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Abstract: Poisson’s equation frequently emerges in many fields, yet its exact solution is rarely
feasible, making the numerical approach notably valuable. This study aims to provide a tutorial-level
guide to numerically solving Poisson’s equation, focusing on estimating the electrostatic field and
potential resulting from an axially symmetric Gaussian charge distribution. The Finite Difference
Method is utilized to discretize the desired spatial domain into a grid of points and approximate
the derivatives using finite difference approximations. The resulting system of linear equations is
then tackled using the Successive Over-Relaxation technique. Our results suggest that the potential
obtained from the direct integration of the distance-weighted charge density is a reasonable choice for
Dirichlet boundary conditions. We examine a scenario involving a charge in free space; the numerical
electrostatic potential is estimated to be within a tolerable error range compared to the exact solution.

Keywords: Poisson’s equation; Gaussian charge distribution; electrostatic potential; electric field;
finite difference method; successive over-relaxation; charge in free space

MSC: 65M01

1. Introduction

Poisson’s equation stands as a fundamental partial differential equation that plays a
crucial role in different fields of physics. In electrostatics, Poisson’s equation establishes
a connection between the electric field (I:f), the electrostatic potential (®), and the electric
volume charge density (p) within a given region of space. Mathematically, Poisson’s
equation is V2® = —p/gg, where g is the permittivity of free space and the electric field
emerges as the gradient of the electrostatic potential (E = —V®).

The distribution of the electric charge density is essential in defining the source term
within Poisson’s equation, thereby directly affecting its solution of the electrostatic potential
and the resultant electric field within a designated spatial domain. Typically, regions with
higher electric charge density exhibit stronger electric fields, resulting in more noticeable
potential gradients and larger variations in potential. The distribution of electric charge density
also defines the shape of equipotential surfaces within the region. Uniform charge densities
typically yield concentric equipotential surfaces centered around the charge, while non-
uniform distributions lead to asymmetric equipotential surfaces. Furthermore, the distribution
of electric charge density is essential for understanding and determining the boundary value
problems, where specific potentials are defined at the region’s boundaries. It rules the behavior
of the electrostatic potential and the electric field within the given region.

This introductory study aims to numerically solve Poisson’s equation to estimate the
electrostatic potential and the electric field. The focus will be on an axially symmetric source
charge density that conforms to a Gaussian distribution described by the general formula
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p(r) = po exp(—r?/20?). Here, pg is the maximum of the charge density at the center of the
distribution, and ¢ is a parameter that controls the rate at which the electric charge density
decreases as the distance from the center increases. By employing the relation Q = [ pdt

and applying Gaussian integrals [1-4], it can be shown that pg = Q/(27) 303, Accordingly,
the general form of Poisson’s equation is

 Qexp(—1*/207)

Vi = S
(2m)203¢g

. 1)

In cases of axial symmetry, the charge density depends only on the radial distance
from the center, and it is symmetric around the axis of symmetry. Consequently, despite the
typical spherical symmetry associated with Gaussian charge distributions, the geometry
of the desired spatial domain is more closely aligned with cylindrical coordinates rather
than spherical coordinates. Our choice to focus on a Gaussian charge distribution in
general and its axially symmetric form stems from several reasons. Firstly, the analytical
solution for such charge distribution can be obtained using the error function, which will
be used to validate our numerical approach. Secondly, such distribution is commonly
utilized to interpret various natural phenomena. For instance, it is crucial to investigate
atmospheric electricity, thunderstorm dynamics, and associated phenomena. While the
charge distribution within thunderstorms may not perfectly conform to a Gaussian model,
the Gaussian distribution offers a simplified approach for approximating charge density
within particular regions of thunderstorms [5,6]. This approximation assists researchers in
unraveling the mysteries of thunderstorms, refining lightning forecasts, and advancing our
understanding of the Earth’s atmosphere.

2. The Numerical Electrostatic Potential (®)
2.1. Finite Differencing of Poisson’s Equation

From a numerical standpoint, the choice of the coordinate system is contingent upon
several factors, including the distribution of the charge density, the geometry of the spatial
domain, and the specified boundary conditions. In the context of this study, where an
axially symmetric charge density distribution is examined, it is noteworthy that such a
distribution naturally exhibits cylindrical symmetry and remains unaltered by variations
in the azimuthal angle (¢). Consequently, employing cylindrical coordinates allows us
to disregard this angle, effectively reducing the problem’s dimensions from three to two
for computational efficiency. Thus, Poisson’s equation can be reformulated as a two-
dimensional problem in cylindrical coordinates as follows:

190 @ o _ p
sds  09s2  9z2

T ()
To numerically solve Equation (2), we employ the Finite Difference Method (FDM) for
its accuracy and simplicity [7-9]. The problem is tackled within a rectangular domain in the
(sz)-plane, where both s and z span from their initial values s and 2 to their final values s¢
and z¢, respectively. A uniform grid or mesh is applied with equal increments of As in the
s-direction and Az in the z-direction, as shown in Figure 1. This approach involves dividing
the sz-plane into a grid of mesh points, each with coordinates (s, z). These coordinates are
defined by the constant spacing of As and Az in the respective s and z directions, where

si=1iAs, 1=0,1,2,..ng,

zj = jAz, j=0,1,2,..n;.

Here, ns and n, represent the total number of mesh elements along the s and z direc-
tions, respectively. They are calculated based on the increments As = (s; —so)/ns and
Az = (zf — z0) /12
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Figure 1. The 2D grid in the sz-plane for FDM. The sweep direction in SOR refers to the sequence
in which grid points are updated during each iteration. While the specific order of the sweep is
irrelevant, it is essential to maintain consistency once established [10]. In this context, updates in
each iteration originate from the bottom-left corner of the grid and proceed horizontally to the right,
advancing row by row from the bottom to the top.

At any point (i, j) representing a specific location in the domain, the exact potential is
®(sj, zj). In contrast, the estimated value ®; ; can be determined using the second-order
central finite difference approximations [11-13] of the derivatives of ® at the same point.
The FDM converts the differential equation into a system of algebraic equations by replacing
the derivatives in the differential equation with finite differences at the mesh points. The
accuracy of the FDM is derived from the fact that as the mesh size decreases, the solution
at the mesh points converges to the exact solution of the differential equation. Meanwhile,
the simplicity of the FDM is evident in its easy implementation. The discretized form of
Equation (2) for the mesh points within the solution region can be expressed as follows:

1/ Piy1j—Piy, n D1, — 2P0+ Diq n PQijr1 — 2@ +Pij1\ P
s; 2As As? Az2 e

The above equation can be restructured as follows:
;i =8;;—[A;jP®;j 1+ Bij®;j11+CijDi1,+ DijPiy1], 3)

where A;; = B;j = (1/A2%)/(«), C;j = ((1/2s;As) — (1/As?))/(«), D;j = ((1/2s;As) +
(1/85%))/(«), Sij = —(pij/e0)/ (), and & = —((2/As?) + (2/A2%)).
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Deriving Equation (3) applies to grid points within the solution region. However, a different
approach is used for mesh points on the symmetry axis. On this symmetry axis, the derivative
of the potential with respect to s, which is evaluated at s = 0 and represented as 0®/9s|s—, is
zero. By employing L'Hospital’s rule, this condition leads to the following expression:

0P
Js ) 2P

1oo ore
«—0 s 082’

s ds

As a result, when Equation (2) is evaluated at s = 0, it transforms into

P P> p

2 - P
0s2 = 9z2 €0

(4)
In addition, when s = 0, it implies that ®; 1 ; = ®;,1 ;. Therefore, the discretized form of
Equation (4) can be rewritten as

;= S?,j —[a;j®ij1 + b jPijr1 +di jPivajl, (5)

where a;; = b;; = (1/A2%)/ (ag), dij = (4/As%)/ (ap), S?,j = —(pi,]-/so)/(zxo), and
ag = —((4/As?) + (2/Az?)). Equation (5) provides a more straightforward way to calcu-
late the potential at discrete points on the symmetry axis in terms of the potential at the
neighboring grid points.

2.2. Successive Qver-Relaxation (SOR) Method

Equations (3) and (5) constitute a large system of linear equations. Such a system can
be effectively tackled by employing the SOR method. This method initiates with an initial
approximate guess of the solution that serves as the basis for generating subsequent solution
estimates iteratively [12,14,15]. The value of ®;; at the (k + 1) iteration is determined
by utilizing the known (already updated) values of ®; ; at the k" iteration, following the
sweep directions depicted in Figure 1. Here, the superscript k (k = 0,1,2,3, ... ) denotes
the iteration number. Another crucial aspect of the SOR method involves accelerating the
convergence of the iterative process by introducing an additional parameter termed the
relaxation factor (w). This factor accommodates the difference between the current (at
the (k4 1)) and the already updated (at the k") potential values, thereby regulating the
convergence rate. The estimated current potential is given by [10]:

ij—1 ij+1 i—1,j i+1,] (6)

(1 — @)@+ w(SY; —ay; @) — by @,y — di s=0.

okt _ {(1 — W)+ (S — AP — B @k, - Gt - D@k, ), s >0,
Y ij—1 " YL T4

i+1,]‘)’

The performance of Equation (6) depends on the selection of w, which typically ranges
between 1.0 and 2.0. However, an optimal choice can markedly expedite convergence. The
most favorable optimum value of the relaxation factor (wopt) for the constant grid spacing
numerical setup is provided by the following expression [10]:

Wopt _2(1'0_ V;O_C) )

where & = [{cos(7t/n5) + B?cos(rt/nz)}/1+ %)%, and B = Az/ /s is the grid aspect ratio.
The potential ®**+1 is indeed considered a reliable estimate of the potential if it converges
to a stable solution. The convergence to a stable solution implies that the iterative process
of updating the potential has reached a point where further iterations do not significantly
change the potential. This is a desirable property in numerical methods as it indicates that
the solution is not oscillating or diverging but instead settling into a consistent value. The
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convergence criterion applied in this study stipulates that the weighted root mean square
(WRMS) should be less than 1 [16], where

_ k.

£ ]2)% <1 ®)

Here, the multiplicative weights W;; = 1/( RT‘(I)iF,]fl‘ + AT) are calculated by using the
relative tolerance (RT) and absolute tolerance (AT) that are specified by the user. The
WRMS is a measure of the magnitude of the residuals (the differences between the current
and updated values) and provides an indication of the accuracy of the potential ®+1. If
the WRMS is less than 1, it suggests that the residuals are small and the estimated potential
is converging.

Y[ Wi

ns Ny

WRMS = (

2.3. Boundary Conditions

The SOR method is a powerful technique for solving large systems of linear equations
that often arise from the FDM. As previously discussed, selecting the appropriate w is
crucial for ensuring the convergence of the SOR method. However, it is essential to recog-
nize that convergence alone does not guarantee accuracy. To achieve accurate solutions,
it is also essential to enforce Dirichlet boundary conditions, which specify the values of
the solution at the boundaries of the desired spatial domain. These boundary conditions
are critical as they provide the necessary constraints that shape the solution within the
computational domain. Therefore, the optimal choice of w and the precise application of
Dirichlet boundary conditions are essential for obtaining reliable and accurate results when
using the SOR method in conjunction with the FDM.

The boundary conditions must be carefully chosen to reflect the physical problem
being addressed accurately. Poorly chosen boundary conditions can result in solutions
that, despite being mathematically valid, fail to represent the physical reality accurately.
One common and straightforward technique for enforcing Dirichlet boundary conditions
is to set a constant value, typically zero, for the potential at the boundaries. This approach
is convenient and computationally efficient, making it a practical choice for initial ap-
proximations or situations where high accuracy is not critical. However, for problems
where accuracy is paramount, more elaborate boundary conditions that closely emulate
the physical context are vital.

This study determines the boundary conditions using the method proposed by Liu
and Pasko [17]. This method was initially designed to numerically model the dynamics
of positive streamers produced by a space charge and developing at various air pressures.
Although the spatial domain used in their study was relatively small, the proposed method
can be extended to larger domains. The method begins by calculating the direct integral
solution of the electric potential at the boundaries of the simulation domain. Subsequently,
the potential at interior points is computed using the previously discussed SOR method,
with the known boundary potentials serving as inputs. The potential at the boundaries is
obtained by directly integrating the distance-weighted charge density, with the result of
this integration then multiplied by the complete elliptic integral of the first kind as follows:

/ (s,2) 27'cdsdz 4KC(k)
4meg JA /(s —I— $)2+ (z, —z)2 27

q)(sbrzb) = (9)

2
/ p(s,z)m(ds/2)= dz s=0,
4meg 574 (zp — 2)?

s>0

where the subscript “b” refers to “at boundary”, k* = 4s,s/[(sp +5)* + (z» —z)?], and
Kk) = On/ 2(1 — k? sin®a)~'da is the complete elliptic integral of the first kind [18-20].
This integral approach ensures that the boundary conditions accurately reflect the physical
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distribution of charge, yielding more accurate solutions within the simulation domain when
combined with the SOR method. By incorporating this approach, the model inherently ac-
counts for the spatial distribution of the charge density in determining the boundary potentials,
thus enhancing the realism and reliability of the electrostatic field simulations. This method
provides a robust framework for establishing boundary conditions. It improves the accuracy
and fidelity of the numerical solutions obtained for Poisson’s equation, making it highly
appropriate for complex physical scenarios.

3. The Numerical Electric Field E

Once the numerical distribution of the electrostatic potential is estimated, the sub-
sequent calculation of the electric field becomes more straightforward. This process is
facilitated by using cylindrical coordinates and the inherent cylindrical symmetry. In this
context, the partial derivative of the electrostatic potential with respect to the azimuthal

angle (32) results in zero due to the symmetry. Consequently, the formula for the electric

field can be expressed as follows:

(10)

oD oD
0s 0z

q:§¢:< §+ —12

Numerically, the electric field at points within the spatial domain is computed using
central difference formulas [21]. These formulas offer a balanced and accurate method for
estimating derivatives and gradients, making them well suited for analyzing the behavior
of the electric field within the domain. Conversely, at the boundaries, one-sided formulas,
which include both forward difference and backward difference formulations, are employed
to compute the electric field [21]. These one-sided formulas are suitable for handling
boundary points, allowing for the electric field to be determined while considering the
boundary conditions. The above-mentioned methods are delineated below:

1 ~ 1 o . . .
s (<1>l-+1,]- — <1>l-_1,j)s + m(‘bi,ﬁrl — d>l-,]-_1)z at interior points,

5
A (i, — D)8 ati=0,

E;, 75 (@i — D)8 ati=ns, (11)
Az (D1 — P j)2 atj=0,
5 (D — Djj1)2 atj = n,.

4. Application and Results: Charge in Free Space

In this study, we examine a Gaussian charge density distribution with a total charge of
Q =1Cand ¢ = 100 m, centered along the z-axis at a height of 1 km. We aim to estimate
the electrostatic potential and the electric field within a specified rectangular spatial domain.
The boundaries of this domain are defined by a radial distance, s, ranging from 0 to 1 km,
and a vertical height, z, varying from 0 to 2 km. Consequently, Poisson’s equation, as
denoted by Equation (1), takes the following form:

40,000 (12)

2 2

V2P = —7.17 x 10%exp ( —s” — (2= 1000) )

The rectangular domain is divided into a uniform mesh, maintaining a consistent
spacing of As = Az = ¢/10 = 10 m. This setup yields ns = 100 and 1, = 200, leading to
B =1land ¢ = 0.99. Although non-uniform spacing in the radial and vertical directions
(B # 1) is possible, opting for square cells with a grid aspect ratio of B = 1 is beneficial.
This uniformity simplifies the implementation of the FDM because consistent finite dif-
ference approximations can be applied across the entire grid, reducing code complexity
and minimizing potential discretization errors [14]. Additionally, uniform grid spacing

helps maintain consistent accuracy throughout the computational domain. When grid cells
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are equal in size, truncation errors (errors from approximating derivatives) are evenly dis-
tributed, enhancing the overall solution accuracy. On the other hand, non-uniform grids can
lead to varying truncation errors that complicate error analysis and reduce accuracy [22].
Furthermore, many numerical methods, including the FDM, have stability requirements
dependent on grid spacing, and a uniform grid helps ensure this stability. Non-uniform
grids can introduce interpolation or discretization errors, which are minimized with a
square grid [23]. Furthermore, wo is determined to be 1.95. To ensure convergence, RT is
set at 10~¢, while AT of 0.01 is established.

The charge density distribution being examined is depicted in Figure 2, with distances
expressed in units of ¢, a convention maintained in all subsequent figures within this study.
Normalized to its maximum value (p/pp), the charge density distribution peaks at the
coordinates (0, 10c). Subsequently, it gradually diminishes as radial and vertical distances
extend, eventually fading near the boundaries.

200 1
180 0.9
160 0.8
140 10.7
120 10.6
%’ 100 ' 10.5 \Q?
N Q
8o 10.4
60 0.3
4o 0.2
20 0.1
0

20 40 60 80 100
s-axis

Figure 2. A Gaussian charge density distribution with axial symmetry, characterized by a total charge
of Q =1Cand o = 100 m, scaled to its maximum value (0/pg). The distribution is positioned along
the z-axis at a height of 100 and spans a rectangular spatial domain measuring 200 in height and 100
in radial extent.

The electrostatic potential derived numerically from Equation (12) within the defined
spatial domain is represented in Figure 3. The solution reflects the bell curve characteristic
of the Gaussian charge density distribution. The electrostatic potential peaks slightly above
7 x 107 V, coinciding with the maximum charge density. As radial and vertical distances
increase, the electrostatic potential gradually diminishes, following the exponential decay
pattern inherent in the Gaussian distribution. The decrease in the electrostatic potential is
evident in its values, which drop to less than 1 x 107 V at the boundaries, highlighting the
diminishing influence of the charge density distribution.
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Figure 3. The electrostatic potential derived numerically from Equation (12).

Furthermore, it is noticeable that the spatial extent of the charge density distribu-
tion plays a crucial role in shaping the equipotential surfaces. As shown in Figure 3,
these surfaces adopt concentric configurations around the charge maxima, highlighting
the symmetrical distribution nature. Also, moving away from the center of the charge
distribution leads to forming more expansive equipotential surfaces that exhibit smoother
gradients, indicating a more uniform distribution of the electrostatic potential across the
spatial domain.

Following the numerical estimation of the electrostatic potential, the resulting electric
field, computed using Equation (11), is presented in Figure 4. In particular, Figure 4a
illustrates the radial component of the electric field (Es). Interestingly, this component is
finite and non-zero, maintaining a value of approximately 1 x 10* V/m at the position
corresponding to the peak of the charge density distribution. The non-zero E; is attributed
to the domain setup and the charge distribution, where the necessary symmetry for this
component to cancel out is absent. Beyond the coordinates (0,100), the magnitude of Es
gradually intensifies, reaching a peak slightly over 19 x 10* V/m near the coordinates
(1.50,100). Subsequently, the magnitude of Es diminishes, nearly approaching zero as
the boundaries are neared. In contrast, Figure 4b illustrates the vertical component of the
electric field (E;). Above the height of 100, E, directs upwards, while below the same height,
it points downwards. Unlike E;, the magnitude of E, cancels out, resulting in a net zero at
the position corresponding to the peak of the charge density distribution. However, the
magnitude of E, gradually amplifies when moving away from the coordinates (0,100). Its
peaks are observed approximately at (0,10 £ 1.5¢). Like E;, the magnitude of E, diminishes
rapidly as the boundaries are approached. Figure 4c presents the total electric field E,
computed as the combination of E; and E, components, with its magnitude determined by
the formula E = \/(E2 + E2). The non-zero E; at the (0, 100) contributes to a finite value of
approximately 1 x 10* V/m for E at this location. Moving away from (0, 10¢), E undergoes
changes. It first increases rapidly, peaking slightly over 19 x 10* V/m at about 1.5¢ away
from (0,100). This peak suggests a strong electric field in this region due to the high change
in the electrostatic potential. Beyond the distance of 1.5¢, E decreases gradually. This
reduction is especially evident in regions with smoother gradients of electrostatic potential,
which usually indicate a decrease in charge density and, consequently, a reduction in the
magnitude of the overall electric field.
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(c)
Figure 4. The distribution of the electric field. (a) The radial component of the electric field (Es).
(b) The vertical component of the electric field (E;). (c) The total electric field (E).

To ascertain the accuracy of our numerical approach, we compare the numerically esti-
mated electrostatic potential with its exact analytical counterpart. This comparison entails
calculating the relative error between the numerical and analytical quantities across all
mesh points within the spatial domain under consideration. From an analytical perspective,
the electrostatic potential that arises from the given Gaussian charge distribution at a certain
point in space can be calculated by integrating the contributions (d®) from all infinitesimal
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charge elements (dQ). Upon performing the necessary mathematical operations, it can be
demonstrated that the following equation gives the exact electrostatic potential:

o) =21

Ay r

r

V2o

erf ( ). (13)
Here, erf is the error function.

As previously mentioned, applying Dirichlet’s boundary conditions is essential in
solving the large system of equations produced by the SOR method. These conditions are
crucial in guiding the numerical approach toward a meaningful solution. In some scenarios,
opting for Dirichlet’s boundary conditions by setting the potential at the boundaries to
zero may be advantageous. However, while this simplification may make the problem
more tractable, it might not fully capture the accurate solution. To investigate this scenario
further, we examine the resulting relative error under the conditions outlined in this study,
as depicted in Figure 5a, when employing these zero-potential boundary conditions. The
figure shows a non-uniform distribution of relative error across the domain, with the error
reaching 100% at the boundaries. While this error is expected due to the assumption of zero
potential at the boundaries in the numerical solution, the relative error is approximately
12% at the location corresponding to the peak of the electrostatic potential at (0, 100). This
discrepancy suggests that the numerical solution underestimates the true peak electrostatic
potential by roughly 12%. Conversely, Figure 5b demonstrates the relative error when
applying Dirichlet’s boundary conditions obtained from Equation (9). Even with the non-
uniform distribution throughout the considered spatial domain, the relative error remains
under 0.5% at the position corresponding to the peak of the electrostatic potential and
peaks at less than 3% at the boundaries. Such a minimal relative error suggests that the
Dirichlet’s boundary conditions computed using the charge density integral method, as per
Equation (9), can be considered an appropriate choice, leading to a satisfactory solution.

As depicted in Figure 6, our study suggests that while a relative error at the boundaries
of approximately 3% is within acceptable limits, reducing the grid size can further decrease
this error. However, this improvement comes at the cost of increased computational
time. Reducing the grid size necessitates additional calculations, which, in turn, demand
more processing power and time. This trade-off between accuracy and computational
efficiency becomes particularly significant when dealing with larger spatial domains. As
the analysis extends to larger areas, the reduction in grid size can markedly increase the
average computational time, potentially becoming a limiting factor. Therefore, selecting the
grid size should balance the desired accuracy with the available computational resources.
In our study’s example, using a 10-meter grid size over a spatial domain spanning 2 km
vertically and 1 km horizontally, the average computational time remained modest, at
approximately 1.2 s on an 8-core M1 CPU. Our findings suggest that, for instance, halving
the grid size reduces the relative error by a factor of about 3, but also increases the average
computational time by about a factor of 10, as shown in Figure 6.

Finally, it is essential to note that while this study focuses on a Gaussian charge
density distribution, which is a simplification that may not accurately represent all physical
scenarios, real-world charge distributions can be more complex and may not conform to a
Gaussian profile. The model used in this study allows other axially symmetric distributions
to be explored, such as those that fall off exponentially (p ~ exp™) or follow a power law
(o ~ r~*). Additionally, this model can be extended to fully three-dimensional simulations,
allowing for studying more complex charge distributions and geometries. Although
this extension would require significant computational resources, it could provide more
comprehensive insights into electrostatic properties.
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Figure 5. The relative error between the numerical and analytical electrostatic potential values across
all mesh points. (a) Zero-potential boundary conditions employed. (b) Equation(9)-derived boundary
conditions employed.
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Figure 6. The relation between the grid size (horizontal axis), the relative error at the boundaries (left
vertical axis), and the average computational time on an 8-core M1 CPU processor (right vertical axis).

5. Conclusions

Poisson’s equation is a fundamental component in physics. When an exact solution is
unattainable, a numerical solution becomes essential. Due to its simplicity and accuracy,
the FDM stands out in transforming Poisson’s equation into a system of algebraic equations.
Thanks to its effectiveness, the resulting system can be effectively addressed using the
widely favored SOR iterative technique. To ensure a meaningful and convergent solution,
it is crucial to apply appropriate boundary conditions. While simplifying the problem
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by setting a zero potential at the boundary may be convenient, it could compromise
the solution’s accuracy. A more accurate alternative involves deriving the potential at
boundaries by considering the contribution of the source charge density distribution inside
the simulation domain. Consequently, boundary conditions are determined by integrating
a distance-weighted charge density multiplied by the complete elliptic integral of the first
kind, offering a reasonable approach to solution accuracy.

Author Contributions: Conceptualization, M.S.; methodology, M.S. and O.A.; software, M.S;
validation, M.S. and O.A; formal analysis, M.S. and O.A.; investigation, M.S. and O.A.; resources,
M.S. and O.A.; writing—original draft preparation, M.S.; writing—review and editing, M.S. and
O.A.; visualization, M.S. and O.A. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.
Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Weber, H.J.; Arfken, G.B. Essential Mathematical Methods for Physicists, ISE; Academic Press: San Diego, CA, USA, 2004.

2. Straub, W.O. A Brief Look at Gaussian Integrals. Pasadena, CA, USA. 2009. Available online: http://www.weylmann.com/
gaussian.pdf (accessed on 1 March 2023).

3. Altland, A.; Von Delft, ]. Mathematics for Physicists: Introductory Concepts and Methods; Cambridge University Press: Cambridge,
UK, 2019. [CrossRef]

4. Sandoval-Hernandez, M.A.; Vazquez-Leal, H.; Filobello-Nino, U.; Hernandez-Martinez, L. New handy and accurate approxima-
tion for the Gaussian integrals with applications to science and engineering. Open Math. 2019, 17, 1774-1793. [CrossRef]

5. Barrington-Leigh, C.P.; Inan, U.S,; Stanley, M. Identification of sprites and elves with intensified video and broadband array
photometry. J. Geophys. Res. Space Phys. 2001, 162, 1741-1750. [CrossRef]

6. Yang, X, Liu, Y;; Lin, Y.; Zhou, C.; Zhao, Z. Simulation of Electron Density Disturbance in the Lower Ionosphere Caused by
Thundercloud Electrostatic Fields. Atmosphere. 2023, 14, 444. [CrossRef]

7. Duncan, J.W. The accuracy of Finite-Difference solutions of LaPlace’s equation. IEEE Trans. Microw. Theory Tech. 1967, 15, 575-582.
[CrossRef]

8. Nagel, J.R. Numerical Solutions to Poisson equations using the Finite-Difference Method. IEEE Antennas Propag. Mag. 2014, 56,
209-224. [CrossRef]

9.  Goona, N.K,; Parne, S.R.; Sashidhar, S. Distributed Source Scheme to solve the classical form of Poisson equation using 3-D
Finite-Difference Method for improved accuracy and unrestricted source position. Math. Comput. Simul. 2012, 190, 965-975.
[CrossRef]

10. Hoffman, J.D.; Frankel, S. Numerical Methods for Engineers and Scientists; CRC Press: Boca Raton, FL, USA, 2018.

11.  Chari, M.V.K;; Salon, S.J. Numerical Methods in Electromagnetism; Academic Press: San Diego, CA, USA, 2000.

12.  Sadiku, M.N.O. Numerical Methods in Electromagnetism; CRC Press: Boca Raton, FL, USA, 2001. Available online: http://ci.nii.ac.
jp/ncid/BA48062805 (accessed on 1 April 2023).

13.  Nicholls, A,; Honig, B. A rapid finite difference algorithm, utilizing successive over-relaxation to solve the Poisson-Boltzmann
equation. . Comput. Chem. 1991, 12, 435-445. [CrossRef]

14. LeVeque, R.]. Finite Difference Methods for Ordinary and Partial Differential Equations; Society for Industrial and Applied Mathematics
(SIAM): Philadelphia, PA, USA, 2007. Available online: https://epubs.siam.org/doi/book/10.1137/1.9780898717839 (accessed
on 1 March 2023).

15.  Hockney, RW.; Eastwood, ].W. Computer Simulation Using Particles; CRC Press: Boca Raton, FL, USA, 1988. [CrossRef]

16. Hindmarsh, A.C.; Brown, PN.; Grant, K.E.; Lee, S.L.; Serban, R.; Shumaker, D.E.; Woodward, C.S. SUNDIALS: Suite of nonlinear
and differential /algebraic equation solvers. Acm Trans. Math. Softw. (TOMS) 2005, 31, 363-396. [CrossRef]

17.  Liu, N.; Pasko, V.P. Effects of photoionization on similarity properties of streamers at various pressures in air. J. Phys. D Appl.
Phys. 2006, 39, 327 . [CrossRef]

18. Muzaffar, H.; Williams, K.S. Evaluation of Complete Elliptic Integrals of the First Kind at Singular Moduli. Taiwan. ]. Math. 2006,
10, 1633-1660. [CrossRef]

19. Press, WH.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes in C: The Art of Scientific Computing; Cambridge
University Press: New York, NY, USA, 2007.

20. Tian, J.E; Yang, Z.H. Several absolutely monotonic functions related to the complete elliptic integral of the first kind. Results Math.
2022, 77, 109. [CrossRef]

21. Burden, R.L,; Faires, ].D. Numerical Analysis; Brooks/Cole, Cengage Learning: Boston, MA, USA, 2010.


http://www.weylmann.com/gaussian.pdf
http://www.weylmann.com/gaussian.pdf
http://doi.org/10.1017/9781108557917
http://dx.doi.org/10.1515/math-2019-0131
http://dx.doi.org/10.1029/2000JA000073
http://dx.doi.org/10.3390/atmos14030444
http://dx.doi.org/10.1109/tmtt.1967.1126537
http://dx.doi.org/10.1109/map.2014.6931698
http://dx.doi.org/10.1016/j.matcom.2021.06.025
http://ci.nii.ac.jp/ncid/BA48062805
http://ci.nii.ac.jp/ncid/BA48062805
http://dx.doi.org/10.1002/jcc.540120405
https://epubs.siam.org/doi/book/10.1137/1.9780898717839
http://dx.doi.org/10.1201/9780367806934
http://dx.doi.org/10.1145/1089014.1089020
http://dx.doi.org/10.1088/0022-3727/39/2/013
http://dx.doi.org/10.11650/twjm/1500404580
http://dx.doi.org/10.1007/s00025-022-01641-4

Mathematics 2024, 12, 1948 13 of 13

22. Gao, X.W.; Zhu, Y.M,; Pan, T. Finite line method for solving high-order partial differential equations in science and engineering.
Partial. Differ. Equ. Appl. Math. 2023, 7, 10047. [CrossRef]
23. Tolibaevna, T.R. Finite Difference Schemes: A Comprehensive Overview. Am. |. Sci. Integr. Hum. Dev. 2023, 5, 34-36.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://dx.doi.org/10.1016/j.padiff.2022.100477

	Introduction
	The Numerical Electrostatic Potential () 
	Finite Differencing of Poisson’s Equation
	Successive Over-Relaxation (SOR) Method
	Boundary Conditions

	The Numerical Electric Field 
	Application and Results: Charge in Free Space
	Conclusions
	References

