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Abstract: The history of variational calculus dates back to the late 17th century when Johann Bernoulli
presented his famous problem concerning the brachistochrone curve. Since then, variational calculus
has developed intensively as many problems in physics and engineering are described by equations
from this branch of mathematical analysis. This paper presents two non-classical, distinct methods
for solving such problems. The first method is based on the differential transform method (DTM),
which seeks an analytical solution in the form of a certain functional series. The second method, on
the other hand, is based on the physics-informed neural network (PINN), where artificial intelligence
in the form of a neural network is used to solve the differential equation. In addition to describing
both methods, this paper also presents numerical examples along with a comparison of the obtained
results.Comparingthe two methods, DTM produced marginally more accurate results than PINNs.
While PINNs exhibited slightly higher errors, their performance remained commendable. The key
strengths of neural networks are their adaptability and ease of implementation. Both approaches
discussed in the article are effective for addressing the examined problems.

Keywords: variational calculus; ordinary differential equation; differential transform method;
physics-informed neural network

MSC: 65L05

1. Introduction

The issues in the calculus of variations have rich applications in many different
problems [1]. Using these methods, one can, for example, search for curves connecting
fixed points (also considering problems with a moving boundary) and satisfying certain
conditions (such as minimal length or the shortest time to travel between them), surfaces
meeting specific conditions (such as the surface with the smallest area connecting two
fixed circles), problems concerning the propagation of light in inhomogeneous media,
isoperimetric problems, geodesic curves, quantum mechanics, hydrodynamics, and many
others [2-5].

The problem of variational calculus can be described in many different ways; this
paper focuses on finding the extremum of the following functional:

T = [ F(uy(y ()™ (), a)

where y(x) is the sought-after n-times differentiable function defined in the interval [a, D],
which satisfies the following boundary conditions:

yD@a)=4;, yIb)=B, 0<i<n-—1, ()
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where a,b € R,a < b, A;,B; € R,0 <i < n—1,and F is a certain function of (n + 2)
variables’ (1 + 1)-times differential, defined in the set [a, b] x R"*1.

For such a formulated problem, a necessary condition for the functional (1) to attain a
local extremum for the sought-after function y(x) under the boundary conditions (2) is that
the function F satisfies the following differential equation:

OF d (OF d*> [ oF . d" ([ OF
sy s (o) * a2 (o) o 0 (50) 0 9
(this is the so-called Euler—Poisson equation) with the conditions (2) [6,7].
In the general case, the condition (3) is only a necessary condition for the existence
of an extremum of the functional (1). However, in most technical problems, it is also a
sufficient condition. Therefore, in this paper, we search for these extrema in this manner.
Equation (3) is a differential equation of the order 2 and appears relatively rarely for

larger values of n. It is more commonly encountered for n = 1 or n = 2. In these cases, it
takes the following form:

JoF d <8F>
‘ — —— (=, forn =1,
OF & cdi [ OF dy dx\oy
ay "LV G5 ) - :
Yy i3 x ay aj_i ai i ai forn =2
ay dx ay/ dxz ay// ’ = <.

In the special case of n = 1, this equation is known as the Euler equation. Often, there are
problems where the function F depends on many unknown functions, e.g., y;(x) (and their
derivatives). In such cases, the necessary condition for the existence of an extremum of the
functional (the Euler-Lagrange equations) reduces to a system of differential equations.
Unfortunately, very often, the differential equations (or their systems) obtained from
the corresponding conditions are nonlinear or cannot be expressed in normal form (which
is required by many methods for solving such problems, including classical ones like the
Runge-Kutta method and less-known ones like the Adomian decomposition method [8,9]).
For this reason, we need to seek new methods that can handle such forms of the problem.
Such methods include the differential transformation method (DTM) discussed in
Section 2 and the physics-informed neural networks (PIINs) presented in Section 3. PINNs
are a type of specifically designed neural network devoted to solving problems involving
differential equations that describe physical laws. PINNs integrate knowledge of physical
laws, allowing for the more accurate and efficient modeling of physical phenomena com-
pared with traditional neural networks. PINNSs can generalize better to unseen conditions
because they are guided by underlying physical laws, which remain consistent across differ-
ent scenarios. This contrasts traditional neural networks that might struggle to extrapolate
beyond their training data. Section 4 is devoted to numerical examples illustrating the
effectiveness of both methods and comparing them using selected examples.

2. DTM Method

The differential transform method (DTM) was proposed at the end of the 20th century
and was quickly recognized and adapted to solve many different problems. Initially, it was
used to solve ordinary differential equations, but its applications have expanded to the sys-
tems of such equations [10-15], partial differential equations [16,17], differential algebraic
equations [18], integral equations [19,20], delay differential equations [21,22], fuzzy differ-
ential equations [23,24], and fractional differential equations [25-28]. This method has also
been applied to certain important types of equations, such as Schrodinger equations and
nonlinear Klein-Gordon equations, and in modeling predator—prey phenomena [29-31],
among many other applications [32-36].
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If a function, f, can be expanded into a Maclaurin series (such a function is called the
original), then for this function, we can write the following;:

Thus, knowing the properties of such a transformation and the transforms of basic functions,
we can solve many of the problems mentioned in the previous paragraph.

Below, we present the transforms of selected functions and selected properties of DTM
(the included functions and properties were used in the examples presented in Section 4;
proofs of these properties, among others, can be found in [16,25]).

Theorem 1. Let x be an element of the domain of the considered function, f, and k € Zy.
If f(x)=x",7Z>m >0, then

F(k) =6(k—m) = {(1) i ; Z (4)
If f(x) = e, a € R, then .
F(k) = % ®)
If f(x) = sin(ax), a € R, then .
F(k) = 5 s'm%” (6)
If f(x) = cos(ax), a € R, then .
F(k) = % cos k77t (7)
If f(x) = u(x) £ v(x), then
F(k) = U(x) £ V(x) (8)
Iff(x) =a-u(x),a €R,then
F(K) = a- U(x) ©)
If f(x) = x™ - u(x), then
-8y 157
If f(x) = u(x) - v(x), then
k k
F(k) = g)u(i)v(k—i) = ;}v(i)u(k—i). (11)
If £(x) = u(x) - 0(x) - w(x), then
k k—i
F(k) = Z(;)Z(;)u(i)vg)w —i—j) Z(;)Zu (i— )W (k —1i). (12)
i=0j= 1=V]
I} th
f f(x) = ul™)(x), then ean)!
F(k) Uk ), (13)

3. Physics-Informed Neural Network

Physics-informed neural networks (PINNs) represent a novel approach to solving
differential equations (both ordinary and partial) and differential-integral equations, har-
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nessing the power of deep learning. Among the pioneering works on this approach are
the papers by Raisi et al. [37] and Karniadakis et al. [38]. PINNs integrate the princi-
ples of physics in the form of differential equations with a neural network architecture.
This methodology embeds differential equations and initial/boundary conditions into
the loss function of the neural network, ensuring that predictions align with the equa-
tions describing the system. As a result, PINNSs offer a flexible and efficient alternative
to traditional numerical methods, which often face limitations related to computational
costs and scalability, especially in high-dimensional spaces. Once the model is trained,
it can provide solutions for any grid, making this approach advantageous over classical
methods like finite difference schemes. Additionally, PINNs excel in handling complex
boundary and initial conditions, and they can directly incorporate experimental data into
the model. This capability not only enhances solution accuracy but also enables the model
to learn and adapt to real-world scenarios where data may be sparse or noisy. Consequently,
PINNSs have achieved significant success in various applications, including fluid dynamics,
materials science, and biological systems [39-41].

A PINN architecture consists of classical components of the feedforward and back-
propagation of neural networks: hidden layers, nodes per hidden layer, and activation
functions. To train a neural network, an optimization method like the adam optimizer
is used. The PINN system presented in the article consists of two main modules (see
Figure 1): a fully connected neural network and a loss function module that computes
the loss as the weighted L2 norm of both the governing ODE equation and boundary
condition’s residuals.

inside domain

\
|
|
P/ (a), /(@) ple),a) -
|
1

Loss function

left boundary

ylar)

right boundary

Min

y(zr)

Boundary condition

Figure 1. Diagram of physics-informed neural network for ODE with Dirichlet boundary conditions.
For the considered ordinary differential equation, the following applies:
Fy" (x), " (xa), ¥ (%), y(x), %) =0, x € [x1,xg],
With Dirichlet boundary conditions, the following apply:

y(xr) =yr, y(xr) =Yz,

The loss function takes the following form:

Fy™ ), -y (), v (x2), y(xi), 1) + (y(xr) —y) + (y(xg) —yr),  (14)

™M=

L=

1

where N is the number of collocation/training points inside domain [x1, xg]. After building
the neural network and defining the loss function, the neural network is then trained to
find the best parameters, ©®* (weights and biases), by minimizing the loss function, £.
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4. Numerical Examples
4.1. Example 1
Let us consider a functional,
In3 , ’
T = [ (60 =) + 20 - x = y(x) ) ax (15)
with boundary conditions,
y(0) = =3, y(In3) =1n3. (16)
In this case,
F(x,y(x),y'(x)) = (v (x) = y(x) +0)* — x — y(x),
and therefore, according to (3), forn =1,
OF d (oF\ _ p " p
o (3) = 20 -y + 0 - 1- 20 @) -y )+ 1),
which, after some transformation, gives the following equation:
2y (x) —y(x) +2x +3 =0. (17)

Taking into account the conditions (16), we therefore have to solve an ordinary second-order
differential equation (a linear, non-homogeneous one with constant coefficients), where the
exact solution to this equation is the following function:

4.1.1. DTM—Example 1

Applying the DTM to Equation (17) (utilizing properties (4), (8), (9), (13)), for k > 0,
we obtain the following:

2(k+2)(k+1)Y(k+2) —2Y (k) +25(k — 1) +36(k — 0) =0, (18)

whereby from the condition y(0) = —3, we know that Y(0) = —3. Assuming k = 0in (18),
we obtain the following:

2.2Y(2) — 2Y(0) +26(—1) +36(3) = 0 = Y(2) — —Z.

Notice that neither for k = 0 nor for k > 0 are we able to determine the value of Y(1)—this
is because the second condition (16) takes the form y(In3) = In3 (the desired form would
be yy'(0) = a € R). Therefore, let us assume Y(1) = s € R. Taking k > 1, we sequentially
obtain the following;:

s—1 3 s—1 1
YO = —— Y& =—1 G) =5 YO =15
s—1 s—1 1 1
7 =50 Y® = zems00 0= “goeor 1Y = ~Baea0o
In the general case, we can note that Y(0) = —3and Y(1) = s; fork > 1, wehave Y(2) = —3
. Y(i . _ . Y(j
and Y(i+2) = % for even numbers, i, and Y(3) = ! and Y(j +2) = %

for odd numbers, j.
Therefore, we can represent the sought-after function, y, as follows:

1:1

0o x2i71
-y =
yx) =x+(s ;21—1

N\@
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which, after using a known Taylor series, takes the following form:
. 3 9
y(x) =x+ (s —1)sinhx + 575 cosh x.

There is still an unknown value of s to find. Using the second condition (16), i.e.,
y(In3) = In3, we obtain the following:

4 9 11
ln3:ln3+(s+1)§+§—f~§@s:—.

This result allows for the final form of the following solution,

— § + X — 2e_x
¥=3 2¢
which fully coincides with the exact solution. Of course, this is not the standard case—in most

instances, we can only find an approximate solution, as we present in the subsequent examples.

4.1.2. PINNs—Example 1

Now, we solve Equation (17) using neural networks. In this case, a fully connected
neural network of a depth of 4 with 3 hidden layers and 10 neurons per layer is used. As an
optimizer, the Adam method is used with a learning rate of 0.001. The hyperbolic tangent
is assumed as the activation function. Figure 2 shows the obtained approximate solution
(left plot, black dots) along with the errors of this approximation (right plot). The obtained
solution fits the exact solution quite well. The maximum error is approximately 0.04.

@) I

1 b Il approximation i 0.04 L ..""'m."'-...
M exact ] [ ..'. ", 1
N ,:
s S
5 0.02j N ... ...' ]
0.01} . -
S A S S S B AR I R N NS S S B ‘i 000 ;? T I S AT .‘.‘ R B ;

0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
X X

Figure 2. The exact solution, y(x) (solid blue line); the approximate solution (black dots)—Figure (a);
and the errors of the approximate solution—Figure (b), example 1.

4.2. Example 2

Consider following functional,

— y(x))?
o) = [ U 9)
with conditions 3
y(0)=0, y(5) =~ (20)
In this case, we have s
P y(x),/ (x)) = L=V
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and therefore we, can, according to (3) for n = 1, write
oF d (3F> 6y — D) + 1) (y(x)%y" (x) —y"(x) = 2y(x)y'(x)?)
9y %y’ y'(x)* ’
which, after some transformation, leads to the equation
y(x)%y" (x) =" (x) = 2y (x)y' (x)* = 0 (21)
with conditions (20) (other solutions, y(x) = 1 and y(x) = —1, are neglected because they

do not meet the conditions (20)).

4.2.1. DTM—Example 2

Applying the DTM of transformation to Equation (21) (here, we use the properties (8),
(9), (12), and (13)), for k > 0, we obtain

k i

YN (G+DG+2Y(+2)Y(i—j)Y(k—i) — (k+1)(k+2)Y(k+2)
i=0j=0

k i
—zz(;JZ(;)((j+1)(i—j+1)y(j+1)y(i—j+1)y(k—i)) =0,
1=0j=

(22)

and according to the condition, y(0) = 0 implies that Y(0) = 0.
Similarly to before, taking successive values, k > 0, in (22), we are not be able to find
the value of Y(1). Therefore, assume Y (1) =s € R;asaresult, Y(0) =0, Y(1) = s, and

Y(2) =0, Y(3) =-2, Y(4) =0, Y(5) =I5,

1757 62s° 138257
Y(7) = ~ 15 Y(8) =0, Y(9) = 2835 Y(10) =0, Y(11) = “ 155,925

This time, we are not able to find a function defined by the Taylor series of the obtained
terms. Therefore, we must limit ourselves to finding an approximate solution, v, (x), of

the form n
x) =Y Y(i)x'
i=0

which depends on the unknown value of parameter s. The value of this parameter can be
found using the second of the conditions (20), i.e., y(5) = —%. Proceeding in this way and
taking n = 7, an approximate solution, y7(x), of the following form is obtained:

3 5 7
S e s 17
yr(x) =sx — 27+ 52 315

Solving the equation y7(5) = —3, we unfortunately obtain three real solutions:
s = —0.24919, s = —0.20286, and s = 0.35538. Therefore, it is necessary to choose
the appropriate one. To achieve this, we examine the error as follows:

5
| 179295 (x,5) = 7 5,5) = 27 (00 x5 Pk

In this case, it turns out that the best value is s = —0.20286. For this value, we obtain an
approximate solution:

y7(x) = —0.2063x + 0.0028x> — 0.00004x° + 7.63 - 10~/ x”.
Following a similar approach but taking n = 11 (again choosing the best value of s), we
obtain the following solution:
y11(x) = —0.1955x + 0.0025x” — 0.00004x° +5.88 - 10 7x” —9.11-10°x” 4+ 1.41- 10 Ox'",
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In Figure 3, we present the exact solution, y(x), the approximate solutions, y7(x) and y11(x),
and the errors, Ay, (x), of these solutions, where

Dn(x) = |y(x) = yn(¥)],
and the exact solution has the following form:

1_7x/5
y(x) = 1+ 72/5°

0.0~ a) 0035 E
_ . 0.030f Aq(x)
-0—2; *» 1 0.025) ----Aq (x)
I ™ 0.020f
-04r "N 1 0.015]
- 0.010f

, ~ 0.005 ]

| 0000| anmmnammmmmm s m
-0.8 2 L 1 L L 1 pemmmenc

Figure 3. Exact solution, y(x) (solid green line); approximate solution, y; (dashed orange line);
approximate solution, y11 (dashed blue line)—Figure (a)—and errors, A, of these approximations—
Figure (b), example 2.

4.2.2. PINNs—Example 2

The same Equation (21) was also solved using a physics-informed neural network.
In this example, a fully connected neural network of a depth of 4 with 3 hidden layers
and 10 neurons per layer was used. The Adam optimizer with a learning rate of 0.001 was
employed and the hyperbolic tangent is assumed as the activation function. Inside the
domain, 128 training points were considered. Figure 4 depicts the obtained approximate
solution (left plot, black dots) along with the errors of this approximation (right plot).
The obtained solution is very close to the exact solution. The maximum error does not
exceed 0.016.

(a) (b)

0 . 0 T i FT T T T T T T T T T T T T T T T T T T T T T T T hl
L W approximation 1 0.015 i i}
I M exact L "‘-.. |

0.010" .,

y(x)
1
o
N
error

0.005 ]

TS 0000

Figure 4. The exact solution y(x) (solid blue line), the approximate solution (black dots)—Figure (a)—
and the errors of the approximate solution—Figure (b), example 2.
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4.3. Example 3

In the third example, the following equation is considered,

1

T) = [ (v e sinx+ (/1) " (x)? = (v(x) — y" () (1) )dx - @3)

-1
which is supplemented by the following conditions:
y(=) =1 y()=-1 y(1) =1, y(1)=-2 (24)
In this case,
F(x,y(x),y (x) = y"(x)y' (x)e *sinx + (v (x) =y ()% = (y(x) =" (x))y (),

and therefore, according to (3), for n = 2, we obtain the following,

OF d (9F d* ( oF
& (ay’) +72 (8}/”) =e" (Zy(4)(x)ex + 1" (x)(cos x — sinx — 2¢*) — 2y (x) cos x),

which brings us to the follwing equation,
2y (x)e* + v (x) (cos x — sin x — 2¢*) — 2/ (x) cosx = 0 (25)
with conditions (24).

4.3.1. DTM—Example 3

Applying the DTM of transformation to Equation (25) (we use the properties (5)-(9),
(11), and (13)), the following equation is obtained for k > 0:

£ DU+ )Y +8) (i+1)(i +2)¥ (i +2) (cos "4 —sin 760 — 2)
[
=0 :

2 : -
S o .
K (i+1)Y(i+1)cos T5
—2§) k=1 —=0.

Given successive values of k > 0 in (26), it is impossible to find the values Y(0), Y (1),
Y(2) and Y(3), so we assume Y (0) = sp, Y(1) = 51, Y(2) = sp and Y(3) = s3,5; € R,
0 <i < 3. Therefore Y(0) =591 Y(1) =51, Y(2) =5, Y(3) = s3,and

s1+ 57 —51 + 4sy + 3s3 51 — 11sp 4 3653
( ) 24 7 (5) 120 ! ( ) 1440
1151 — 1255 — 69s3 _ —75s81 +109s; + 9653 3351 — 1845, + 30153
Y(7) a 10,080 ! Y(S) a 161,280 ! Y(9) a 483, 840 T

Again, we are unable to find a function with a Taylor series defined by these terms based on
the form of the found terms. We must therefore limit ourselves to finding an approximate
solution of the form y,(x),

which additionally depends on an unknown parameter, s;, 0 < i < 3. These parameters are
determined using conditions (24) (this time we have a unique set of exactly four constants
s;). Proceeding in this way and taking n = 4, we obtain an approximate solution of the
form y4(x):

ya(x) = 1.2692 4 0.75x — 0.2885x% — 0.75x> 4 0.0192x*.

Proceeding similarly, but taking n = 7 (again the conditions (24) imply a unique solution to
the parameters s;, 0 < and < 3), we obtain the following solution:
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(@)

y(x)

y7(x) = 1.2398 + 0.7288x — 0.2448x> — 0.7024x> + 0.0202x* — 0.0318x° — 0.0152x° + 0.0053x”.

Figure 5 shows the exact solution y(x), the approximate solutions, y4(x) and y7(x), and the
errors, A, (x), of these solutions. In following formula of error,

An(x) = |y(x) = yn(x)],
y(x) denotes the exact solution obtained form Wolfram Mathematica 14.0 [42,43]. As can
be seen in Figure 5, the difference in errors between solutions y4(x) and yy7(x) is significant.
The maximum error for y7(x) does not exceed 0.004, whereas for the solution y4(x), this
error is approximately 0.034.

™7 0.035F - . ;
a)] b)
y(x) '/u \“ 1 0.030f Ay(x) ]
/ N 0.025F ------- Aq(x)
y 4 ( _/L') ’l \‘ 4
/ \ 0.020] 1
________ y7(llf) \
\ 0.015]
\
4 \
S \ | 0.010f 1
. 7 0.005}
e 0000 melmmmmmmmmmm ST T ]
-1.0 -0.5 0.0 05 1.0 -1.0 -0.5 0.0 0.5 1.0
Figure 5. Exact solution, y(x) (solid green line); approximate solution, y7 (dashed orange line); approx-
imate solution, y1; (dashed blue line)—Figure (a)—and errors A of these approximations—Figure (b),
example 3.
4.3.2. PINNs—Example 3
Similar to previous examples, the following network architecture is assumed: 3 hidden
layers with 10 neurons per layer. Inside the domain, 128 training points are used. The
hyperbolic tangent is assumed as the activation function. The solution obtained after
training the model is depicted in Figure 6. The solution using PINNs fits the exact solution
quite well, with errors not exceeding 0.04.
(b)
1.4 M approximation 0.035 * ..é
L e 0030, =
1.3] 3 o
; 0.025 S
5 0020 S
117 ® 0.015 S
1.0/ 0.010]
o9k 0.005 ‘___._/M\'
L L o 0.000bmmmmeee | WL
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
X X

Figure 6. The exact solution y(x) (solid blue line); the approximate solution (black dots)—Figure (a)—
and the errors of the approximate solution—Figure (b), example 3.
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0.035}"
0.030
0.025f
0.020 f
0.015
0.010
0.005

0.000

4.4. Comparison of DTM and PINNs Results

In this section, errors obtained from the two methods are compared for examples 2
and 3. In the case of example 1, the DTM method provides the exact solution. Figure 7
presents error plots obtained from both methods, specifically for example 2 (Figure 7a)
and example 3 (Figure 7b). As observed in Figure 7, the smallest errors were obtained for
DTM with n = 11 (for example 2) and n = 7 (for example 3). The errors of the solutions
obtained using neural networks are slightly larger but still smaller than those from DTM
with n = 7 (for example 2) and n = 4 (for example 3). Both methods produced solutions of
good quality.

a)i Ay(x) DTM N
A-(z) DTM ] I 1(7) )
[ 0.03F -~ -----~ A(z) PINNs
---- A(z) PINNs
S AU (N SRR Aq(z) DTM
F---- Ap(z)DTM b [
4 002
0.01
A ~.§ 0_00,...-.1a---.-‘;‘."------- -----------
0 1 3 4 5 -1.0 -0.5 0.0 0.5 1.0

Figure 7. Comparison of absolute errors of the DTM and PINNSs for example 2—figure (a) and for
example 3—figure (b).

5. Conclusions

The paper presents two different methods for solving variational calculus problems
involving differential equations.

The first method, the DTM, is characterized by its flexibility in both the form of the
differential equation and the boundary conditions. One of its strengths is its scalability
to handle approximate solutions of varying orders, and sometimes it even allows for
a prediction of the exact solution based on the form of the coefficients found for Y (k).
However, there are some drawbacks to this method. One notable challenge is the difficulty
in automating the process of solving a given problem. It is complex to develop a program
that can generate an approximate solution solely based on the form of the differential
equation and the boundary conditions. It is often easier to manually construct a discrete
counterpart of the differential equation, develop a methodology for finding the unknown
coefficients, Y (k), and then utilize appropriate software tools for further refinement.

The second presented approach—PINNs (physics-informed neural networks)—utilizes
neural networks to solve the relevant differential equation. One advantage of this method
is its relatively straightforward implementation and flexibility. Once the model for the
differential equation is trained, it can provide solutions for different grids (input points)
without recalculating the problem each time.

Comparing both methods, it can be observed that slightly more accurate results were
obtained using the DTM. The results from PINNs includes slightly larger errors compared
with those obtained using the DTM, but they are still of good quality. The advantage of
neural networks lies in their flexibility and relatively straightforward implementation. Both
methods presented in the article are suitable for solving the considered issues.

In the future, the authors plan to apply PINNS to solve direct and inverse problems in
partial differential equations involving fractional-order derivatives.
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