Wafer Delay Minimization in Scheduling Single-Arm Cluster Tools with Two-Space Process Modules
Abstract
:1. Introduction
2. System Analysis
2.1. Two-Wafer Backward Strategy
2.2. Properties of the System
3. Scheduling and Wafer Delay Time Minimization
Algorithm 1: For an SACT with two-space PMs operated by the two-wafer backward strategy under a steady state, if Πmax − φ1 ≥ , then ωi, i ∈ Nn, is determined as follows: | ||
(1) | i = 1; | |
(2) | While i ≤ n | |
(3) | ωi−1 = mi × (Πmax − ΠiL); | |
(4) | i = i + 1; | |
(5) | End | |
(6) | ωn = Πmax − φ1 − ; |
Algorithm 2: For an SACT with two-space PMs operated by the two-wafer backward strategy under a steady state, if 0 < Πmax − φ1 < , then ωi, i ∈ Nn, is determined as follows: | ||||
(1) | φ2 = Πmax − φ1; | |||
(2) | While φ2 > 0 | |||
(3) | i = argmax(PV); | |||
(4) | if φ2 ≥ mi × (Πmax − ΠiL) | |||
(5) | ωi−1 = mi × (Πmax − ΠiL); | |||
(6) | φ2 = φ2 − mi × (Πmax − ΠiL); | |||
(7) | Else | |||
(8) | ωi−1 = φ2; | |||
(9) | φ2 = 0; | |||
(10) | End | |||
(11) | PV(i) = −1; | |||
(12) | End | |||
(13) | j = max(PV(i) | i ∈ ); | |||
(14) | While j ≥ 0 | |||
(15) | i = argmax(PV); | |||
(16) | ωi−1 = 0; | |||
(17) | PV(i) = −1; | |||
(18) | j = max(PV(i) | i ∈ ); | |||
(19) | End | |||
(20) | ωn = 0; |
Algorithm 3: For an SACT with two-space PMs operated by the two-wafer backward strategy under a steady state, if Πmax < φ1, then ωi, i ∈ Nn, is determined as follows: | |||
(1) | i = 0; | ||
(2) | While i ≤ n | ||
(3) | ωi = 0; | ||
(4) | i = i + 1; | ||
(5) | End |
4. Case Studies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, J.-H.; Kim, H.-J. Completion time analysis of wafer lots in single-armed cluster tools with parallel processing modules. IEEE Trans. Autom. Sci. Eng. 2017, 14, 1622–1633. [Google Scholar] [CrossRef]
- Wang, J.; Liu, C.; Zhou, M.; Leng, T.; Albeshri, A. Optimal cyclic scheduling of wafer-residency-time-constrained du-al-arm cluster tools by configuring processing modules and robot waiting time. IEEE Trans. Semicond. Manuf. 2023, 36, 251–259. [Google Scholar] [CrossRef]
- Pan, C.; Qiao, Y.; Wu, N.; Zhou, M. A novel algorithm for wafer sojourn time analysis of single-arm cluster tools with wafer residency time constraints and activity time variation. IEEE Trans. Syst. Man Cybern. Syst. 2014, 45, 805–818. [Google Scholar] [CrossRef]
- Kim, C.; Lee, T.-E. Feedback control design for cluster tools with wafer residency time constraints. In Proceedings of the 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Seoul, Republic of Korea, 14–17 October 2012; pp. 3063–3068. [Google Scholar]
- Qiao, Y.; Wu, N.; Zhou, M. Schedulability and scheduling analysis of dual-arm cluster tools with wafer revisiting and residency time constraints based on a novel schedule. IEEE Trans. Syst. Man Cybern. Syst. 2014, 45, 472–484. [Google Scholar] [CrossRef]
- Kim, H.-J.; Lee, J.-H. Closed-form expressions on lot completion time for dual-armed cluster tools with parallel processing modules. IEEE Trans. Autom. Sci. Eng. 2018, 16, 898–907. [Google Scholar] [CrossRef]
- Kim, D.-K.; Lee, T.-E.; Kim, H.-J. Optimal scheduling of transient cycles for single-armed cluster tools with parallel chambers. IEEE Trans. Autom. Sci. Eng. 2015, 13, 1165–1175. [Google Scholar] [CrossRef]
- Yang, F.; Qiao, Y.; Gao, K.; Wu, N.; Zhu, Y.; Simon, I.W.; Su, R. Efficient approach to scheduling of transient processes for time-constrained single-arm cluster tools with parallel chambers. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 3646–3657. [Google Scholar] [CrossRef]
- Kim, J.-H.; Lee, T.-E.; Lee, H.-Y.; Park, D.-B. Scheduling analysis of time-constrained dual-armed cluster tools. IEEE Trans. Semicond. Manuf. 2003, 16, 521–534. [Google Scholar] [CrossRef]
- Lee, T.-E.; Park, S.-H. An extended event graph with negative places and tokens for time window constraints. IEEE Trans. Autom. Sci. Eng. 2005, 2, 319–332. [Google Scholar] [CrossRef]
- Wang, J.; Pan, C.; Hu, H.; Li, L.; Zhou, Y. A cyclic scheduling approach to single-arm cluster tools with multiple wafer types and residency time constraints. IEEE Trans. Autom. Sci. Eng. 2018, 16, 1373–1386. [Google Scholar] [CrossRef]
- Jung, C.; Lee, T.-E. An efficient mixed integer programming model based on timed petri nets for diverse complex cluster tool scheduling problems. IEEE Trans. Semicond. Manuf. 2011, 25, 186–199. [Google Scholar] [CrossRef]
- Jung, C.; Kim, H.-J.; Lee, T.-E. A branch and bound algorithm for cyclic scheduling of timed petri nets. IEEE Trans. Autom. Sci. Eng. 2013, 12, 309–323. [Google Scholar] [CrossRef]
- Perkinson, T.; McLarty, P.; Gyurcsik, R.; Cavin, R. Single-wafer cluster tool performance: An analysis of throughput. IEEE Trans. Semicond. Manuf. 1994, 7, 369–373. [Google Scholar] [CrossRef]
- Perkinson, T.; Gyurcsik, R.; McLarty, P. Single-wafer cluster tool performance: An analysis of the effects of redundant chambers and revisitation sequences on throughput. IEEE Trans. Semicond. Manuf. 1996, 9, 384–400. [Google Scholar] [CrossRef]
- Venkatesh, S.; Davenport, R.; Foxhoven, P.; Nulman, J. A steady-state throughput analysis of cluster tools: Dual-blade versus single-blade robots. IEEE Trans. Semicond. Manuf. 1997, 10, 418–424. [Google Scholar] [CrossRef]
- Zuberek, W. Timed Petri nets in modeling and analysis of cluster tools. IEEE Trans. Robot. Autom. 2001, 17, 562–575. [Google Scholar] [CrossRef]
- Chan, W.K.V.; Yi, J.; Ding, S. Optimal scheduling of multicluster tools with constant robot moving times, part I: Two-cluster analysis. IEEE Trans. Autom. Sci. Eng. 2010, 8, 5–16. [Google Scholar] [CrossRef]
- Yi, J.; Ding, S.; Song, D.; Zhang, M.T. Steady-state throughput and scheduling analysis of multicluster tools for semiconductor manufacturing: A decomposition approach. IEEE Trans. Autom. Sci. Eng. 2008, 5, 321–336. [Google Scholar]
- Ko, S.-G.; Yu, T.-S.; Lee, T.-E. wafer delay analysis and workload balancing of parallel chambers for dual-armed cluster tools with multiple wafer types. IEEE Trans. Autom. Sci. Eng. 2021, 18, 1516–1526. [Google Scholar] [CrossRef]
- Lee, T.-E.; Lee, H.-Y.; Shin, Y.-H. Workload balancing and scheduling of a single-armed cluster tool. In Proceedings of the Fifth Asia Pacific Industrial Engineering and Management Systems Conference, Brisbane, Australia, 12–15 December 2004; pp. 1–15. [Google Scholar]
- Xiong, W.; Pan, C.; Qiao, Y.; Wu, N.; Chen, M.; Hsieh, P. Reducing wafer delay time by robot idle time regulation for sin-gle-arm cluster tools. IEEE Trans. Autom. Sci. Eng. 2020, 18, 1653–1667. [Google Scholar] [CrossRef]
- Zhu, Q.; Qiao, Y.; Wu, N.; Hou, Y. Post-processing time-aware optimal scheduling of single robotic cluster tools. IEEE/CAA J. Autom. Sin. 2020, 7, 597–605. [Google Scholar] [CrossRef]
- Jacob, R.; Amari, S. Output feedback control of discrete processes under time constraint: Application to cluster tools. Int. J. Comput. Integr. Manuf. 2016, 30, 880–894. [Google Scholar] [CrossRef]
- Kim, C.; Lee, T.-E. Feedback control of cluster tools for regulating wafer delays. IEEE Trans. Autom. Sci. Eng. 2015, 13, 1189–1199. [Google Scholar] [CrossRef]
- Lim, Y.; Yu, T.-S.; Lee, T.-E. A New class of sequences without interferences for cluster tools with tight wafer delay constraints. IEEE Trans. Autom. Sci. Eng. 2018, 16, 392–405. [Google Scholar] [CrossRef]
- Roh, D.-H.; Lee, T.-G. K-Cyclic schedules and the worst-case wafer delay in a dual-armed cluster tool. IEEE Trans. Semicond. Manuf. 2019, 32, 236–249. [Google Scholar] [CrossRef]
- Zhou, B.-H.; Li, M. Scheduling method of robotic cells with robot-collaborated process and residency constraints. Int. J. Comput. Integr. Manuf. 2016, 30, 1164–1178. [Google Scholar] [CrossRef]
- Zhu, Q.; Wang, G.; Hou, Y.; Wu, N.; Qiao, Y. Optimally scheduling dual-arm multi-cluster tools to process two wafer types. IEEE Robot. Autom. Lett. 2022, 7, 5920–5927. [Google Scholar] [CrossRef]
- Kim, W.; Yu, T.-S.; Lee, T.-E. Integrated scheduling of a dual-armed cluster tool for maximizing steady schedule patterns. IEEE Trans. Syst. Man Cybern. Syst. 2020, 51, 7282–7294. [Google Scholar] [CrossRef]
- Kim, J.-H.; Lee, T.-E. Schedulability analysis of time-constrained cluster tools with bounded time variation by an extended petri net. IEEE Trans. Autom. Sci. Eng. 2008, 5, 490–503. [Google Scholar] [CrossRef]
- Wu, N.; Zhou, M. Analysis of wafer sojourn time in dual-arm cluster tools with residency time constraint and activity time variation. IEEE Trans. Semicond. Manuf. 2010, 23, 53–64. [Google Scholar] [CrossRef]
- Wu, N.; Zhou, M. Schedulability analysis and optimal scheduling of dual-arm cluster tools with residency time constraint and activity time variation. IEEE Trans. Autom. Sci. Eng. 2011, 9, 203–209. [Google Scholar] [CrossRef]
- Qiao, Y.; Wu, N.; Zhou, M. Petri net modeling and wafer sojourn time analysis of single-arm cluster tools with residency time constraints and activity time variation. IEEE Trans. Semicond. Manuf. 2012, 25, 432–446. [Google Scholar] [CrossRef]
- Qiao, Y.; Wu, N.; Zhou, M. Real-time scheduling of single-arm cluster tools subject to residency time constraints and bounded activity time variation. IEEE Trans. Autom. Sci. Eng. 2012, 9, 564–577. [Google Scholar] [CrossRef]
- Yang, F.; Wu, N.; Qiao, Y.; Su, R.; Zhang, C. (Digital twin) Wafer sojourn time fluctuation analysis for time-constrained dual-arm multi-cluster tools with activity time variation. Int. J. Comput. Integr. Manuf. 2021, 34, 734–751. [Google Scholar] [CrossRef]
- Lim, Y.; Yu, T.-S.; Lee, T.-E. Adaptive scheduling of cluster tools with wafer delay constraints and process time variation. IEEE Trans. Autom. Sci. Eng. 2020, 17, 375–388. [Google Scholar] [CrossRef]
- Kim, C.; Yu, T.-S.; Lee, T.-E. Feedback control of cluster tools: Stability against random time disruptions. IEEE Trans. Autom. Sci. Eng. 2021, 19, 2008–2015. [Google Scholar] [CrossRef]
- Kim, T.-K.; Jung, C.; Lee, T.-E. Scheduling start-up and close-down periods of dual-armed cluster tools with wafer delay regulation. Int. J. Prod. Res. 2012, 50, 2785–2795. [Google Scholar] [CrossRef]
- Qiao, Y.; Zhou, M.; Wu, N.; Zhu, Q. Scheduling and control of startup process for single-arm cluster tools with residency time constraints. IEEE Trans. Control. Syst. Technol. 2016, 25, 1243–1256. [Google Scholar] [CrossRef]
- Qiao, Y.; Zhou, M.; Wu, N.; Li, Z.; Zhu, Q. Closing-down optimization for single-arm cluster tools subject to wafer residency time constraints. IEEE Trans. Syst. Man Cybern. Syst. 2020, 51, 6792–6807. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhou, M.; Qiao, Y.; Wu, N. Petri net modeling and scheduling of a close-down process for time-constrained sin-gle-arm cluster tools. IEEE Trans. Syst. Man Cybern. Syst. 2018, 48, 389–400. [Google Scholar] [CrossRef]
- Pan, C.R.; Qiao, Y.; Zhou, M.C.; Wu, N.Q. Scheduling and analysis of start-up transient processes for dual-arm cluster tools with wafer revisiting. IEEE Trans. Semicond. Manuf. 2015, 28, 160–170. [Google Scholar] [CrossRef]
- Kim, H.-J.; Lee, J.-H.; Jung, C.; Lee, T.-E. Scheduling cluster tools with ready time constraints for consecutive small lots. IEEE Trans. Autom. Sci. Eng. 2012, 10, 145–159. [Google Scholar] [CrossRef]
- Kim, H.-J.; Lee, J.-H.; Lee, T.-E. Noncyclic scheduling of cluster tools with a branch and bound algorithm. IEEE Trans. Autom. Sci. Eng. 2013, 12, 690–700. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, H.-J. Makespan analysis of lot switching period in cluster tools. IEEE Trans. Semicond. Manuf. 2016, 29, 127–136. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, H.-J.; Lee, T.-E. Scheduling transient periods of dual-armed cluster tools. In Proceedings of the IEEE International Conference on Mechatronics and Automation, Chengdu, China, 5–8 August 2012; pp. 1569–1574. [Google Scholar]
- Lee, J.-H.; Kim, H.-J.; Lee, T.-E. Scheduling lot switching operations for cluster tools. IEEE Trans. Semicond. Manuf. 2013, 26, 592–601. [Google Scholar] [CrossRef]
- Wu, N.; Chu, C.; Chu, F.; Zhou, M.C. A petri net method for schedulability and scheduling problems in single-arm cluster tools with wafer residency time constraints. IEEE Trans. Semicond. Manuf. 2008, 21, 224–237. [Google Scholar] [CrossRef]
- Wu, N.; Zhou, M. A closed-form solution for schedulability and optimal scheduling of dual-arm cluster tools with wafer residency time constraint based on steady schedule analysis. IEEE Trans. Autom. Sci. Eng. 2009, 7, 303–315. [Google Scholar] [CrossRef]
- Proth, J.-M. Petri nets for modelling and evaluating deterministic and stochastic manufacturing systems. In Proceedings of the Seventh International Workshop on Petri Nets and Performance Models, Saint Malo, France, 3–6 June 1997; pp. 2–14. [Google Scholar]
- Murata, T. Petri nets: Properties, analysis and applications. Proc. IEEE 1989, 77, 541–580. [Google Scholar] [CrossRef]
- Lee, J.S.; Zhou, M.; Hsu, P.L. A Petri-Net Approach to Modular Supervision With Conflict Resolution for Semiconductor Manufacturing Systems. IEEE Trans. Autom. Sci. Eng. 2007, 4, 584–588. [Google Scholar] [CrossRef]
- Wu, N. Necessary and sufficient conditions for deadlock-free operation in flexible manufacturing systems using a colored Petri net model. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 1999, 29, 192–204. [Google Scholar] [CrossRef]
- Wu, N.; Zhou, M. Avoiding deadlock and reducing starvation and blocking in automated manufacturing systems. IEEE Trans. Robot. Autom. 2001, 17, 658–669. [Google Scholar] [CrossRef]
- Wu, N.; Zhou, M.C. System Modeling and Control with Resource-Oriented Petri Nets; CRC Press: New York, NY, USA; Taylor & Francis Group: Abingdon, UK, 2009. [Google Scholar]
Symbol | Actions | Time |
---|---|---|
UDi | A robot unloading task at a PM of Step i, i ∈ . | λ |
LDi | A robot loading task at a PM of Step i, i ∈ . | λ |
Mi,j | A robot moving task from Step i to j, i ∈ , j ∈ . | μ |
The rotation activity of a PM at Step i after Ui is performed at the PM, i ∈ . | r | |
The rotation activity of a PM at Step i after Li is performed at the PM, i ∈ . | r | |
Ai | A robot task to wait for the completion of two wafers in a PM of Step i, i ∈ . | ωi |
A robot task to wait for the rotation of a PM before Ui2. | ||
A robot task to wait for the rotation of a PM before Li2 | ||
τi1 | The sojourn time of Wafer-i1 at a PM at Step i, i ∈ | τi1 ≥ αi |
τi2 | The sojourn time of Wafer-i2 at a PM at Step i, i ∈ | τi2 ≥ αi |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, C.; Zhang, S.; Zeng, S.; Gu, L.; Li, J. Wafer Delay Minimization in Scheduling Single-Arm Cluster Tools with Two-Space Process Modules. Mathematics 2024, 12, 1783. https://doi.org/10.3390/math12121783
Zou C, Zhang S, Zeng S, Gu L, Li J. Wafer Delay Minimization in Scheduling Single-Arm Cluster Tools with Two-Space Process Modules. Mathematics. 2024; 12(12):1783. https://doi.org/10.3390/math12121783
Chicago/Turabian StyleZou, Chengyu, Siwei Zhang, Shan Zeng, Lei Gu, and Jie Li. 2024. "Wafer Delay Minimization in Scheduling Single-Arm Cluster Tools with Two-Space Process Modules" Mathematics 12, no. 12: 1783. https://doi.org/10.3390/math12121783
APA StyleZou, C., Zhang, S., Zeng, S., Gu, L., & Li, J. (2024). Wafer Delay Minimization in Scheduling Single-Arm Cluster Tools with Two-Space Process Modules. Mathematics, 12(12), 1783. https://doi.org/10.3390/math12121783