation
to capture the inherent multimodal patterns in data.

e  BM3 [41]: Eliminates negative sampling in self-supervised learning to avoid introduc-
ing noisy supervision during training.

¢ MICRO [42]: Designs a contrastive method to fuse multimodal features, using the
obtained multimodal item representations directly in collaborative filtering, for more
accurate recommendations.

¢  MGCN [35]: Proposes using item behavior information to purify modality infor-
mation and models user preferences comprehensively through a behavior-aware
fusion mechanism.

4.4. Experimental Setup and Evaluation Metrics

To ensure a comprehensive and unbiased evaluation of model performance, we em-
ployed a full ranking protocol to measure the effectiveness of top-K recommendations.
In this process, we calculated and reported the average metrics for all users in the test set,
including Recall@K and NDCG@K. This method guaranteed the fairness and accuracy
of the evaluation, effectively gauging the performance of recommendation systems in
real-world scenarios.

We conducted 1000 iterations for all models, with an early stopping mechanism set
at 20 rounds of patience. Following the settings in MICRO, Recall@20 was used as the
criterion to halt training on the validation set. The model that performed best on the
validation set was chosen for final testing. We utilized the Adam optimizer and configured
the hyperparameters for each baseline model according to their original papers. For our
CAmgr model, we adopted the Xavier initialization method with an initial dimension of
64, set the regularization coefficient in the loss function, and used a batch size of 2048.
For the self-supervised task in this study, the temperature coefficient ap was set to 0.2. All
experiments were conducted on an NVIDIA A100 40GB GPU.

5. Results and Discussion
5.1. Overall Performance

We present the performance results of the proposed multimodal graph recommenda-
tion model, CAmgr, and the baseline models in Table 2. To better illustrate the performance
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of our CAmgr model, we display the results for Recall@K and NDCG@K with K set at 10
and 20.

Table 2. Experimental results on different recommendation models.

Datasets Metrics MF LightGCN VBPR MMGCN GRCN SLMRec BM3 MICRO MGCN CAmgr
Recall@10  0.0357  0.0479 0.0423 0.0378 0.0532 0.0540 0.056¢4 0.0584 0.0620 0.0640

Bab Recall@20  0.0575  0.0754 0.0663 0.0615 0.0824 0.0810  0.0883  0.0929 0.0964 0.1056
y NDCG@10 0.0192  0.0257 0.0223 0.0200 0.0282 0.0285 0.0301  0.0318 0.0339 0.0382
NDCG@20 0.0249  0.0328 0.0284 0.0261 0.0358 0.0357  0.0383  0.0407 0.0427 0.0437
Recall@10  0.0432  0.0569 0.0558 0.0370 0.0559 0.0676 ~ 0.0656  0.0679 0.0729 0.0751

Sport Recall@20  0.0653  0.0864 0.0856 0.0605 0.0877 0.1017  0.0980  0.1050 0.1106 0.1124
POTS NDCG@10  0.0241  0.0311 0.0307 0.0193 0.0306 0.0374  0.0355  0.0367 0.0397 0.0429
NDCG@20 0.0298  0.0387 0.0384 0.0254 0.0389 0.0462  0.0438  0.0463 0.0496 0.0523
Recall@10  0.0187  0.0340 0.0280 0.0197 0.0424 0.0452  0.0421  0.0521 0.0641 0.0695

Clothin Recall@20  0.0279  0.0526 0.0414 0.0328 0.0650 0.0675  0.0625  0.0772 0.0945 0.1102
& NDCG@10 0.0103 0.0188 0.0159 0.0101 0.0225 0.0247  0.0228  0.0283 0.0347 0.0386
NDCG@20 0.0126  0.0236 0.0193 0.0135 0.0283 0.0303  0.0280  0.0347 0.0428 0.0478

From Table 2, it is evident that CAmgr significantly outperformed the other general
and multimodal recommendation models. This indicates that our proposed method ef-
fectively utilized multimodal information. Instead of simply adding or concatenating the
multimodal information, we enhance and integrate it by embedding the user and item
IDs. This approach not only reduces noise but also aligns more closely with the user’s
focus. Subsequently, we model the interaction and semantic structure information through
a multimodal structure-enhanced encoder, further enriching the feature information. Fi-
nally, we adaptively fuse the modal and attribute features using a designed cross-attention
module and introduce self-supervised learning to enhance the impact of ID embeddings.
Consequently, CAmgr achieved superior results across the three datasets and all metrics
compared to the best baseline models.

Similarly, when incorporating multimodal auxiliary information, VBPR performed
better than MF, but MMGCN was less effective than LightGCN. This could have been due
to the propagation mechanism in GCN, which continuously transmits noise from the multi-
modal data to the user and item representations, resulting in poorer outcomes. Subsequent
methods that suppress modal noise have shown gradual performance improvements. Thus,
it is evident that handling noise in different modalities is crucial.

The GRCN model improves the user—item interaction graph using multimodal features,
MICRO constructs a semantic auxiliary graph for items, and MGCN builds a multimodal
feature purifier. These methods leverage indirectly processed multimodal features rather
than directly injecting them into the model, achieving excellent performance results.

5.2. Ablation Studies

The ablation experiments in this section are divided into two parts: the first part
focused on the ablation of the proposed modules, and the second part focused on the
ablation of modalities. We conducted experiments on three datasets and selected Recall@20
and NDCG@20 as the metrics for the ablation experiments.

We performed ablation experiments on the model’s modules to validate the effec-
tiveness of the two methods proposed in the CAmgr model: the multimodal information
purification and denoising method based on item and interacting user ID features, and the
multimodal feature fusion method based on the cross-attention mechanism. Specifically,
we compared CAmgr with two variants, denoted as CAmgr, /o(jup) and CAmgr,, s,(c arr),
corresponding to the multimodal information purification and denoising method based on
item and interacting user ID features, and the multimodal feature fusion module based on
the cross-attention mechanism, respectively. The results of CAmgr and its three variants
are shown in Table 3. As seen in Table 3, our proposed CAmgr model outperformed
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CAmgry,/ojup) and CAmgr,, /o(c arr) in all cases across the three datasets, indicating that
both proposed methods could improve the accuracy of the recommendation model. Ad-
ditionally, in all cases across the three datasets, removing our proposed purification and
denoising method resulted in a more significant performance drop compared to removing
the multimodal feature fusion module.

Table 3. Performance comparison between different variants of CAmgr.

Datasets Modules Recall@20 NDCG@20
CAmgr 0.1056 0.0437
Baby w /o IUD 0.0563 0.0188
w/o CAFF 0.0847 0.0386
CAmgr 0.1124 0.0523
Sports w/oIUD 0.0612 0.0259
w/o CAFF 0.0905 0.0341
CAmgr 0.1102 0.0478
Clothing w/oIUD 0.0584 0.0216
w/o CAFF 0.0862 0.0254

To investigate the impact of different modal information inputs on the performance
of the recommendation model, we conducted experiments under three different modal
inputs: text information input, image information input, and a combination of text and
image information inputs. As shown in Figure 2, both text and image modal inputs could
effectively enhance the model’s performance, but the performance improvement was
more significant with image information. This indicates that effectively handling noise in
multimodal information can significantly boost model performance. This may be because,
in real-world scenarios, people tend to rely more on images when shopping, as visual
impact is more pronounced. In contrast, textual descriptions are less direct and often
contain irrelevant information, making it difficult for users to immediately find the needed
information and requiring further filtering and processing of the text.

Text 0.06 - Text
0.12 1 Vision Vision
All All

0.05 9
0.10 4

o

=3

b
L

0.08 1

Recall@20
=3
S

NDCG@20

004 0.02 1

0.024 0.014

0.00

0.00

Baby Sports Clothing Baby Sports, Clothing

Figure 2. Performance Comparison with different modalities.

5.3. Hyperparameter Study
5.3.1. Impact of the Number of Multimodal Semantic Neighbors k

For the multimodal semantic neighbors of items, we selected only the top k features
with the highest similarity to minimize the introduction of noisy neighbors. To examine
the effect of neighbor quantity k on model performance, we adjusted the value of k in the
proposed CAmgr, selecting {5, 10, 15, 20, and 25} as candidate values, and observed their
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Baby

impact on Recall@20 and NDCG@20. As shown in the experimental results in Figure 3,
the k value of 20 yielded the best results for the baby dataset, while the k value of 15 was
optimal for the other datasets. These findings suggest that the number of multimodal
semantic neighbors k should not be too large, as a larger value may introduce irrelevant
items as neighbors, thereby increasing noise.

Sports Clothing
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Figure 3. Performance comparison of different numbers of neighbors k.

5.3.2. Impact of the Weight of Self-Supervised Learning Loss x4

To investigate the impact of the weight decay factor of self-supervised learning loss a1
on model performance, we adjusted the value in the established CAmgr. The selected range
for this parameter was {0.001, 0.005, 0.01, 0.05, 0.1} to examine how this hyperparameter
«q affected the model’s recommendation performance. As shown in Table 4, the value
of 0.01 achieved the best performance across all three datasets, while the performance
dropped sharply beyond this value. This is because self-supervised learning serves merely
as an auxiliary task in our model. If the weight value & is too large, the model’s attention
will shift towards the auxiliary task, thereby neglecting the main task, which can mislead
the model.

Table 4. Performance comparison of different weights of self-supervised task «;.

a1 =0.001

Datasets
Recall@20
Baby 0.0592
Sports 0.1006

Clothing 0.1039

a1 = 0.005 aq =0.01 a1 =0.05 a1 =0.1
NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20
0.1035 0.0428 0.1056 0.0437 0.1010 0.0421 0.0479 0.0194
0.1087 0.0501 0.1124 0.0523 0.1093 0.0507 0.0373 0.0188
0.0447 0.1075 0.0461 0.1102 0.0478 0.0580 0.0269 0.0584 0.0263

5.4. Visual Analysis

We visually analyzed the multimodal information denoising enhancement method
proposed in this paper, and visualized the modal features before denoising and the en-
hanced features after denoising. We randomly selected 500 items from the baby dataset,
and reduced the high-dimensional modal features to a two-dimensional plane using a
nonlinear dimensionality reduction method called tSNE. Then, we used two-dimensional
histograms to further visualize. Figures 4 and 5 show our visual results. By analyzing the
distribution of two-dimensional features, we can see that the modal information before
denoising is not evenly distributed in the two-dimensional histogram, there are many
outliers and many high-density regions. After noise reduction, the feature distribution is
more uniform, and the color distribution of outliers and two-dimensional histograms is
more balanced. By comparing FIG. 5 and FIG. 6, it can also be seen that the distribution of
image features is more uniform than that of text. Therefore, in the ablation experiment of
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the modal information input, it was found that the impact of image information on model
performance was greater than that of text information.
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Figure 4. The distribution of representations in visual modality.
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Figure 5. The distribution of representations in text modality.

6. Conclusions

In this paper, a multi-modal graph recommendation model CAmgr based on cross-
attention fusion was proposed. This model significantly improves the effectiveness of
multimodal information by introducing a method of purifying and denoising multimodal
information based on the enhancement of items and their interactive user ID features.
Through a multi-modal feature fusion module based on a cross-attention mechanism,
the model can process and fuse multi-modal information more comprehensively and ef-
ficiently, so as to improve the recommendation performance. The experimental results
showed that the model outperformed the existing baseline methods on three public bench-
mark datasets, which verified its advantages in the multi-modal recommendation task.
Future work may include further optimizing the computational efficiency of the models,
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as well as exploring more complex multimodal information fusion methods to address
larger and more diverse datasets.
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