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Abstract: In recent years, mixed Bayesian networks have received increasing attention across various
fields for probabilistic reasoning. Though many studies have been devoted to propagation computa-
tion on strong junction trees for mixed Bayesian networks, few have addressed the construction of
appropriate strong junction trees. In this work, we establish a connection between the minimal strong
triangulation for marked graphs and the minimal triangulation for star graphs. We further propose a
minimal strong triangulation method for the moral graph of mixed Bayesian networks and develop a
polynomial-time algorithm to derive a strong junction tree from this minimal strong triangulation.
Moreover, we also focus on the propagation computation of all posteriors on this derived strong
junction tree. We conducted multiple numerical experiments to evaluate the performance of our
proposed method, demonstrating significant improvements in computational efficiency compared to
existing approaches. Experimental results indicate that our minimal strong triangulation approach
provides a robust framework for efficient probabilistic inference in mixed Bayesian networks.

Keywords: Bayesian networks; strong junction trees; propagation computation

MSC: 62H22; 62F15

1. Introduction

Originating from artificial intelligence [1], Bayesian networks offer intuitive graphical
representations for joint probability distributions and efficient algorithms for probabilistic
reasoning. These networks are powerful tools for managing uncertainty and are applied
across various fields, including bioinformatics [2,3], computational biology [4–6], and
neuroscience [7], among others.

Over the past two decades, there has been a growing interest in Bayesian networks
that incorporate both continuous and discrete variables [8]. This paper focuses on proba-
bilistic models of such mixed networks, specifically those constrained to conditional linear
Gaussian (CLG) distributions. Lauritzen [9] introduced a method for the exact local compu-
tation of means and variances in mixed Bayesian networks, but it suffered from numerical
stability issues. Subsequently, Lauritzen and Jensen [10] developed an alternative, stable
local computation scheme for these conditional Gaussian networks. However, this scheme
is intricate, involving evaluations of matrix generalized inverses and recursive combina-
tions of potentials. Cowell [11] proposed an alternative architecture utilizing exchange
operations for variable elimination within an elimination tree. These exchange operations
avoid complex matrix computations. Building upon the push and exchange operations,
Madsen [12] extended lazy propagation, leveraging independence relations induced by
evidence to enhance inference efficiency. The push operation is employed to obtain the
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posterior of continuous variables, while the exchange operation ensures the maintenance
of a valid directed acyclic graph (DAG) structure during the belief update process.

Previous works have significantly improved the propagation computation for mixed
Bayesian networks, primarily relying on strong junction trees. However, to our best knowl-
edge, few works discuss how to construct appropriate strong junction trees. In this paper,
we try to construct a strong junction tree under a minimal strong triangulation frame-
work, which employs a polynomial-time minimal triangulation algorithm to minimize the
number of fill-in edges. Additionally, we focus on the propagation computation of all pos-
teriors. The process primarily involves three steps: finding triangulation and junction trees,
performing inward and outward message passing, and computing posteriors for all non-
evidence variables. This propagation computation based on junction trees facilitates the
sharing of computations [13,14] among different posteriors. As suggested by Madsen [12],
we applied exchange operations to eliminate both continuous and discrete variables during
message passing. We conducted multiple simulation experiments, comparing our method
with two existing methods: CGBayesNets [15] and BayesNetBP [16]. The results indicate
that our method outperforms the existing methods in computational speed.

The primary contribution of this paper is the construction of a strong junction tree
within a minimal strong triangulation framework. Specifically, we establish a connection
between the minimal strong triangulation for marked graphs and the minimal triangulation
for star graphs. We further propose a minimal strong triangulation method for the moral
graph of mixed Bayesian networks and develop a polynomial-time algorithm to derive a
strong junction tree from this minimal strong triangulation. Additionally, we present two
theorems that guarantee our algorithm can successfully identify strong junction trees for
mixed Bayesian networks.

This paper is organized as follows. In Section 2, the notation and definitions used
in mixed Bayesian networks are reviewed. In Section 3, we discuss the minimal strong
triangulation for marked graphs. Section 4 describes our method to find strong junction
trees for mixed Bayesian networks by using minimal strong triangulations. In Section 5,
we give a detailed analysis on exchange operation. Section 6 presents message passing on
strong junction trees and posterior computation. Some numerical experimental results are
shown in Section 7. Finally, Section 8 concludes this paper.

2. Basic Notions on Decomposition and Triangulation for Marked Graphs

Considering two graphs G1 = (V1, E1) and G = (V, E), we call G1 a subgraph of
G if V1 ⊆ V and E1 ⊆ E. Given a subset A of vertices in V, it induces a subgraph
G(A) = (A, E(A × A)) where E(A × A) = E

⋂{(a, b)|a ̸= b ∈ A}. A graph is complete
if every pair of distinct vertices is adjacent. A clique is a maximal vertex set inducing a
complete graph. Given a graph G = (V, E), a vertex subset S is called a separator for two
disjoint vertex subsets A, B if every path in G between some x ∈ A and y ∈ B contains a
vertex in S. We also say that S separates A and B in G. If V = A

⋃
B
⋃

S and A
⋂

B = ∅,
A

⋂
S = ∅, B

⋂
S = ∅, we call (A, B, S) as a partition of V.

Definition 1. For a graph G = (V, E), a partition (A, B, S) of V is a decomposition of G if A, B
are separated by S in G, and S is complete.

Let G = (V = ∆
⋃

Γ, E) be an undirected graph with two types of vertices, ∆ and Γ,
and this graph G is called a marked graph. Moral graphs of directed acyclic graphs (DAGs)
of mixed Bayesian networks are marked graphs and those graph operations introduced
below can be applied to moral graphs.

Definition 2. A partition (A, B, S) of V = ∆
⋃

Γ is a strong decomposition of G if (A, B, S) is a
decomposition of G and any of the three conditions A ⊆ Γ, B ⊆ Γ or S ⊆ ∆ holds.

Leimer introduced the concept of marked graphs and their strong decomposition [17].
We specifically adopt strong decomposition in Definition 2 for marked graphs because it
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preserves the secondary structure [18] of the marked graph, as indicated by the closure [19]
of marginal distributions during inward message passing.

A graph G is called triangulated if G is complete or there is a decomposition (A, B, S) of
G such that G(A

⋃
S) and G(B

⋃
S) are triangulated. Similarly, a marked graph

G = (V = Γ
⋃

∆, E) is called strongly triangulated if G is complete or there is a strong
decomposition (A, B, S) of G such that G(A

⋃
S) and G(B

⋃
S) are strongly triangulated.

Given a marked graph G, we can construct a star graph from G by adding a vertex ⋆ to
its vertex set and connecting ⋆ with every discrete variable. This star graph is denoted
as G⋆ = (V

⋃{⋆}, E⋆), where E⋆ = {(δ, ⋆)|δ ∈ ∆}⋃
E. For any subset B ⊆ V, the star

graph (G(B))⋆ of the induced graph G(B) is just the induced subgraph G⋆(B
⋃{⋆}) of the

star graph G⋆. The following Proposition 1 [20] characterizes the equivalent relationship
between the strongly triangulated marked graph and its star graph.

Proposition 1 ([20]). A marked graph G is strongly triangulated if and only if G⋆ is triangulated.

3. Minimal Strong Triangulation for Marked Graphs

A graph H = (V, E
⋃

F) is called a triangulation of G = (V, E) if H is triangulated.
Any edge uv ∈ F is referred to as a fill edge. A triangulation H = (V, E

⋃
F) of G = (V, E)

is minimal if (V, E
⋃

F′) is not triangulated for any proper subset F′ of F. For a marked
graph G = (V, E), a graph H = (V, E

⋃
F) is called a strong triangulation of G if H is

strongly triangulated. Let HG be a set of all the strong triangulations of G. A strong
triangulation H = (V, E

⋃
F) of a marked graph G = (V, E) is minimal if (V, E

⋃
F′) is not

strongly triangulated for any proper subset F′ of F. The following theorem establishes the
relationship between minimal strong triangulations and minimal triangulations.

Theorem 1. For a marked graph G = (V = ∆
⋃

Γ, E), H = (V, E
⋃

F) is a minimal strong
triangulation of G if and only if H⋆ is a minimal triangulation of G⋆.

Proof. (⇒) If H = (V, E
⋃

F) is a minimal strong triangulation of G, then H is strongly
triangulated and H⋆ is triangulated. Denote E1 as the edge set {(δ, ⋆)|δ ∈ ∆}. Thus,
H⋆ = (V

⋃{⋆}, E
⋃

E1
⋃

F) is a triangulation of G⋆. If H⋆
1 = (V

⋃{⋆}, E
⋃

E1
⋃

F1) is also
a triangulation of G⋆ and F1 ⊊ F, then H1 = (V, E

⋃
F1) is a strong triangulation of G by

Proposition 1. Since H is a minimal strong triangulation of G, it is a contradiction. Then H⋆

is a minimal triangulation of G⋆.
(⇐) If H⋆ is a minimal triangulation of G⋆, then H is strongly triangulated and H

is a strong triangulation of G. If H1 = (V, E
⋃

F1) is also a strong triangulation of G and
F1 ⊊ F, then H⋆

1 is triangulated by Proposition 1 and is a triangulation of G⋆. Since H⋆ is
a minimal triangulation of G⋆, it is a contradiction. Thus, H = (V, E) is a minimal strong
triangulation of G.

Theorem 1 indicates that a minimal strong triangulation for a marked graph G can
be obtained from a minimal triangulation for the star graph G∗, which is an undirected
graph. Specifically, we can apply the minimal triangulation algorithm MSC-M [21] to G∗,
and subsequently obtain a minimal strong triangulation for G by dropping the star vertex.

Notice that the weight w(G) of a marked graph G can be defined as the minimum
sum of the weights of all the cliques over all possible strong triangulations of G, that is,

w(G) = min
H∈HG

∑
C∈KH

w(C),

where KH is the set of all the cliques in the triangulation H. The weight w(C) of a clique C
is calculated as s+ sm(m+ 3)/2 [22], where s represents the product of the number of states
of the discrete nodes in C, and m denotes the number of continuous nodes in C. In w(C), s
has an exponential weight on the number of discrete nodes in C, while m(m + 3)/2 acts as
a polynomial weight on the number of continuous nodes. Unlike the optimal triangulation
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computation for w(G) with an NP-hard computational complexity [23], our approach in this
paper employs a polynomial-time minimal triangulation strategy to minimize the number
of fill-in edges. Specifically, the time cost [21] of a minimal triangulation is O(|V||E|), where
|V| and |E| are the number of vertices and edges, respectively.

In this paper, we focus on directed acyclic graphs (DAGs) G = (V, E), where V is
marked into two groups, ∆ and Γ. The vertices in ∆ represent discrete variables, while those
in Γ represent continuous variables. Since moral graphs of those DAGs with two types of
variables are marked graphs, then we deduce the following corollary from Theorem 1:

Corollary 1. Let Gm be the moral graph of a DAG G with two types of variables; H is a minimal
strong triangulation of Gm if and only if H⋆ is a minimal triangulation of (Gm)⋆.

4. Construction of Strong Junction Trees for Moral Graphs

Given a DAG G with two types of variables, its moral graph Gm is a marked graph.
Utilizing the MCS-M algorithm [21], we can derive a minimal triangulation graph K of
(Gm)⋆. In this algorithm, the star vertex ⋆ can be designated as the first numbered vertex.
Consequently, the resulting graph K manifests as a star graph of some graph H, as ⋆ remains
unconnected to any continuous vertex. Therefore, H is a minimal strong triangulation of
Gm according to Corollary 1. The time complexity of the MCS-M algorithm for (Gm)⋆ is
O(|V1||E1|), where V1 and E1 denote the set of vertices and edges of (Gm)⋆, respectively.

The SMCS algorithm [17] shares a similar definition with the MCS algorithm [24],
but always chooses discrete vertices if there is some discrete vertex with the maximum
weight. Utilizing the SMCS algorithm enables us to acquire a D-numbering [25] denoted as
{xn, · · · , x1} for H. Consequently, we obtain a D-ordered clique sequence {C1, · · · , Cm}
for H. Specifically, V = C1 ∪ R2 ∪ · · · ∪ Rm, where C1 = {xn, · · · , xi1} with xn ∈ ∆,
R2 = {xi1−1, · · · , xi2}, and so forth, until Rm = {xim−1−1, · · · , xim = x1}. For any index
k, Ck = xik ∪ madjH(xik) forms a clique in H. The positions of xi1 , · · · , xim−1 can be
determined by the equivalent condition that |madjH(xi)|+ 1 ̸= |madjH(xi−1)|.

Theorem 2. The D-ordered clique sequence {C1, · · · , Cm} obtained by the SMCS algorithm is

also strong, i.e., Sk ⊆ ∆ or Rk ⊆ Γ for 2 ≤ k ≤ m, where Sk = Ck
⋂
(

k−1⋃
i=1

Ci) and Rk = Ck \ Sk.

Proof. Without loss of generalization, we assumes that V
⋂

Γ ̸= ∅, xn ∈ ∆, and m ≥ 2.
Since H is strongly triangulated and the partition (V \ Cm, Rm, Sm) is a decomposition of H,
this partition is also a strong decomposition of H. Otherwise, there are (V \ Cm)

⋂
∆ ̸= ∅,

Rm
⋂

∆ ̸= ∅, and Sm
⋂

Γ ̸= ∅. Furthermore, there exists a path [α, · · · , β] such that
α ∈ ∆

⋂
(V \ Cm), β ∈ ∆

⋂
Rm and other vertices are continuous. From Corollary 2.7 in [20],

H is not a strong triangulated graph since α is not adjacent to β. It is a contradiction. So the
partition (V \ Cm, Rm, Sm) is also a strong decomposition of H.

If Rm ⊆ Γ, the result is trivial. If Rm
⋂

∆ ̸= ∅ and Sm
⋂

Γ ̸= ∅, then V \ Cm ⊆ Γ since
(V \ Cm, Rm, Sm) is a strong decomposition of H. Thus, (V \ Rm)

⋂
∆ ⊆ Sm. Moreover, we

have that xn ∈ Sm. Otherwise, xn ∈ Rm means there is only one clique in H, and the result
is trivial. Since xn is the first vertex numbered by the SMCS algorithm, the cardinality of
the discrete vertex is the same as that of the continuous vertex in Cm. Thus, the discrete
vertex is always numbered earlier than the continuous vertex by the SMCS. The number
of discrete vertex in Rm is always bigger than that of the continuous vertex in Sm. It is a
contradiction. So, Sm ⊆ ∆ if Rm

⋂
∆ ̸= ∅. Furthermore, since the subgraph H(V \ Rm) is

also strongly triangulated, the conclusion is obtained by recursive decompositions.

As demonstrated above, the SMCS algorithm can be employed to generate a strong
D-ordered clique sequence for a strong triangulation H, enabling the subsequent construc-
tion of a strong junction tree using this sequence. The time complexity for utilizing the
SMCS algorithm [17] to find a strong D-ordered clique sequence and construct a strong
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junction tree is O(|V2|+ |E2|), where V2 and E2 denote the sets of vertices and edges of H,
respectively.

From Corollary 1 and Theorem 2, we can devise the following Algorithm 1 with
polynomial time complexity to find strong junction trees for mixed Bayesian networks:

Algorithm 1: Construct a Strong Junction Tree
Input : A DAG G with two types of variables
Output : A strong junction tree T on G

1 Construct the Star Graph: Create the star graph (Gm)⋆ from the moral graph Gm

of the DAG G;
2 Minimal Triangulation: Apply the MCS-M algorithm to the star graph (Gm)⋆

with the star chosen as the first numbered vertex to derive its minimal
triangulation graph K;

3 Obtain Strong Triangulation: Remove the star vertex ⋆ from K to yield a
minimal strong triangulation graph H of Gm;

4 Construct Strong Junction Tree: Apply the SMCS algorithm to the minimal
strong triangulation graph H for generating a strong junction tree T.

5. The Exchange Operation for Mixed Bayesian Networks

In this paper, our focus lies on directed acyclic graphs (DAGs) denoted as
G = (V = ∆

⋃
Γ, E). Here, the vertices of ∆ represent discrete variables, while those of Γ

represent continuous variables. To exploit conditional linear Gaussian (CLG) distributions
for modeling, we make an additional assumption that no continuous variables have discrete
children in G. A mixed Bayesian network N= (G,P ,F ) with CLG distributions comprises
a DAG G, a set of conditional probability distributions P= {p(X|pa(X)) : X ∈ ∆}, and
a set of CLG density functions F= { f (Y|pa(Y)) : Y ∈ Γ}, where pa(Z) is the set of the
parents of Z in G. A mixed Bayesian network N has a joint distribution of the form:
p(∆) · f (Γ|∆) = ∏

X∈∆
p(X|pa(X)) · ∏

Y∈Γ
f (Y|pa(Y)). Let Y be a continuous variable and

I = pa(Y) ∩ ∆ and Z = pa(Y) ∩ Γ. Given variables I = i and Z = z, the conditional
distribution of Y is N(α(i) + β(i)Tz, σ2(i)), where α(i) is a table of real numbers, β(i) is a
table of |Z|−dimensional vectors, and σ2(i) is a table of non-negative values.

To compute all the marginal posteriors given evidence in mixed Besian networks,
we employ propagation computation based on message passing within a strong junction
tree structure. During message passing, barren variables [26] in the local structure can be
directly eliminated without computation. And exchange operations [11] can avoid complex
matrix operations, and make for finding barren variables [27]. In this section, we will
discuss the usage of exchange operations in mixed Bayesian networks in detail.

Assume that Z, Y, Y1, · · · , Yn are continuous variables and there is a pair of conditional
Gaussian distributions:

L(Y|Y1 = y1, · · · , Yn = yn) ∼ N(aY +
n

∑
i=1

b(i)Y yi, σ2
Y) (1)

L(Z|Y = y, Y1 = y1, · · · , Yn = yn) ∼ N(aZ +
n

∑
i=1

b(i)Z yi + bZy, σ2
Z) (2)

The exchange operation, equivalent to Theorem 1 of the work [28], converts (1) and (2)
into another pair of distributions:

L(Z|Y1 = y1, · · · , Yn = yn)

∼ N(aZ +
n

∑
i=1

b(i)Z yi + bZ(aY +
n

∑
i=1

b(i)Y yi), σ2
Z + b2

Zσ2
Y)

(3)
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L(Y|Z = z, Y1 = y1, · · · , Yn = yn) ∼ N(
h

σ2
Z + b2

Zσ2
Y

,
σ2

Zσ2
Y

σ2
Z + b2

Zσ2
Y
) (4)

where h = b2
Zσ2

Yz + σ2
Z(aY +

n
∑

i=1
b(i)Y yi) − bZσ2

Y(aZ +
n
∑

i=1
b(i)Z yi). These formulae from

Cowell [11] are essentially from the Bayes’ theorem. (3) and (4) keep the same joint distri-
bution as (1) and (2).

Let us consider exchange operations in mixed Bayesian networks N= (G,P ,F ).
Assume that Y, Z ∈ Γ, Y ∈ pa(Z) and there are no other directed paths from Y to Z in G. The
parent set pa(Y) of Y is partitioned into A1 and A2, where A1 = pa(Y)

⋂
∆ = {X′

1, · · · , X′
s}

and A2 = pa(Y)
⋂

Γ = {U1, · · · , Uk}. Similarly, the parent set pa(Z) of Z is partitioned into
B1 and B2, where B1 = pa(Z)

⋂
∆ = {X′′

1 , · · · , X′′
t } and B2 = pa(Z)

⋂
Γ = {Y, W1, · · · , Wl}.

The conditional density fY of Y and fZ of Z have the following forms:

fY = L(Y|(X′
1, · · · , X′

s) = iA1 , U1 = u1, · · · , Uk = uk)

∼ N(aY(iA1) +
k

∑
j=1

b(j)
Y (iA1)uj, σ2

Y(iA1))
(5)

fZ = L(Z|(X′′
1 , · · · , X′′

t ) = iB1 , Y = y, W1 = w1, · · · , Wl = wl)

∼ N(aZ(iB1) +
l

∑
j=1

b(j)
Z (iB1)wj + bZ(iB1)y, σ2

Z(iB1))
(6)

Since there are no other directed paths from Y to Z except Y → Z, variables in pa(Z) \ {Y}
are non-descendants of Y. By conditional independence relations in Bayesian networks, we
have that

L(Y|pa(Y), pa(Z) \ {Y}) = L(Y|pa(Y)). (7)

Similarly, we also have that

L(Z|Y, pa(Z) \ {Y}, pa(Y)) = L(Z|pa(Z)) (8)

since any parent vertex of Y is non-descendant of Z. Denote A1
⋃

B1 as C = {X1, · · · , Xm},
and A2

⋃
B2 as {Y1, · · · , Yn}. Thus from Equations (5)–(8), we have that:

L(Y|(X1, · · · , Xm) = iC, Y1 = y1, · · · , Yn = yn)

∼ N(aY(iA1) +
n

∑
j=1

b(j)
Y (iA1)yj, σ2

Y(iA1))
(9)

L(Z|(X1, · · · , Xm) = iC, Y = y, Y1 = y1, · · · , Yn = yn)

∼ N(aZ(iB1) +
n

∑
j=1

b(j)
Z (iB1)yj + bZ(iB1)y, σ2

Z(iB1)).
(10)

For any 1 ≤ t ≤ n, thus Yt ∈ {U1, · · · , Uk} or Yt ∈ {W1, · · · , Wl}. If Ym ̸∈ {U1, · · · , Uk} for
some 1 ≤ m ≤ n, thus, b(m)

Y ≡ 0. Similarly, if Ym ̸∈ {W1, · · · , Wl} for some 1 ≤ m ≤ n, thus

b(m)
Z ≡ 0. The exchange operation can convert Equations (5) and (6) into the following pair

f ′Y, f ′Z of conditional densities:

f ′Z = L(Z|(X1, · · · , Xm) = iC, Y1 = y1, · · · , Yn = yn)

∼ N(aZ(iB1) +
n

∑
j=1

b(j)
Z (iB1)yj + bZ(iB1)(aY(iA1)

+
n

∑
j=1

b(j)
Y (iA1)yj), σ2

Z(iB1) + b2
Z(iB1)σ

2
Y(iA1))

(11)
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f ′Y = L(Y|(X1, · · · , Xm) = iC, Z = z, Y1 = y1, · · · , Yn = yn)

∼ N(
h′

σ2
Z(iB1) + b2

Z(iB1)σ
2
Y(iA1)

,
σ2

Z(iB1)σ
2
Y(iA1)

σ2
Z(iB1) + b2

Z(iB1)σ
2
Y(iA1)

)
(12)

where h′ = b2
Z(iB1)σ

2
Y(iA1)z + σ2

Z(iB1)(aY(iA1) +
n
∑

j=1
b(j)

Y (iA1)yj)−bZ(iB1)σ
2
Y(iA1) (aZ(iB1) +

n
∑

j=1
b(j)

Z (iB1)yj).

Following the exchange operation, we reconstruct the mixed Bayesian network G
into G′ based on the altered conditional distributions of Y and Z. Specifically, the new
network G′ is the same as the original G except that Z → Y and X → Z, X′ → Y in G′ for
any X ∈ pa(Y) and X′ ∈ pa(Z) \ {Y}. And since Y ∈ pa(Z) and no other directed path
exists from Y to Z in G, it can be verified that the new network G′ is also a DAG. Thus,
N ′ = (G′,P ,F ′) is also a mixed Bayesian network with the same joint distribution with
N , where F ′ = F ⋃{ f ′Y, f ′Z} \ { fY, fZ}. The process from G to G′ is called arc-reversal.
By using arc-reversals step by step, any continuous variable can become a node with no
children. Thus, the exchange operation provides us a method to eliminate continuous
variables and avoids matrix operations [11].

Now, we consider handling discrete variables by using the exchange operation. Let
Q ∈ ∆ with parent set pa(Q) = {X1, · · · , Xn} ⊆ ∆ and let X ∈ ∆ with parent set pa(X) =
{Q, X1 · · · , Xn} ⊆ ∆. p(Q|X1, · · · , Xn) and p(X|Q, X1, · · · , Xn) are the corresponding
probabilities of Q and X, respectively. The exchange operation converts the above pair of
conditional probabilities into p(X|X1, · · · , Xn) and p(Q|X, X1, · · · , Xn), which maintain
the same joint probability distribution of the original pair:

p(X|X1, · · · , Xn) = ∑
X

p(X|Q, X1, · · · , Xn)p(Q|X1, · · · , Xn), (13)

p(Q|X, X1, · · · , Xn) =
p(X|Q, X1, · · · , Xn)p(Q|X1, · · · , Xn)

p(X|X1, · · · , Xn)
. (14)

From (13) and (14), the exchange operation converts pQ and pX into the following two
conditional probabilities p′Q, p′X :

p′X = p(X|X1, · · · , Xn) = ∑
Q

p(X|pa(X))p(Q|pa(Q)), (15)

p′Q = p(Q|X, X1, · · · , Xn) =
p(X|pa(X))p(Q|pa(Q))

p(X|X1, · · · , Xn)
, (16)

by the assumption that there are no other directed paths from Q to X in G.
After the exchange operation, similar to the case of continuous variables, the mixed

Bayesian network G can be reconstructed into G′ according to the changed conditional
distributions of Q and X. G′ is the same as G except that X → Q and X1 → X, X2 → Q in G′

for any X1 ∈ pa(Q) and X2 ∈ pa(X) \ {Q}, and G′ is also a DAG. Thus, N ′ = (G′,P ′,F )
is also a mixed Bayesian network with the same joint distribution with N , where P ′ =
P ⋃{p′Y, p′Z} \ {pY, pZ}. The process from G to G′ is also called arc-reversal.

In this paper, arc-reversals for discrete variables with no continuous children are
only used in message passing for further finding barren variables, and the lazy prop-
agation [12,27,29] is also utilized to improve the computational efficiency. Following
message passing, direct variable eliminations [30] are used to eliminate discrete variables
in the marginal posterior computation.

6. Message Passing and Posterior Computing

Let H(p) denote the head variable of p ∈ P and T(p) the tail variables of p ∈ P .
For instance, if p(X|X1, · · · , Xn), then H(p) = {X} and T(p) = {X1, · · · , Xn}. Let
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dom(p) = H(p) ∪ T(p) denote the domain of p. H( f ), T( f ) and dom( f ) are similarly
defined for f ∈ F . A potential π is represented as (Pπ ,Fπ), where Pπ denotes the
set of conditional probability and Fπ denotes that related to conditional density. The
combination of two potentials, π1 = (Pπ1 ,Fπ1) and π2 = (Pπ2 ,Fπ2), is defined as
π1

⊗
π2 = (Pπ1

⋃Pπ2 ,Fπ1

⋃Fπ2).
Let T = (C, ET) be a strong junction tree of H, which is a minimal strong triangulation

of Gm. For any p ∈ P , choose a clique C ∈ C such that H(p)
⋃

T(p) ⊆ C and allocate p to
C. For any f ∈ F , choose a clique C ∈ C such that H( f )

⋃
T( f ) ⊆ C and allocate f to C.

For any clique A ∈ C, A has an original potential πA = (PπA ,FπA), where PπA = {p ∈ P|
p is allocated to A} and FπA = { f ∈ F| f is allocated to A}.

Assume that two cliques A, B ∈ C are adjacent on T and the current potential π′
A of A

is (Pπ′
A

,Fπ′
A
). We define D = (

⋃
p∈Pπ′

A

dom(p))
⋃
(

⋃
f∈Fπ′

A

dom( f )) as the union of domains

of all variable in Pπ′
A

and Fπ′
A

, and R = D \ S, where S = A
⋂

B. Let G′ be a DAG induced
by the current potential π′

A. The information potential πA→B from A to B is computed by
the following operations:

(1) Find barren variables N [12] with respect to set S, evidence ϵ and DAG G′. Remove
conditional probabilities and densities from π′

A, whose head variable is contained in N, and
the remaining potential is denoted by π1. Remove N from G′ and the remaining graph is
denoted by G′′ = G′(D \ N). Let X be the set d-connected to S about ϵ

⋂
R in G′′. Remove

conditional probabilities and densities from π1, whose domain has no variables in S
⋃

X.
The resulting potential is denoted by π2. The set X can be partitioned into Xd and Xc,
which denote discrete and continuous non-evidence variables, respectively.

(2) Eliminate variables in Xc by exchange operations. Based on these operations, con-
ditional densities of π2 are changed, and those densities whose head variable is contained
in Xc are removed from π2. The remaining potential is denoted by π3.

(3) Eliminate variables in Xd with no continuous children by exchange operations. Let
Φ(x) denote {p ∈ π3|x ∈ dom(p)}. If | ⋃

p∈Φ(x)
dom(p)| > δ for some proper δ, exchange op-

erations for eliminating x are delayed. Based on these operations, conditional probabilities
of π3 are changed, and those probabilities whose head variable x is contained in Xd and
| ⋃

p∈Φ(x)
dom(p)| ≤ δ are removed from π3.

By these operations, the remaining potential is denoted by (Pπ′
A

,Fπ′
A
)↓B. Thus,

πA→B = (Pπ′
A

,Fπ′
A
)↓B = π′

A
↓B. When considering the information from A to B, the cur-

rent potential π′
A is the combination of the original potential of A with all the information

from the clique C ∈ adjT(A) \ {B} to A. Then, πA→B = (πA
⊗
(

⊗
C∈adjT(A)\{B}

πC→A))
↓B.

∀X ∈ V, there is a clique A containing X. To compute the posterior distribution
P(X|ϵ = e) of X,

π = πA
⊗

(
⊗

C∈adjT(A)

πC→A) (17)

D = (
⋃

p∈Pπ

dom(p))
⋃
(

⋃
f∈Fπ

dom( f )) (18)

ϕ = ∏
p∈Pπ

p � ∏
f∈Fπ

f (19)

P(X|ϵ = e) =

∑
D∩∆\{ϵ

⋃{x}}
· · ·

∫
D∩Γ\{ϵ

⋃{x}}
ϕ

∑
D∩∆\ϵ

· · ·
∫

D∩Γ\ϵ

ϕ
(20)
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For Equation (20), exchange operations are performed on continuous variables, and
the sum-out procedure [14] is used to eliminate discrete variables. Thus we can obtain the
following Algorithm 2 for computing all the posteriors:

Algorithm 2: Propagation Computation for All the Posteriors.
Input : A mixed Bayesian network N= (G,P ,F ) with given evidence

variable set ϵ = e
Output : All the posteriors for non-evidence variables

1 Construct a strong junction tree T on G by Algorithm 1;
2 Choose a clique in the strong junction tree T as the root R;
3 Perform inward message passing to the root such that root R receives

information from its neighbors;
4 Perform outward message passing from the root such that each clique in T

receives information from its neighbors;
5 Compute the posterior P(X|ϵ = e) for each non-evidence variable X by

Equations (17)–(20).

7. Numerical Experiment

Our experiments were conducted on a collection of randomly generated CLG sparse
Bayesian networks consisting of n variables and ⌊n log(log(n))⌋ edges. Referring to the
work [12], we set the number of variables n to {50, 75, 100} and the ratio of continuous vari-
ables to {0, 0.25, 0.5, 0.75, 1}. With this simulation setting, we can evaluate the performances
of our method across various sizes of mixed Bayesian networks and different proportions
of continuous variables. For each network size, each proportion of continuous variables,
and each size of the evidence set, one hundred networks were randomly generated, with
each discrete variable having two states. These experiments were conducted using C++ on
a PC equipped with an Intel Core i9-9900X CPU running at 3.5GHz. We mainly utilized
three standard libraries in C++: <vector>, <random>, and <algorithm>. The <vector>
library is a versatile container for dynamic arrays but often allocates more memory than
necessary, leading to potential overhead. The <random> library offers a comprehensive set
of tools for generating random numbers but may produce inconsistent sequences across
different platforms due to varying implementations. The <algorithm> library provides a
rich set of functions for operations on data sequences, like sorting and searching, but does
not directly support complex data structures such as graphs and trees.

In our experiments, the average time required to find minimal strong triangulations
and strong junction trees for networks with 50, 75, and 100 variables is approximately
0.0005, 0.0014, and 0.0031 s, respectively. These results demonstrate that the algorithm
outlined in Section 4 is efficient in producing strong junction trees for mixed Bayesian
networks. Subsequent belief updates based on these strong junction trees are also carried
out in our experiments.

Figures 1–3 depict the average time costs of the propagation computation of our
method, including both message passing and the posterior computation for all non-
evidence variables, across networks with 50, 75, and 100 variables. Meanwhile, Figures 4–6
display the median time costs of the propagation computation. As shown in Figures 1–6,
the speed of belief updates in networks only containing continuous variables remains con-
sistently fast, whether considering the average or median time costs. Moreover, as shown in
Figures 5 and 6, at low numbers of instantiations, a low proportion of continuous variables
tends to increase the median time costs for belief updates in Bayesian networks. This is
due to the state space size of the largest clique potentially being larger in networks with a
lower proportion of continuous variables compared to networks with a higher proportion,
under similar conditions. However, once the number of instantiations exceeds half of
the variables, the discrepancy among networks with varying proportions of continuous
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variables becomes small. This reduction occurs because the average largest discrete domain
size decreases as the size of the evidence set increases [12].

A notable observation when comparing the average time costs depicted in Figure 3
with the median time costs shown in Figure 6 is the significant disparity between the two
measures. This disparity arises primarily from the considerable variance in time costs
resulting from the random sampling of Bayesian networks. For instance, in networks
with 100 variables, a continuous variable proportion of 0.5, and 10 pieces of evidence, the
average time is 54.3024 s with a standard deviation of 538.1081, while the median time is
0.1355 s. It is evident that this huge average time is caused by certain outliers in the time
cost for 100 randomly generated networks. The reason for this abnormal result may lie in
the generation of large-scale cliques with discrete variables under certain random seeds
when the size of the evidence set is ten.
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Figure 1. Average time in seconds for belief update in networks with 50 variables.
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Figure 2. Average time in seconds for belief update in networks with 75 variables.

Figure 3. Average time in seconds for belief update in networks with 100 variables.
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Figure 4. Median time in seconds for belief update in networks with 50 variables.
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Figure 5. Median time in seconds for belief update in networks with 75 variables.

Figure 6. Median time in seconds for belief update in networks with 100 variables.

For a further analysis of the efficiency of our method, we conducted a comparative
study with two existing packages: CGBayesNets (a MATLAB package [15]) and BayesNetBP
(an R package [16]). Figure 7 illustrates the average time costs on propagation computation
of three methods for 100 randomly generated networks, each comprising 50 variables.
In the left panel, the size of the evidence set is fixed at five, while in the right panel, the
proportion of continuous variables is set to 0.5. As shown in both panels, it is evident that
our method outperforms the other two methods in terms of computational speed.
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Figure 7. Time costs of propagation computation for our method, CGBayesNets, and BayesNetBP.

8. Conclusions

The Bayesian network is a prominent predictive modeling framework, where its nodes
often represent genes or proteins interconnected by edges denoting relationships. These
edges, informed by experimental data, impart a predictive capability to Bayesian computa-
tional methods [15,31], capturing both the strength and direction of connections. Despite
over two decades of development in mixed Bayesian networks, combining continuous and
discrete variables [8], the field still lacks efficient algorithms for identifying appropriate
strong junction trees in their moral graphs. In our study, we address this gap by investigat-
ing the minimal strong triangulation of moral graphs and presenting a polynomial-time
algorithm for deriving strong junction trees based on this approach. Moreover, we also
consider the message passing computation of all posteriors on this derived strong junction
tree. Our experimental findings affirm the superior efficiency of our algorithm compared to
existing methods for message passing in mixed Bayesian networks. The proposed approach
not only demonstrates remarkable improvements in computational speed but also pro-
vides a robust framework for efficient probabilistic inference in mixed Bayesian networks,
making it a valuable tool for diverse applications in bioinformatics, computational biology,
and neuroscience.
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