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Abstract: This paper presents an adaptive slicing method for Hermite non-planar tessellated sur-
faces models to improve the geometric accuracy of Rapid Prototyping (RP). Based on the bending
characteristics of Hermite curved triangles, a slicing method for a complete Hermite surface model,
including the grouping, the construction of the topological relationships, and the calculation of the
intersection contours, was employed. The adaptive layering method considering the normal vector
at the vertexes of the Hermite curved triangles was employed to grain the variable thickness of all
layers of the Hermite surface model. The classical Stanford bunny model illustrates the significant
improvement in the accuracy of the proposed method compared to the traditional method.
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1. Introduction

Rapid Prototyping (RP) or Layer Manufacturing (LM) refers to the fabrication of parts
layer-by-layer. At present, RP has been widely used in the automobile and aerospace
industries and other fields [1–4]. However, geometric dimensioning and tolerancing errors
in the parts manufactured by RP is still widespread [5,6]. The conversion of the format
of models [7] and slicing of the tessellated model [8] both introduce errors in RP at the
algorithm level, which limits the wider application of this technology in engineering [9,10].

In model conversion, a commonly used method to decrease the approximation error
of a planar triangle model is to constantly subdivide the triangular facets of the whole
tessellated model, which is low in efficiency and leads to a significant amount of model data
and therefore data redundancy [11]. Approximating CAD models with curved triangles
can decrease the approximation error without changing the number of facets, which is
more effective. Recently, some modified tessellation methods that use curved triangles
have been proposed. Paul et al. [12] proposed a file format based on Steiner surfaces, but
the construction of the Steiner surface requires a lot of information which is difficult to
obtain. Santosh et al. [13] used an improved biquadratic Bezier curve to tessellate the
CAD surface; however, numerical or optimization methods are necessary for solving the
tessellation. The Hermite surface construction method proposed by Lian et al. [14] not only
effectively reduces the error introduced by the model conversion but also has significant
advantages in data acquisition, construction complexity, and surface splicing. However,
limited by the lack of corresponding slicing methods, it is still unable to generate contours
for manufacturing.

Among surface slicing methods, discrete intersection methods and tracking intersec-
tion methods are widely used because of their good applicability [15,16]. However, discrete
intersection methods [17] have problems with the breakpoint and discontinuity in the
intersection of the discrete approximated surfaces. Tracking intersection methods [18–21]
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are mostly based on the construction of ordinary differential equations, which can obtain
more continuous intersection results and have strong universality. However, for the surface
model, which is comprised of multiple relatively separated surfaces in AM, a connection
method for the surfaces is lacking. As a consequence, a slicing method for the whole surface
model that can connect all the curved facets is needed.

Adaptive layering overcomes the problem of the uniform layering method. Although
the build time increases significantly, the accuracy requirement improves [22,23]. Among
existing adaptive layering methods, some methods automatically adjust the layer thickness
based on the area deviation ratio and the volume change rate of the adjacent layers. How-
ever, the reference area and the volume of each layer are constantly changing, resulting
in a large amount of calculations and a low efficiency [24,25]. There are other methods
that adjust the layer thickness by the minimum plane normal vector of the model or the
chord height of the staircase effect. The whole algorithm process is linear and needs to be
determined and adjusted by height, which causes a low efficiency [26]. The methods that
classify the surface of the model based on the characteristics of the model to adjust the layer
thickness cause a large number of ineffective calculations for the feature judgment of the
model perpendicular to the processing direction [27–29]. Moreover, all the above adaptive
slicing methods are based on the planar triangle model and ignore the characteristics of
the surface model. Therefore, there is a need for an adaptive layering method for surface
tessellated models to control the geometric accuracy, which compromises with the building
time of the RP.

Based on the above analysis, this paper presents an adaptive slicing method for
Hermite non-planar tessellated surfaces models. Aiming at the Hermite surface model
construction based on an AMF (Additive Manufacturing File), a slicing method for the
whole surface models was proposed. According to the bending characteristics of the surface
triangles in a Hermite surface model, the grouping of the surface triangles, the construction
of the ordered topological relationship, and the calculation of the intersection contours were
employed to calculate the slice contours of the Hermite surface model. Then, an adaptive
slicing method considering the characteristics of the normal vector at the vertices of the
model’s curved triangles was employed. The model of the curved triangles was partitioned.
Then, according to the normal vector information of the Hermite triangle vertices in each
partition, the local layer thickness was determined, and the non-uniform slice positions of
the surface model was obtained. Finally, the classic Stanford bunny Hermite surface model
was used to illustrate the accuracy improvement of the proposed method.

2. Hermite Surface Model

The steps in the RP progress, such as layering, slicing, path filling, and support
generation, are based on the approximating model obtained by converting the original
design model [7]. At present, the commonly used approximating model is the planar
triangle model, which represents the outer contour shape of the model with a set of planar
triangles. Therefore, building the approximating model with a Hermite surface can be
simplified to building a set of Hermite surface triangles based on the originally used triangle
mesh. The expression of the third-order Hermite surface triangles [14] can be defined as
shown in Equation (1):

S(u, v) = C00 + C10u + C01v + C20u2 + C11uv + C02v2

+C21u2v + C12uv2 + C30u3 + C03v3, 0 ≤ v ≤ u ≤ 1
(1)

where (u, v) is the parameter value of the curved triangle and C00, C10, . . . , C03 is the
function of the vertex of the triangle and the tangent vector of the vertex. The parameterized
definition of the triangle is shown in Figure 1:
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3. Slicing the Hermite Surface Model
3.1. Grouping of the Curved Triangles

The approximating model for the RP is usually composed of a large number of facets.
The efficiency of the slicing algorithm can be greatly improved by grouping the facets that
intersect the same slicing plane before calculating the contour of each layer. The Hermite
surface model is different from the stereolithography (STL) model because of the bending
characteristics of the Hermite surface triangles. The intersection between the model and
the slicing plane can be divided into two cases, i.e., open and closed intersection lines, as
shown in Figure 2a,b, respectively. When the intersecting line is a closed curve, the slicing
plane does not intersect with any side of the curved triangle and Equation (2) is established,
where F is an invariant force, T is a curved triangle, Z represents the slicing plane parallel to
the XOY plane, L is the intersection line of T and Z, and ds is the directed curve element at
L. Therefore, a new grouping method for models tessellated with Hermite curved triangles
is needed. The grouping method proposed in this paper is shown in Figure 3.∫

L
Fds = 0 (2)
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The cross-plane judgment method is shown in Equation (3), where zmax and zmin
are the maximum and minimum values of the coordinates of the vertices and zi is the
z coordinate of the plane Zi. If the triangle satisfies Equation (3), the triangle crosses
the plane.

zmax ≥ zi, zmin ≤ zi (3)

A trend calculation method is adopted to judge whether the curved triangle inter-
sects with the slicing plane, as shown in Figure 2b. This method uses the water droplets
model [30] and transitions the problem into the problem of calculating the minimum dis-
tance between the curved triangle and the slicing plane. As shown in Figure 4, subject to
the action of force D, one point P above T carries out a slight motion on the tangent plane
Π. The track curve of this motion can be written as c(s), where s is the arc length parameter.
The drop follows the velocity C defined by the orthogonal projection of D onto the tangent
plane Π, and it can be written as Equation (4):

C =
dc
ds

=
∂S(u, v)

∂u
du
ds

+
∂S(u, v)

∂v
dv
ds

(4)
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If there is a vector V=D × N in the tangent plane Π, then there is a relationship, as
shown in Equation (5). Combining (5) with the first basic form of a surface (Equation (6)),
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the system of ordinary differential equations from the moving of point P on the surface T
along the force D is obtained, as shown in Equation (7).

c × V = 0 (5)

E
(

du
ds

)2
+ 2F

du
ds

dv
ds

+ G
(

dv
ds

)2
= 1 (6)

du
ds = ± Sv ·(D×N)√

E(Sv ·(D×N))2−2F(Su ·(D×N))(Sv ·(D×N))+G(Su ·(D×N))2

dv
ds = ∓ Su ·(D×N)√

E(Sv ·(D×N))2−2F(Su ·(D×N))(Sv ·(D×N))+G(Su ·(D×N))2

(7)

where E = Su · Su, F = Su · Sv, G = Sv · Sv, and D(x, y, z) = ∇Z = ±[0, 0, 1]T . The fourth-
order Runge–Kutta method is used to solve Equation (7). The qualified parameters are
inserted into Equation (1) to obtain the coordinates of the nearest point with the slicing
plane. Then the vertical distance dr between the current iteration position and the slicing
plane is calculated. If dr ≤ dlim, where dlim is the error threshold, there is an intersection
line between the curved triangle and the slicing plane. Therefore, the triangle should be
added to Gi, as shown in Figure 3.

3.2. Construction of the Sequential Topological Relationship

In order to obtain ordered model contour curves after slicing and to ensure the con-
tinuity and accuracy of the intersection data, it is necessary to determine the topological
relationship of the triangles intersecting the slicing plane in the model. The intersection
sequence of the curved triangles in a certain group usually presents as a closed loop, as
shown in Figure 5a. However, due to the bending nature of the Hermite curved triangles,
the topological adjacency of the curved triangles will appear as shown in Figure 5b. In this
case, the number of times that the curved triangle appears in the topological relation table
is not unique, which leads to the problem of the topological relation construction entering
a dead corner and some curved triangles being omitted.
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In the case where the topological relation enters a dead corner, if Tp is the reference
triangle and Tp = Tb, then there is only one triangle satisfying Equation (8), which can be
set as Ta. It can be entered into the topological relation table R. Then, if Tp = Ta and T /∈ R,
which satisfies Equation (8), T ̸= Tb can be found. It can also be entered into the topological
relation table R. When the initial reference triangle is traversed, the topological relationship
forms a complete closed loop and the topological relationship table is completed.

Tp ∩ T = L, T ∈ G and T ̸= Tp (8)

When the topological relationship of the curved triangles is as shown in Figure 5b,
the problem of missing a curved triangle may also occur, i.e., there is a T /∈ R, but T ∈ G.
When Tp = Ta, there may be a Tc to satisfy Equation (8), but Tc ∩ Tp = P. The result
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can be that the curved triangle Tb will not be judged in the judgement of the topological
relationship between the subsequent edge connections. As a consequence, Tb is missed out.
Therefore, it is necessary to build a topological chain for the missing curved triangles and
to add it back to the corresponding position of the topological relation table. Only in this
way can a complete topological relation table be constructed.

3.3. Calculation of the Intersection Contours

The intersection information between a model and the slicing plane in the AM process
is an important basis for generating the final print path. Different from the STL and other
plane triangle models, the intersection between the surface triangle and a plane is a curve.
The method that only finds the intersection point between the surface triangle boundary
and the slicing plane cannot determine the track of the intersection. Moreover, as shown
in Figure 2b, when the intersection between the curved triangle and the slicing plane is a
closed curve, the intersection line cannot be obtained by intersecting the surface boundary
with the slicing plane. Therefore, a general method for calculating the intersection is
proposed, which can obtain the intersection contours of the curved triangle and the slicing
plane for various intersection situations. The intersection contour calculation algorithm is
shown in Figure 6.
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Figure 6. Calculation algorithm of intersection.

The starting point of the intersection line between the model and the slicing plane
is calculated using the trend calculation model. As shown in Figure 7, Ps(us, vs) is the
starting point of the intersection obtained by iterating forward on the surface, which can be
either inside the Hermite curved triangle or on the extended surface of the curved triangle.
Therefore, the parameter range is not restricted in the calculation of the intersection starting
point. The calculated parameter values (us, vs) can be substituted into Equation (1) to
obtain the coordinate of the point, P(x, y), which is at the intersection between the triangle
and the plane. Then dr, which is the distance between P(x, y) and Z, can be calculated.
When dr ≤ dlim, it can be supposed that the iterative position is located on the slicing plane
and P(x, y) is the starting point of the desired intersection line.
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The intersecting contour calculation is referred to in [31], and the intersection model
of a curved triangle and slicing plane, as shown in Figure 8, is constructed. The velocity
C is defined by the intersection of T and Z, and c(s) is the curve element in this direction,
where s is the arc length parameter. If N2 is the normal vector of Z, then the equation
C × N2 = 0 can be obtained. Combining it and Equation (4), Equation (9) can be obtained.
Thus, the problem of solving the intersection contour of the curved triangle and the
slicing plane is transformed into an orthogonal model. Finally, a system of two first-order
ordinary differential equations, as shown in Equation (10), can be constructed by combining
Equations (6) and (9). The initial condition is u(0) = us, v(0) = vs and the data point of
the intersection between the first curved triangle in the group and the slicing plane can be
obtained by solving Equation (10) with the Runge–Kutta method.

dc
ds

· N2 = (Su · N2)
du
ds

+ (Sv · N2)
dv
ds

= 0 (9)

du
ds = ± Sv ·N2√

E(Sv ·N2)
2−2F(Su ·N2)(Sv ·N2)+G(Su ·N2)

2

dv
ds = ∓ Su ·N2√

E(Sv ·N2)
2−2F(Su ·N2)(Sv ·N2)+G(Su ·N2)

2

(10)
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Figure 8. Intersection model.

In addition to the curved triangle where the starting point of the intersection line is
located in the group, the other curved triangles need more complex calculations to obtain
the initial value of the ordinary differential equation. Firstly, the adjacent edge of the curved
triangles is searched and the boundary solving equation is constructed according to the
parameter characteristics of the adjacent edge to obtain the parameters at the intersection
point between the curved triangle boundary and the slicing plane. Taking the boundary
curve S(u, 0) as an example, the parameter value of the intersection point of the boundary
curve and the slicing plane is as shown in Equation (11), where PsI is the coordinates of the
boundary intersection point. Given the height of the slicing plane, the parameter solving
formula can be constructed as shown in Equation (12), where C00z, C10z, etc. represent the z
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component of C00, C10, etc. Then the parameter coordinates psI(usI , 0) of the intersection
point on the boundary curve can be obtained, which is the starting point of the intersection
line between this curved triangle and the slicing plane.

S(u, 0) = C00+C10u + C20u2 + C30u3 = PsI (11){
C00z + C10zu + C20zu2 + C30zu3 = zsI
zsI = z

(12)

In the case that there is more than one intersection line on the same curved triangle,
multiple intersection points will occur when the boundary curve intersects with the slicing
plane, as shown in Figure 9. Therefore, it is necessary to calculate the distance between
the coordinate position corresponding to multiple solutions and the end point of the
intersection line. Then, the two points with the shortest distance should be connected.
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4. Adaptive Layering of the Hermite Surface Model
4.1. Partitioning

Model partitioning can reduce the number of facets involved in the adaptive layer
thickness calculation and improve the efficiency of the model processing. The curved trian-
gles between two adjacent slicing planes or intersecting slicing planes are obtained by an
equal thickness grouping method. First of all, it is judged whether the Hermite curved tri-
angles are across the planes. If Equation (3) is met, the triangle crosses the planes, as shown
in Figure 10d, and it should be stored in the corresponding equal thickness group. If the
equation is not satisfied, there are three possibilities. If zi ≤ zmax ≤ zi+1, zi ≤ zmin ≤ zi+1,
the position of the triangle is as shown in Figure 10c. If Equation (2) is met, it is as shown
in Figure 10b. Otherwise, the curved triangle is located in the other layers (Figure 10a).
Therefore, for the curved triangle that does not satisfy Equation (3), it should be further
determined whether it is located between the two slicing planes according to the ver-
tex coordinates and the convex intersection judgment method (which is the same as in
Section 3.1).

After the equal thickness grouping of curved triangles is completed, the grouped
curved triangles are initially partitioned according to the longitudinal section. The adjacent
two longitudinal sections, ∏i and ∏i+1, are defined as Equation (13): ∏i : y = tan

(
π(i−1)

n

)
·
(

x − xmin+xmax
2

)
+ ymin+ymax

2

∏i+1 : y = tan
(

πi
n

)
·
(

x − xmin+xmax
2

)
+ ymin+ymax

2

(13)

First, the cross-longitudinal section is judged. Since the longitudinal section is perpen-
dicular to the slicing plane, the coordinates in the Z direction can be ignored. Therefore,
the problem of the position relationship between the curved triangle and the longitudinal
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section can be transformed into the two-dimensional position relationship between the
vertex of the curved triangle and the line as shown in Figure 11.
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with one of the two planes and the intersection is an unclosed curve.
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The point P in Figure 11 is the vertex of the curved triangles. P1 and P2 are two points

on the longitudinal section.
→

P1P2 is a directed line segment. The position judgment problem
of point P and plane ∏ is transformed into the problem of the position relationship between

point P and vector
→

P1P2. The position judgment of P can be carried out by calculating the
cross product of the vectors, as shown in Equation (14), to get the result of the cross product

of the vectors, which can be written as SP. When SP > 0, P is on the left of
→

P1P2. When

SP < 0, P is on the right of
→

P1P2. When SP = 0, P is on the line of P1P2. When all the three
vertices of a curved triangle are not on the same side of the longitudinal slice, the curved
triangle intersects the longitudinal section.

SP =
→

PP1 ×
→

P1P2 (14)

The method of judging the intersection is used to judge whether the curved triangle is
located in the partition between the two longitudinal sections ∏i and ∏i+1. It can also be
accomplished by judging whether it is between the angle △αi formed by the two adjacent
longitudinal sections. From point P to the two longitudinal sections ∏i and ∏i+1, a vertical
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line is made, and the vertical feet are, respectively, Pi and Pi+1, as shown in Figure 12.
When the point is located in the acute angle △αi, the angle ∠PiPPi+1 is obtuse. Therefore,
if ∠PiPPi+1 is obtuse, the vertex is located in the area of the angle △αi between the two
longitudinal sections, and, if it is not obtuse, it is located in the area of the supplementary
angle. When all the three vertices of a curved triangle are located in the region of △αi, it
can be considered that the curved triangle is located in the partition formed by the two
longitudinal sections and belongs to the corresponding partition Di.
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Figure 12. The method of intersection judgment.

However, as shown in Figure 13, due to the malleability of the plane in space, the
preliminary partition result Di of the curved triangle determined by the above method is
essentially two subregions A and B of opposite angles, which needs to be further judged.
A direction judgment method of the vertical point is proposed. The direction vector di′
and di+1′, after the normalization of the projection line of the two longitudinal sections, is
calculated as Equation (15):  di′ =

(
1, tan

(
π(i−1)

n

)
, 0
)

di+1′ =
(

1, tan
(

πi
n

)
, 0
) (15)

Two vectors
→

PiOz and
→

Pi+1Oz that are perpendicular to the center of rotation are
constructed, as shown in Figure 13. When their normalization results are the same as di
and di+1, the vertex P of the curved triangle can be considered to be located in region A;
otherwise, P is located in region B.
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4.2. Calculation of the Slicing Position

In AM, layering is needed to determine the thickness of each layer and the position of
all slicing planes. The proposed adaptive layering method is based on the vertex normal
vector of Hermite curved triangles, which can represent the characteristics of the curvature
of the surface model. The vertex normal vector of a Hermite curved triangle is used to
determine the local layer thickness that completely preserves the model features.

First, by traversing the partition Dip, p ∈ {a, b}, the list Pip, p ∈ {a, b} of the vertices
of the curved triangle with no repetition in the partition is obtained. According to the
information of the curved triangle vertices in Pip, the sum of the normal vectors of all
vertices in the list Na

ip, including the maximum and minimum values in the list, which

can be written as Nmax
ip and Nmin

ip , are, respectively, calculated as Equation (16), where Nj
represents the normal vector of the j th vertex.

Na
ip =

n
∑

j=0
Nj

Nmax
ip = max {N1, N2, . . . , Nn}

Nmin
ip = min {N1, N2, . . . , Nn}

(16)

Then, the base normal vector setting of partition Dip is performed. The purpose of the
proposed adaptive layering method is to reduce the staircase effect in model manufacturing
and save manufacturing time. The staircase effect is caused by the surface mutation and
the large angle between the model surface and the machining direction along the z axis.
Therefore, the direction vector of the longitudinal section ∏i of the partition Dip is set as
the reference normal vector Ns

ip, as shown in Equation (17). It can be taken as a comparison
object of the normal vector within each group. In order to make the reference normal vector
represent the most suitable surface conditions for processing, zs

ip is set to be zero.

Ns
ip =

[
cos(αi), sin(αi), zs

ip

]
, i ∈ [1, n], p ∈ {a, b} (17)

The angle between Na
ip and Ns

ip can express the dip angle of the whole partition, which
means it can be used to judge whether the partition needs to be manufactured with a small
layer thickness. Since the proposed layering method only refers to the value of the normal
vector in direction Z, the vector Na

ip is projected to the plane that passes the vector Ns
ip and

is perpendicular to the plane XOY, as shown in Figure 14. The projection vector Ñ
a
ip is

represented as Equation (18):

Ñ
a
ip = Na

ip − (Na
ip × N f

ip)N
f
ip (18)

where N f
ip = [− sin(αi), cos(αi), 0] and θ

ip
1 indicates the angle between Ns

ip and NAip
s, as

shown in Equation (19). In the same way, θmax
ip and θmin

ip , which indicate the angle between

Ns
ip and the projection normal of Nmax

ip and Nmin
ip , can be calculated.

θa
ip = arccos

 Ns
ip · Ñ

a
ip∣∣∣Ns

ip

∣∣∣∣∣∣Ña
ip

∣∣∣
 (19)

According to the rule of judging the angle, the characteristic normal vector in the parti-
tion is analyzed, and the initial judgment concerning whether the partition Dip needs to be
encrypted can be obtained. The angle threshold −π

2 ≤ −θ1st ≤ −θ2st ≤ 0 ≤ θ2st ≤ θ1st ≤ π
2

is set to judge θa
ip. When it does not satisfy Equation (20), the overall slope of the surface of

the partition is large and the whole partition needs to be encrypted.

−θ1st ≤ θa
ip ≤ θ1st (20)
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When θa
ip satisfies Equation (20), there may be four situations of this partition, as

shown in Figure 15. Among them, there are two cases that need to be encrypted. The
first one, as shown in Figure 15c, has a certain degree of inclination, but it is not enough
to affect the angle of the partition. Secondly, as shown in Figure 15d, although there is
a large degree of inclination, because of the positive and negative values in direction Z,
there is a cancellation in the summation. For these four cases, θmax

ip and θmin
ip are used for

further judgment.
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Figure 15. Sloping case of surface: (a) no slope, (b) no significant slope, (c) some slopes with a certain
degree, and (d) slopes in the opposite direction.

When Equation (21) is satisfied and both θmin
ip and θmax

ip meet the gentle threshold θ2st

and −θ2st, it can be considered that the overall surface slope of the partition is not large,
that is, the situation as shown in Figure 15b. Therefore, encryption of the layer thickness in
this partition is not necessary.

−θ2st ≤ θmin
ip ≤ θmax

ip ≤ θ2st (21)

When Equation (22) is not satisfied, there are large slope surfaces in the partition and
there is a numerical offset, as shown in Figure 15d. Therefore, it is necessary to partially
encrypt the partition.

−θ1st ≤ θmin
ip ≤ θmax

ip ≤ θ1st (22)

When θmax
ip and θmin

ip satisfy Equation (22) but do not satisfy Equation (21), there
are some faces with a large inclination in this partition, but the overall inclination of the
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partition is not large, as shown in Figure 15c. In view of this situation, it is necessary to
partially encrypt near the vertex that satisfies Equation (23) in this partition.

θip ∈ [−θ1st,−θ2st] ∪ [θ2st, θ1st] (23)

To determine the location of the model that requires encryption layering, the cor-
responding layer thickness needs to be calculated, as shown in Figure 16. In order to
simplify the calculation, the common layer thickness calculation method of the STL model
for adaptive layering is used for reference and the chord height hs of the model is used to
control the layer thickness.
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After simplifying the surface to be a plane, the desired chord height hs is set up, with
the result that the layer thickness satisfies Equation (24).

△zip =
hs

sin θ
(24)

If the surface is not simplified to be a plane, the chord height can be written as
(hs +△h). Due to the convexity of the surface triangle, there is △h ≥ 0. Then, the layer
thickness can be written as Equation (25). Therefore, simplifying is better.

△zip′ =
hs +△h

sin θ
> △zip (25)

With the encryption judgment, the partitions of interval j between Zj and Zj+1 are
judged one by one, and the encryption condition of each partition Dji is obtained. The
table for the encryption condition in interval j that has n partitions can be obtained as
Equation (26):

Lj =


△z1

j , Z1
min, Z1

max

△z2
j , Z2

min, Z2
max

...
△zn

i , Zn
min, Zn

max

 (26)

where the first row of Lj means that in the interval
[
Z1

min, Z1
max

]
the layer thickness is △z1

j .
There is the condition, as shown in Equation (27), where there are intervals that have

several △zj. Therefore, the layer thickness should be integrated. For the intervals J f that

have been evaluated and the interval
[

Zp
min, Zp

max

]
that is being evaluated, integration

occurs, as shown in Equation (28).[
Zp

min, Zp
max

]
∩
[

Zq
min, Zq

max

]
̸= ∅, p, q ∈ [1, n] and p ̸= q (27)
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[
Zp

trimin, Zp
trimax

]
− J f =

{
z
∣∣∣z ∈

[
Zp

min, Zp
max

]
and z /∈ J f

}
(28)

Since encryption is aimed at better preserving the model features, for multiple encryp-
tion layer thicknesses corresponding to the same location interval, the smallest encryp-
tion layer thickness is preferred for the intervals, as shown in Equation (29) rather than
Equation (27).

△zp′
j = △zq′

j = min
(
△zp

j ,△zq
j

)
(29)

The table of the preliminary result of the thickness of interval j could be written as
shown in Equation (30).

Je =



△z1 z1min z1max
...

...
...

△zk zkmin zkmax
...

...
...

△zn znmin znmax

 (30)

In RP, there is a limitation of the minimum layer thickness, which can be set as
zlim. The △z in Je should be integrated as shown in Equations (31) and (32), where
zk+rmax − zkmin ≥ zlim.{

△zk = △zk,△zk > zlim
△zk = zlim, [zkmin, zkmax] → [zkmin, zk+rmax],△zk < zlim

(31)

△z = min(△zk,△zk+1, · · · ,△zk+r) (32)

The final table for encryption could be written as shown in Equation (33).

J =



△z1 z1min z1max
...

...
...

△zp zpmin zpmax
...

...
...

△zm zmmin zmmax

 (33)

For the pth interval
[
zpmin, zpmax

]
, a series of z coordinates of the slices can be obtained

as zpmin,
(
zpmin +△zp

)
,
(
zpmin + 2 △ zp

)
,. . . , zpmax. Therefore, after calculating all the in-

tervals, the z coordinates of the slices for the whole model can be obtained as Equation (34).

zs =



z1min, (z1min +△z1), · · · , z1max
...

zpmin,
(
zpmin +△zp

)
, · · · , zpmax

...
zNmin, (zNmin +△zN), · · · , zNmax

 (34)

Finally, according to the slicing planes that are determined by Equation (34), the whole
Hermite surface model could be achieved through adaptive layering.

5. Case Verification

In order to verify the feasibility and effectiveness of the proposed method, the Stanford
bunny model, as shown in Figure 17, was selected for the case verification. The Stanford
bunny model is a widely used 3D testing model in the field of computer graphics, produced
at Stanford University in 1994, and is one of the classic graphics models. The Stanford
bunny model can be downloaded from https://graphics.stanford.edu/data/3Dscanrep/
and accessed on 1 January 2023.

https://graphics.stanford.edu/data/3Dscanrep/
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Figure 17. Stanford bunny.

The surface model obtained from the Stanford bunny solid design model used in this
article consists of 165,528 surface triangles, including 82,766 vertices. The surface of the
Stanford bunny model has many surface features, and there are multiple model contour
features on the same horizontal plane, which can encompass the characteristics of general
engineering models such as blades, camshafts, peristaltic robots inspired by inchworms [31],
customized bone implants [32], etc. Compared to the models mentioned above, the Stanford
bunny model has a higher surface complexity and a larger data volume, which can better
test the algorithm proposed in this paper and ensure that it can be transferred to general
engineering models.

Therefore, this paper takes the Stanford bunny model as an example for the method
verification. Taking the Hermite surface model converted from the Stanford bunny solid
model as the input, the AMF bunny model is sliced in equal thickness layers according to
the Hermite surface model slicing method proposed in Section 3. The number of layers
with an equal layer thickness is 14, and the corresponding slicing results are shown in
Figure 18.
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Figure 18. Equal layer thickness slicing results of the bunny model.

The model is sliced with the proposed Hermite surface model slicing method, and the
section contour of each layer is obtained. This is compared with the slicing results of the
STL model, which contains 391,696 planar triangles, and the fourth and ninth layers are
shown in Figure 19. Where the blue area is the original model, the black line, the blue line,
and the red line represent the original contour, the Hermite approximating contour, and
the STL approximating contour, respectively. The degree of coincidence between the black
line and the blue line or the red line represents the approximating accuracy. It is obvious
that the blue line and the black line have a higher coincidence degree, which means that
the proposed slicing method has a higher geometrical accuracy than the traditional STL
slicing method.
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Figure 19. Comparison of Hermite and STL slicing results: (a) slicing contours at the fourth layer,
and (b) slicing contours at the ninth layer.

In order to further evaluate the improvement of the geometrical accuracy in the
proposed method, the original contours are extracted with the NX 12.0. The distance
between the data point on the original contour and the slicing contour can measure the
slicing error. Then, the slicing errors of the approximating contour of the Hermite model
obtained by the proposed slicing method and the approximating contour of the STL model
obtained by the conventional slicing method are calculated and compared, as shown in
Table 1. Error calculation is not implemented on the first and last layers due to too few
data points.

It can be observed from Table 1 that the average and maximum slice errors of the
contours obtained from each layer of the Hermite surface model slicing are much lower
than those of the STL model slicing. The average slicing error of each layer of the Hermite
surface model is about 0.003, while the average slicing error of each layer of the STL
plane model is about 0.05. The slicing error of the Hermite model is increased by 94.24%,
compared with that of the STL plane model. The maximum error of each slice of the
Hermite surface model is between 0.01 and 0.1, while the maximum error of each slice of
the STL plane model is about 0.3. The maximum error of the Hermite model is usually one
order of magnitude lower than that of the STL plane model. Figure 20 shows the variation
in the mean error of all the layers generated by the two methods. The proposed slicing
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method has a significantly lower and more stable error. It can be seen that the proposed
slicing method significantly improves the slicing accuracy.

Table 1. Slicing errors and error rates of the approximation model.

No. of
Layers

MAE of
Hermite

(mm)

MAE of
STL (mm)

PCT of
Lift (%)

MAX of
Hermite

(mm)

MAX of
STL (mm)

PCT of
Lift (%)

2 0.0031 0.0527 94.12 0.0154 0.2813 94.53
3 0.003 0.0504 94.05 0.0984 0.288 65.83
4 0.003 0.0575 94.78 0.018 0.3078 94.15
5 0.0029 0.0552 94.75 0.0173 0.3271 94.71
6 0.0029 0.0587 95.06 0.0156 0.3646 95.72
7 0.0028 0.0539 94.81 0.0102 0.3119 96.73
8 0.0031 0.0612 94.93 0.0156 0.3612 95.68
9 0.0033 0.0618 94.66 0.0358 0.3616 90.1

10 0.0032 0.0489 93.46 0.0185 0.2988 93.81
11 0.003 0.0552 94.57 0.0171 0.3079 94.45
12 0.0034 0.0547 93.78 0.0515 0.3962 87
13 0.0046 0.0565 91.86 0.0804 0.3948 79.64

Total 0.0032 0.0556 94.24 0.0328 0.3334 90.16
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Figure 20. Variation in mean absolute error.

The proposed adaptive layering method of the Hermite surface model is used to
perform adaptive layering on the bunny model. The number of layers is five, the number
of longitudinal sections is three, θ1st =

π
2 , θ2st =

π
6 , and the chord height is set to be 1.5 mm.

According to the characteristics of the model, the model is layered. The minimum layer
thickness is set to 1.5 mm. Then, 51 slicing planes are obtained, and the layering results are
shown in Figure 21a. The angle threshold is kept unchanged, the chord height is set to be
0.5 mm and the minimum layer thickness to be 0.5 mm, and, as a result, 141 non-uniformly
distributed slicing planes are obtained, as shown in Figure 21b.

As shown in Figures 19 and 21, the layer thickness is significantly reduced in the areas
with obvious features. The proposed adaptive layering algorithm can better identify the
model features for the encryption layering, reduce the staircase effect, and improve the
manufacturing accuracy of the additive manufacturing. As shown in Table 2, when the
minimum layer thicknesses are the same, the error does not increase and the number of
layers is reduced by 11.8% and 21.3%, respectively. Moreover, the smaller the minimum
layer thickness is, the more obvious it is that the number of layers will be reduced. As
can be seen from Figure 21a,b, different approximating accuracy requirements can be met
by adjusting the chord height and the minimum layer thickness. Thus, the accuracy and
manufacturing time can be well balanced.



Mathematics 2024, 12, 1753 18 of 20

Mathematics 2024, 12, x FOR PEER REVIEW 20 of 22 
 

 

adjusting the chord height and the minimum layer thickness. Thus, the accuracy and man-
ufacturing time can be well balanced. 

  
(a) (b) 

Figure 21. Results of adaptive layering of bunny model: (a) 1.5sh =  , lim 1.5z =  , and (b) 

0.5sh = , lim 0.5z = . 

Table 2. Comparison between the proposed method and the uniform layering method. 

Method Layer Height (mm) Max Chord Error (mm) No. of Layers 
Uniform slicing 2 1.9971 43 
Uniform slicing 1.5 1.499 57 
Uniform slicing 0.5 0.5 171 

Proposed method 1.5~2.0 1.5 51 
Proposed method 0.5~1.5 0.5 141 

6. Conclusions 
Adaptive slicing for Hermite non-planar tessellated surfaces models was carried out 

based on an analysis of third-order Hermite surface triangles. For the Hermite surface 
model, considering the features of the surface triangles in the surface model, the surface 
model is sliced in order to ensure computational efficiency. Based on the surface charac-
teristics of the Hermite surface model, the encryption layering interval and the adaptive 
layer thickness are calculated, the height set of the slicing plane is obtained, and the adap-
tive slicing of the surface model is implemented. The method handled the complex situa-
tion in the surface model and reduced the amount of data through preprocessing meth-
ods. It is proven that the slicing error of the proposed slicing method is reduced by an 
order of magnitude compared with the conventional STL slicing method on the classical 
Stanford bunny model. In addition, the proposed adaptive layering method significantly 
refines the feature region compared with the equal thickness slicing method and can sat-
isfy the desire for geometrical accuracy while reducing the number of layers by about 10–
20%. The proposed method is particularly suitable for objects with complex surfaces, for 
example, a peristaltic robot inspired by inchworms, customized bone implants, etc. There-
fore, it has the potential to replace the existing adaptive slicing methods based on the pla-
nar approximation model, which are currently used in RP. 

Author Contributions: Conceptualization, Y.C. and J.F.; methodology, Y.C. and J.F.; validation, S.J. 
and R.L.; investigation, J.F.; resources, Y.C. and J.F.; data curation, Y.C. and R.L.; writing—original 
draft preparation, Y.C. and J.F.; writing—review and editing, Y.C., R.L., and S.J.; visualization, R.L.; 
project administration, S.J.; and funding acquisition, S.J. All authors have read and agreed to the 
published version of the manuscript. 

Figure 21. Results of adaptive layering of bunny model: (a) hs = 1.5, zlim = 1.5, and (b) hs = 0.5,
zlim = 0.5.

Table 2. Comparison between the proposed method and the uniform layering method.

Method Layer Height (mm) Max Chord Error
(mm) No. of Layers

Uniform slicing 2 1.9971 43
Uniform slicing 1.5 1.499 57
Uniform slicing 0.5 0.5 171

Proposed method 1.5~2.0 1.5 51
Proposed method 0.5~1.5 0.5 141

6. Conclusions

Adaptive slicing for Hermite non-planar tessellated surfaces models was carried out
based on an analysis of third-order Hermite surface triangles. For the Hermite surface
model, considering the features of the surface triangles in the surface model, the surface
model is sliced in order to ensure computational efficiency. Based on the surface character-
istics of the Hermite surface model, the encryption layering interval and the adaptive layer
thickness are calculated, the height set of the slicing plane is obtained, and the adaptive
slicing of the surface model is implemented. The method handled the complex situation
in the surface model and reduced the amount of data through preprocessing methods. It
is proven that the slicing error of the proposed slicing method is reduced by an order of
magnitude compared with the conventional STL slicing method on the classical Stanford
bunny model. In addition, the proposed adaptive layering method significantly refines
the feature region compared with the equal thickness slicing method and can satisfy the
desire for geometrical accuracy while reducing the number of layers by about 10–20%. The
proposed method is particularly suitable for objects with complex surfaces, for example,
a peristaltic robot inspired by inchworms, customized bone implants, etc. Therefore, it
has the potential to replace the existing adaptive slicing methods based on the planar
approximation model, which are currently used in RP.
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