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Abstract: This study aims to present and apply an effective algorithm for solving the TFDE (Time-
Fractional Diffusion Equation). The Chebyshev cardinal polynomials and the operational matrix for
fractional derivatives based on these bases are relied on as crucial tools to achieve this objective. By
employing the pseudospectral method, the equation is transformed into an algebraic linear system.
Consequently, solving this system using the GMRES method (Generalized Minimal Residual) results
in obtaining the solution to the TFDE. The results obtained are very accurate, and in certain instances,
the exact solution is achieved. By solving some numerical examples, the proposed method is shown to
be effective and yield superior outcomes compared to existing methods for addressing this problem.
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1. Introduction

Fractional calculus, a branch of mathematical analysis dealing with derivatives and
integrals of non-integer orders, has diverse applications across various fields. These ap-
plications showcase the versatility and significance of fractional calculus in diverse fields,
ranging from control systems and biology to economics [1,2]. By utilizing fractional calculus,
researchers can create more precise models of intricate systems and detect dynamic behav-
iors that could be missed by conventional integer-order calculus. A wealth of information
about engineering and physical processes, along with an extensive use of fractional-order
derivatives, can be discovered in [3–6].

Differential equations involving non-integer-order derivatives fall under the category
of FDEs (fractional differential equations). They generalize classical differential equations,
which typically involve only integer-order derivatives. FDEs have become increasingly
prominent recently for their capacity to represent intricate systems in various scientific and
engineering domains accurately. FDEs are valuable for explaining processes in viscoelastic
materials, electromagnetic fields, control systems, electrochemical reactions, porous media
flow, and more [7–10]. The study of fractional differential equations has led to the devel-
opment of various methods for their solution, such as wavelet method [11–13], Adomian
decomposition [14], Kuratowski MNC technique [15], B-spline collocation method [16],
least-squares finite element [17], Adaptive-grid technique [18], multi-step methods [19],
Chebyshev collocation method [20,21], etc.

The diffusion equation serves as a foundational partial differential equation, outlining
the process by which quantities like heat, mass, or momentum disperse throughout a
medium as time progresses. The diffusion equation is a widely utilized tool in physics
for turbulence [22], heat conduction [23], dissipation [24], magnetic plasma [25], and elec-
tron transportation [26]. Anomalous diffusion is notable for its exceptional traits such
as long-distance interaction and history dependency, which differ from typical diffusion
phenomena. The conventional model based on integer-order differential equations strug-
gles to accurately capture these anomalous behaviors. Instead, the fractional derivative
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has emerged as a viable alternative modeling technique for representing these anomalous
diffusion phenomena [4]. In recent years, interest has been increasing in investigating
anomalous diffusion equations using fractional derivatives [27–29].

This paper focuses on solving the time-fractional diffusion equation

cDµ
t (w)(x, t) =

∂

∂x

(
q(x)

∂w(x, t)
∂x

)
− r(x)w(x, t) + g(x, t), x ∈ [0, 1], t ∈ [0, T], (1)

in which cDµ
t with 0 < µ ≤ 1 is the Caputo fractional derivative (CFD) operator with

respect to variable t, q(x) ∈ C1[0, 1], r(x) ∈ C[0, 1], and q(x) > 0, r(x) ≥ 0 (∀x ∈ [0, 1]).
Moreover, w is considered to be a smooth function, and g ∈ C([0, 1] × [0, T]). For this
equation, the Dirichlet boundary and initial conditions are as follows:

w(x, 0) = w0(x), x ∈ [0, 1], Initial condition, (2)

w(0, t) = f1(t),

w(1, t) = f2(t), t ∈ [0, T], Dirichlet boundary conditions, (3)

where the functions w0(x) ∈ C[0, 1], f1(t) ∈ C[0, T], and f2(t) ∈ C[0, T].
Analytical solutions for fractional-derivative diffusion equations are generally scarce,

except for cases involving straightforward initial and boundary conditions [30]. Therefore,
the numerical solution method is crucial for solving the fractional derivative diffusion
equation in practical scenarios. In [31], the authors obtained the approximate solution to
a fractional advection–dispersion flow equation using finite difference approximation. A
numerical scheme based on the random walk method is proposed in [23] for solving the
considered equation. Chen et al. [32] proposed the Kansa method for solving the considered
Equation (1). A paper focused on the kernel-based scheme to solve (1) is introduced in [33]
by Fardi.

The subsequent sections of this paper are structured in the following manner: Cheby-
shev cardinal polynomials and their properties are reviewed and introduced in Section 2.
The pseudospectral method is applied to solve the TFDE (1) in Section 3. Section 4 is
devoted to demonstrating the practicality and precision of the method. Section 5 of this
paper provides a concise summary of the findings.

2. Chebyshev Cardinal Polynomials

Given N ≥ 0, let R := {rj : TN+1(rj) = 0, j ∈ N} be the set of the roots of the
TChebyshev polynomial TN+1 in whichN := {1, 2, . . . , N + 1}. Recall that the TChebyshev
polynomials are defined on [−1, 1] by

TN+1(cos(θ)) = cos((N + 1)θ), N = 0, 1, . . .

and their roots are specified by

rj := cos
(
(2j− 1)π

2N + 2

)
, ∀j ∈ N . (4)

Shifted TChebyshev polynomials for generic intervals [a, b] are related to the TCheby-
shev polynomials by

T∗N+1(t) := TN+1

(
2(t− a)

b− a
− 1
)

, (5)

and the roots of T∗N+1 in its turn are obtained by tj =
(rj+1)(b−a)

2 + a, j ∈ N .
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The Chebyshev cardinal function (CCF) is one of the orthogonal polynomials’ most
notable cardinal functions [34–36]. Considering T∗N+1,t(tj) as the derivative of function
T∗N+1(t) with respect to the variable t, Chebyshev cardinal functions can be denoted by

ψj(t) =
T∗N+1(t)

T∗N+1,t(tj)(t− tj)
, j ∈ N . (6)

The most striking feature of these polynomials is their cardinality, i.e.,

ψj(ti) = δji, (7)

in which δji indicates the Kronecker delta. This property is mostly important as it enables
us to approximate any function w ∈ Hα([a, b]) (the Sobolev spaceHα([a, b]) will be briefly
introduced) easily and without integration in finding the coefficients, viz,

w(t) ≈
N+1

∑
j=1

w(tj)ψj(t). (8)

In what follows, since we need the definition of Sobolev spaces and their norm, we
provide a brief definition of it. For α ∈ N, we denote by Hα([a, b]) the sobolev space of
functions w(t) which have continuous derivatives up to order α such that Dβw ∈ L2([a, b]):

Hα([a, b]) =
{

w ∈ Cα([a, b]) : Dβw ∈ L2([a, b]),N 3 β ≤ α
}

,

with the norm

‖w‖2
Hα([a,b]) =

α

∑
j=0
‖w(j)(t)‖2

L2([a,b]), (9)

and the semi-norm

| f |2Hα,N([a,b]) =
N

∑
j=min{α,N}

‖w(j)(t)‖2
L2([a,b]). (10)

Lemma 1. Given N ≥ 0, if R∗ denotes the shifted Chebyshev nodes {tj}j∈N , then the error of
approximation (8) can be bounded

‖w− wN‖L2([a,b]) ≤ CN−α|w|Hα,N([a,b]), (11)

where the constant C is independent of N. Furthermore, it can be verified that

‖w− wN‖Hl([a,b]) ≤ CN2l−1/2−α|w|Hα,N([a,b]), α ≥ 1, 1 ≤ l ≤ α. (12)

2.1. Operational Matrix of Derivative

Let Ψ(t) be a vector function with entries {ψj}j∈N . We specify the operational matrix
of derivatives for CCFs as

D(Ψ)(t) = DΨ(t). (13)

To evaluate the elements of D, they can be obtained via the following process using
the approximation (8). It follows from (8) that

Dj,i = D(ψj)(ti). (14)

It is worth noting that there is another presentation of CCFs [37]

ψj(t) = $
N+1

∏
κ=1,κ 6=j

(t− tκ), (15)
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where $ = 22N+1/((b− a)N+1T∗N+1,t(tj)). When the operator D acts on both sides of (15),
coming back to (14), we obtain by (8)

D(ψj)(t) = $
N+1

∏
κ=1
κ 6=j

D(t− tκ) = $
N+1

∑
k=1
k 6=j

N+1

∏
κ=1

κ 6=j,κ

(t− tκ)

=
N+1

∑
k=1
k 6=j

T∗N+1(t)
(t− tj)(t− tk)T∗N+1,t(tj)

=
N+1

∑
k=1
k 6=j

k
(t− tk)

ψj(t). (16)

It can be shown by (14) and (16) that

D(ψj)(ti) =



N+1
∑

k=1
k 6=j

1
(ti−tk)

, j = i,

$
N+1
∏

κ=1
κ 6=j,i

(ti − tκ), j 6= i.

2.2. Operational Matrix of Fractional Integration

Considering the interval [0, 1], the fractional integral is defined as

Iµ
0 (w)(t) :=

1
Γ(µ)

∫ t

0
(t− ζ)µ−1w(ζ)dζ, x ∈ [0, 1], β ∈ R+, (17)

where Γ(µ) denotes the Gamma function.
Note that there is a square matrix Iµ such that the acting of the fractional integral

operator on Ψ(x) can be represented by it, viz,

Iµ
0 (Ψ(t)) ≈ IµΨ(t), t ∈ (0, 1), (18)

It is straightforward to show that the elements of this matrix can be obtained by

(Iµ)j,i = I
µ
0 ψj(ti). (19)

After performing some simple calculations, it can be inferred from [38] that

N+1

∏
κ=1
κ 6=j

(t− tκ) =
N

∑
κ=0

ωj,κtN−κ , (20)

in which

ωj,0 = 1, ωj,κ =
1
κ

κ

∑
k=0

χj,kωj,κ−k, j = 1, . . . , N + 1, κ = 1, . . . , N,

and

χj,κ =
N+1

∑
i=1
i 6=j

tκ
i , j = 1, . . . , N + 1, κ = 1, . . . , N.

Motivated by (15), the CCFs can be determined by

ψj(t) = $
N

∑
κ=0

ωj,κtN−κ . (21)
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Using this definition of CCFs, (19) leads to

Iµ
0 ψj(t) = $Iµ

0 (
N

∑
κ=0

ωj,κtN−κ)

= $
N

∑
κ=0

ωj,κI
µ
0 (t

N−κ)

= $
N

∑
κ=0

ωj,κ
Γ(N − κ + 1)

Γ(N − κ + µ + 1)
tN−κ+µ.

So, it can be concluded that

(Iµ)j,i = $
N

∑
κ=0

ωj,κ
Γ(N − κ + 1)

Γ(N − κ + µ + 1)
tN−κ+µ
i . (22)

2.3. Matrix Representation of Fractional Derivative

Definition 1 ([5]). Let µ ∈ R+ and m := dµe ∈ N ( d.e denotes the ceiling function). The Caputo
fractional derivative is denoted by

cDµ
t (w)(t) :=

1
Γ(m− µ)

∫ t

0

f (m)(ζ)dζ

(t− ζ)µ−m+1 =: Im−µ
0 Dm(w)(t), (23)

where Dm := dm

dtm .

Lemma 2 (cf Corollary 2.3 (a), [5]). Let µ ∈ R+, m := dµe ∈ N and µ 6∈ N0. Then, we have

‖cDµ
t (w)‖C ≤

1
Γ(m− µ)(m− µ + 1)

‖w‖Cm . (24)

Taking into account Definition 1 and the operational matrices D and Iµ, when the
Caputo derivative operator acts on Ψ(x), it follows that

cDµ
t (Ψ)(t) = Im−µ

0 Dm(Ψ(t)) ≈ Dm(Im−µ)Ψ(t). (25)

So, the operational matrix for the Caputo operator is specified by

Dµ = Dm(Im−µ). (26)

3. Pseudospectral Method and Its Implementation

The present chapter is focused on solving the fractional diffusion equation (FDE) with
the Caputo operator using an efficient and accurate scheme based on the pseudospectral
method. As mentioned above, we consider the inhomogeneous TFDE

cDµ
t (w)(x, t) =

∂

∂x

(
q(x)

∂w(x, t)
∂x

)
− r(x)w(x, t) + g(x, t), x ∈ [0, 1], t ∈ [0, T], (27)

with conditions

w(x, 0) = w0(x), x ∈ [0, 1], Initial condition, (28)

w(0, t) = f1(t),

w(1, t) = f2(t), t ∈ [0, T], Dirichlet boundary conditions, (29)

in which 0 < µ ≤ 1, q(x) ∈ C1[0, 1], r(x) ∈ C[0, 1], and r(x) ≥ 0, q(x) > 0 (∀x ∈ [0, 1]).
Also, we consider the unknown solution w to be an analytic function. Furthermore, the
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functions g(x, t), w0(x), f1(t), and f2(t) belong to the spaces C([0, 1]× [0, T]), C[0, 1], and
C[0, T], respectively. To simplify the analysis, hereafter, we assume that T is equal to 1.

To obtain the pseudospectral discretization of Equation (27), the solution w(x, t) is
approximated using CCFs as follows:

w(x, t) ≈
N+1

∑
i=1

N+1

∑
j=1

wi,jψi(x)ψj(t) = ΨT(x)WΨ(t) = wN(x, t), (30)

where the (N + 1)-dimensional square matrix W consists of the unknowns {wi,j}N+1
i,j=1.

Substituting wN instead of w in (27), we have

cDµ
t (wN)(x, t) =

∂

∂x

(
q(x)

∂wN(x, t)
∂x

)
− r(x)wN(x, t) + g(x, t). (31)

Now, we estimate each term in (31) as follows:

• Taking into account the representation of CFD based on CCFs as the operational matrix
Dµ and (30), one can obtain

cDµ
t (wN)(x, t) =

N+1

∑
i=1

N+1

∑
j=1

wi,jψi(x)cDµ
t (ψj)(t) ≈ ΨT(x)WDµΨ(t) := wN,µ(x, t). (32)

• The first step in approximating the second term is to estimate ∂wN
∂x as

∂wN(x, t)
∂x

=
N+1

∑
i=1

N+1

∑
j=1

wi,jD(ψi)(x)ψj(t) ≈ ΨT(x)DTWΨ(t) := wN,x(x, t). (33)

Similarly, we can approximate ∂2wN
∂x2 as follows:

∂2wN(x, t)
∂x2 =

N+1

∑
i=1

N+1

∑
j=1

wi,jψj(t)D2(ψi)(x) ≈ ΨT(x)DT2
WΨ(t) := wN,x,x(x, t). (34)

Motivated by the second term, we have

∂

∂x

(
q(x)

∂wN(x, t)
∂x

)
=

∂q(x)
∂x

∂wN(x, t)
∂x

+ q(x)
∂2wN(x, t)

∂x2

≈ ∂q(x)
∂x

wN,x(x, t) + q(x)wN,x,x(x, t). (35)

Substituting (33) and (35) into Equation (31) leads to the introduction of the residual
function

r(x, t) = wN,µ(x, t)− ∂q(x)
∂x

wN,x(x, t)− q(x)wN,x,x(x, t) + r(x)wN(x, t)− g(x, t). (36)

Selecting the roots of T∗N+1 (Shifted Chebyshev polynomial) as the collocation points
which are outlined in the introductory Section 2, and we denote them as (ti, tj), i, j ∈ N ,
Equation (35) reduces to a linear system:

Ri,j = r(ti, tj) = 0, i, j = 1, . . . , N. (37)
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In order to apply the boundary and initial conditions (28) and (29), we replace some
equations of (37) by

(R)i,1 := wN(ti, 0)− w0(ti),
(R)1,j := wN(0, tj)− f1(tj), i, j = 1, . . . , N,
(R)N,j := wN(1, tj)− f2(tj),

This leads to a new linear system
ΥW̄ = Ḡ, (38)

in which Ḡ and W̄ are the matrix-to-vector conversion by rows of the matrices G and W
whose elements are

(G)i,j = g(ti, tj), i = 2, . . . , N − 1, j = 2, . . . , N,

(G)i,1 = w0(ti), i = 1, . . . , N,

(G)1,i = f1(tj), j = 1, . . . , N,

(G)N,i = f2(tj), j = 1, . . . , N.

By implementing the GMRES (generalized minimal residual) method [39], we obtain the
matrix W̄.

The method is summarized algorithmically in the following steps:

(1) Choose N;
(2) Construct the Chebyshev cardinal polynomials of order N (refer to Equation (6));
(3) Compute the CFD of Chebyshev cardinal polynomials cDµ

0 (Ψ) (refer to Equation (26));
(4) Approximate w(x, t) using wN(x, t) (refer to Equation (30));
(5) Put wN(x, t) back into (27) and compute the residual r(x, t) (refer to Equation (36));
(6) Obtain the system ΥW̄ = Ḡ;
(7) Solve the system using the GMRES method.

4. Numerical Results

By providing some numerical simulations, the effectiveness of the present method
is can showcased. These examples demonstrate how the method can provide practical
solutions to various problems. To provide an overview of the method’s efficiency, tables
and figures report absolute error

eN = w(x, t)− wN(x, t),

L2-error

L2 − error =
(∫ 1

0
|w(t)− wN(t)|2

)1/2

,

and L∞-error
L∞ − error = max

x∈[0,1]
(max

t∈[0,1]
|w(x, t)− wN(x, t)|).

All examples were run on the combined use of Maple and Matlab software (version
R2022a) with an Intel(R) Core(TM) i7-7700k CPU 4.20 GHz (RAM 32 GB). To obtain a
higher precision, we increased the precision beyond 50 digits.

Example 1. As the first example, we utilized the presented scheme for IFDE (27)

cDµ
t (w)(x, t) =

∂2

∂x2 w(x, t)− w(x, t) + g(x, t),
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with

g(x, t) = (1/Γ(4− µ))
(
(−µ2 + 5µ− 6)t1−µ + 6t3−µ

+
(
(π2 + 1)t3 + (−π2 − 1)t

)
Γ(4− µ)

)
sin(πx).

For this equation, the initial and Dirichlet boundary conditions

w(x, 0) = 0, w(0, t) = w(1, t) = 0, x, t ∈ [0, 1],

were considered. According to [33], w(x, t) = sin(πx)(t3 − t) is the exact solution.

Table 1 shows the CPU time and L2 and L∞ errors considering different values of µ
and N. The results obtained showcase the capability and effectiveness of the method. The
convergence of the proposed scheme is also verified via the presented results. To provide
more evidence for the capability of the presented method, the results of this work are
compared with those of a kernel-based method [33] in Table 2. The approximate solution
and related absolute errors for µ = 0.2 are plotted in Figure 1. The values of the L∞-error
and L2-error for µ = 0.2 versus N are illustrated in Figure 2.

(a) Approximate solution (b) N = 9

(c) N = 13 (d) N = 15

Figure 1. Approximate solution and absolute errors (Example 1).
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Figure 2. Plot of L2-error and L∞-error for different values of N (convergence confirmation)
(Example 1).

Table 1. CPU time, L2-error, and L∞-error for different values of µ and N (Example 1).

N 5 7 9 11 13 15

µ = 0.2
L2-error 7.66× 10−04 8.17× 10−06 5.51× 10−08 2.55× 10−10 8.57× 10−13 2.19× 10−15

L∞-error 1.50× 10−03 1.46× 10−05 5.72× 10−08 4.50× 10−10 1.40× 10−12 4.48× 10−15

CPU time 0.109 0.250 0.679 0.906 2.890 6.563

µ = 0.6
L2-error 7.83× 10−04 8.36× 10−06 5.54× 10−08 2.56× 10−10 8.62× 10−13 2.20× 10−15

L∞-error 1.50× 10−03 1.48× 10−05 8.72× 10−08 4.53× 10−10 1.40× 10−12 4.49× 10−15

CPU time 0.109 0.164 0.219 1.203 2.250 5.515

µ = 0.9
L2-error 8.01× 10−04 8.43× 10−06 5.67× 10−08 2.62× 10−10 8.82× 10−13 2.26× 10−15

L∞-error 1.50× 10−03 1.50× 10−05 8.97× 10−08 4.60× 10−10 1.41× 10−12 4.53× 10−15

CPU time 0.063 0.125 0.235 1.062 2.796 6.250

Table 2. Comparison between the kernel-based method versus the proposed scheme (Example 1).

Proposed Method [33]

N = 10 N = 15 N = 20 N = 100

µ = 0.2 L2-error 2.20× 10−09 4.60× 10−16 8.30× 10−04 8.85× 10−05

L∞-error 2.89× 10−09 6.11× 10−16 1.20× 10−04 1.94× 10−05

µ = 0.6 L2-error 3.77× 10−09 8.95× 10−16 8.90× 10−03 1.01× 10−03

L∞-error 5.91× 10−09 1.10× 10−15 1.96× 10−03 2.23× 10−04

µ = 0.9 L2-error 1.09× 10−08 1.09× 10−15 3.61× 10−02 5.63× 10−03

L∞-error 1.70× 10−08 1.65× 10−15 7.97× 10−03 1.25× 10−03

Example 2. The following IFDE is solved:

cD0.4
t (w)(x, t) = (1 + x2)

∂2

∂x2 w(x, t)− (1 + x)w(x, t) + g(x, t),

with

g(x, t) =
−t0.6(e−x − 1)(−1 + x) + Γ(1.6)

((
x3 − 4x2 + x− 2

)
e−x + x2 − 1

)
t

Γ(1.6)
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For this equation, the Dirichlet boundary and initial conditions

w(0, t) = w(1, t) = 0, w(x, 0) = 0, x, t ∈ [0, 1],

are considered. According to [33], the exact solution is w(x, t) = t(e−x − 1)(1− x).

Table 3 shows the CPU time, L2-error, and L∞-error for different values of N. It is
worth realizing that the error tends to zero as N → ∞. Moreover, Figure 3 is depicted
to showcase the method’s convergence. To compare the obtained results via the present
scheme and the kernel-based method [33], Table 4 is tabulated. The L2-error at different
times versus the number of bases N is reported in Table 5.

Table 3. CPU time, L2–error, and L∞–error for different values of N (Example 2).

N 5 7 9 11 13 15

L2-error 3.81× 10−05 7.98× 10−08 8.98× 10−11 6.27× 10−14 2.99× 10−17 1.03× 10−20

L∞-error 1.44× 10−04 2.34× 10−07 2.05× 10−10 1.72× 10−13 8.36× 10−17 3.64× 10−20

CPU time 0.375 0.515 3.469 8.844 27.015 99.766

Table 4. Comparison between the kernel-based method versus the proposed scheme (Example 2).

Proposed Method [33]

N = 10 N = 15 N = 20 N = 100

L2-error 3.52× 10−12 1.03× 10−20 5.53× 10−04 2.33× 10−05

L∞-error 8.46× 10−12 3.64× 10−20 1.26× 10−04 1.94× 10−05

Table 5. L∞-error for different choices of N at different times (Example 2).

t\N 5 7 9 11 13 15

0.2 1.30× 10−05 2.74× 10−08 3.08× 10−11 2.15× 10−14 1.03× 10−17 3.53× 10−21

0.4 2.62× 10−05 5.49× 10−08 6.19× 10−11 4.32× 10−14 2.06× 10−17 7.10× 10−21

0.6 3.93× 10−05 8.28× 10−08 9.30× 10−11 6.51× 10−14 3.10× 10−17 1.07× 10−20

0.8 4.59× 10−05 1.10× 10−07 1.24× 10−10 8.69× 10−14 4.13× 10−17 1.43× 10−20

1.0 5.97× 10−05 1.42× 10−07 1.60× 10−10 1.12× 10−13 5.36× 10−17 1.85× 10−20
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Figure 3. Plot of L2-error and L∞-error versus the number of bases N (convergence confirmation)
(Example 2).
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Example 3. To illustrate the accuracy of the method, the following equation from [33] is considered:

cDµ
t (w)(x, t) =

∂2

∂x2 w(x, t)− w(x, t) + g(x, t),

with

g(x, t) = −t2x2 + 2t2x + 2t2 − 2t2−αx(−2 + x)
Γ(3− α)

For this equation, the initial and Dirichlet boundary conditions

w(x, 0) = 0, x ∈ [0, 2],

w(0, t) = w(2, t) = 0, t ∈ [0, 1],

are considered. It follows from [33] that w(x, t) = t2x(2− x) is the exact solution.

For this equation, the exact solution is obtained using the proposed scheme. To show
this, the L2-error with N = 3 at different times is demonstrated in Table 6.

Table 6. L2-error and L∞-error at different times with N = 3 (Example 3).

t 0.2 0.4 0.6 0.8 0.9 1.0

L2-error 7.17× 10−50 6.37× 10−50 9.58× 10−50 3.91× 10−49 6.27× 10−49 8.71× 10−49

L∞-error 6.98× 10−50 2.33× 10−49 2.00× 10−50 6.40× 10−49 1.67× 10−48 2.30× 10−48

Example 4. Consider the following time-fractional diffusion equation:

cDµ
t (w)(x, t) =

∂2

∂x2 w(x, t)− w(x, t) + g(x, t),

with

g(x, t) =
Γ(5/2)

Γ(5/2− µ)
t3/2−µx(1− x)− t3/2(x2 − x− 2)

For this equation, the initial and Dirichlet boundary conditions

w(x, 0) = 0, x ∈ [0, 1],

w(0, t) = w(1, t) = 0, t ∈ [0, 1],

are considered. The exact solution is w(x, t) = t3/2x(1− x).

Table 7 shows the CPU time, L2-error, and L∞-error for different values of N and
µ = 0.5. This table shows the convergence of the method. The approximate solution and
related absolute error for N = 14 and µ = 0.5 are plotted in Figure 4.

Table 7. CPU time, L2-error, and L∞-error for different values of N (Example 4).

N 10 11 12 13 14 15

L2-error 8.21× 10−04 5.30× 10−04 2.85× 10−04 9.52× 10−05 6.33× 10−05 1.25× 10−05

L∞-error 9.68× 10−04 6.48× 10−04 4.65× 10−04 1.72× 10−04 8.87× 10−05 3.91× 10−05

CPU time 0.625 1.204 1.875 2.922 5.312 11.209

Example 5. The following IFDE is solved:

cDµ
t (w)(x, t) =

∂2

∂x2 w(x, t) + g(x, t),
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with

g(x, t) = sin(πx)
(

π2t2 +
2

Γ(3− µ)
t2−µ

)
.

For this equation, the Dirichlet boundary and initial conditions

w(0, t) = w(1, t) = 0, w(x, 0) = 0, x, t ∈ [0, 1],

are considered. Motivated by [40], the exact solution is w(x, t) = sin(πx)t2.

Figure 4. Approximate solution and L∞-error for N = 14 (Example 4).

Table 8 demonstrates the CPU time, L2-error, and L∞-error for different values of
N and µ. To compare the presented method and the finite difference method, Table 9 is
tabulated. It can be seen that the proposed method provides a better result with a lower
computational cost. The approximate solution and related absolute error for µ = 0.7 are
plotted in Figure 5.

Table 8. CPU time, L2-error, and L∞-error for different values of N (Example 5).

N 7 8 9 10 11 12

µ = 0.7
L2-error 1.32× 10−05 5.25× 10−06 8.92× 10−08 3.76× 10−08 4.13× 10−10 1.81× 10−10

L∞-error 3.83× 10−05 1.67× 10−05 2.32× 10−07 1.22× 10−07 1.19× 10−09 5.15× 10−10

CPU time 0.359 0.203 0.250 0.562 0.813 1.500

µ = 0.9
L2-error 1.29× 10−05 5.13× 10−06 8.69× 10−08 2.67× 10−08 4.02× 10−10 1.76× 10−10

L∞-error 3.80× 10−05 1.64× 10−05 2.28× 10−07 1.20× 10−07 1.17× 10−09 5.04× 10−10

CPU time 0.125 0.188 0.563 0.750 1.062 1.609

Table 9. Comparison between the finite difference method and the proposed scheme (Example 5).

Proposed Method Finite Difference Method

N = 7 N = 9 ∆x = 0.01, ∆t = 1/90 ∆x = 0.01, ∆t = 1/270

µ = 0.7 L∞-error 3.83× 10−05 2.32× 10−07 1.83× 10−04 4.41× 10−05

CPU time 0.359 0.250 7.9142 71.6312

µ = 0.9 L∞-error 3.80× 10−05 2.28× 10−07 6.21× 10−04 1.86× 10−04

CPU time 0.125 0.563 8.0382 72.5664
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(a) Approximate solution (b) N = 7

(c) N = 9 (d) N = 12

Figure 5. Approximate solution and absolute errors, taking µ = 0.7 for Example 5.

5. Conclusions

The pseudospectral method is widely recognized as a highly effective and efficient
technique for solving various equations. On the other hand, according to their inherent
properties, Chebyshev cardinal polynomials are highly effective and powerful bases in
numerical techniques. Hence, in this study, the spectral method based on Chebyshev
bases is considered to address the time-fractional diffusion equation. Using the operational
matrix of fractional derivatives in the Caputo sense, the desired equation is reduced to an
algebraic linear system. The GMRES method is applied to solve this system. The results
obtained are very accurate, and in certain instances, the exact solution is achieved. By
solving some numerical examples, it is demonstrated that the proposed method is effective
and yields superior outcomes compared to existing methods for addressing this problem.

In the future, this numerical approach to solving generalized fractional models will
be expanded, including the space-fractional advection–diffusion equation [41] and time-
fractional diffusion equations with a time-invariant-type variable order [42], etc.
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