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Abstract: This paper studies the multi-trip vehicle routing problem with multiple time windows,
which extends the multi-trip vehicle routing problem by deciding not only the sequence of customers
that each vehicle serves but also the service time window of each customer. It also requires that the
delivery service time is within the selected time windows and that the total demand of the customers
served by the vehicle on each trip does not exceed the maximum carrying capacity. For solving
the studied problem, we develop a mixed integer linear programming model with the objective of
minimizing the total travel distance of vehicles and design a tailored iterative local search heuristic.
Within the framework of the iterative local search, an improved Solomon greedy insertion algorithm
suitable for multiple time windows and multi-trip scenarios is designed to generate the initial solution,
and local search operators such as Or-opt and Relocate, as well as Random Exchange perturbation
operations, are also developed. The experiment results demonstrate the effectiveness of the proposed
model and algorithm and confirm that by providing customers with multiple time windows option,
carriers can flexibly plan vehicle routes and select appropriate service time windows, thereby reducing
the number of vehicles used and the total distance travelled and improve delivery success.

Keywords: multi-trip vehicle routing problem; multiple time windows; mixed integer programming;
iterated local search

MSC: 90-10

1. Introduction

According to statistics from the State Post Bureau of China, as of the end of October
2023, the cumulative volume of express parcels in China reached 105.17 billion, representing
a year-on-year increase of 17.0%. This growth has led to a continuous rise in demand for
last-mile delivery of express parcels [1]. Effective vehicle route planning is crucial for
logistics companies to enhance delivery efficiency and user experience and to develop
sustainable urban logistics. The vehicle routing problem (VRP) has been a hot topic of
concern in the academic community since introduced by Dantzig and Ramser [2]. The VRP
is typically defined as determining the optimal routes for a set of vehicles to visit customers,
effectively meeting a series of customer demands while satisfying constraints such as
service time windows and vehicle capacity. The objective of this problem is usually to
minimize total travel costs, such as distance or time. Solutions to the VRP need to consider
multiple aspects, including route planning, vehicle allocation, time window management,
and delivery sequence. Over the decades, the VRP has generated numerous extensions
and variations, including the VRP with time windows (VRPTW), the heterogeneous fleet
VRPTW, the dynamic VRPTW, the simultaneous pickup and delivery VRPTW, and the
electric VRPTW, among others [3–7].

In China, to relieve traffic congestion in urban central areas and reduce pollution,
restrictions imposed by urban transportation departments limit the access of large freight
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vehicles to city center roads. Consequently, carriers often rely on small electric delivery
trucks to complete the last-mile delivery. The traditional VRP and VRPTW and their
variants assume that each vehicle can only execute one trip. In reality, due to the limited
capacity of small delivery trucks, their utilization rate is low. To improve vehicle utilization
and reduce operational costs, multiple return trips are often scheduled for deliveries when
the fleet size is limited. Thus, the VRP and VRPTW have been extended to the multi-trip
VRP (MTVRP) and MTVRPTW, respectively. In the context of last-mile delivery, the MTVRP
and MTVRPTW provide higher practical value. As a result, the MTVRP and its variants
have gradually attracted the attention of scholars in recent years [8].

As the concept of customer-centricity becomes increasingly ingrained in socioeco-
nomic activities, logistics companies are placing greater emphasis on improving the quality
and timeliness of last-mile delivery services. Many logistics companies have introduced
time window services for customers, requiring carriers to provide services within specified
time windows. The VRPTW and MTVRPTW assume that each customer has only one time
window option. However, in practical last-mile delivery operations, the concentration of
order demands often leads to a limited flexibility in carrier vehicle routing, resulting in
carriers being unable to ensure timely deliveries to all customers within their designated
time windows. The establishment of a single time window for each customer may actually
lead to a decrease in customer satisfaction. To meet the demands of large-scale deliveries
and increase flexibility in planning delivery routes, while avoiding the issue of excessively
concentrated delivery requests within a single time window, carriers have introduced
multiple time windows options. This allows each customer to select from multiple accept-
able delivery time windows. Carriers optimize vehicle delivery routes and visit times for
customers based on order demands, customer addresses, and customer time windows and
then inform customers of the delivery times. This approach not only increases the flexibility
of carrier vehicle routing planning but also enhances the success rate of deliveries, thereby
reducing logistics transportation costs and improving customer satisfaction.

Therefore, in this paper, we consider the MTVRP with multiple time windows (MTVR
PMTW), where the decision-making involves determining the sequence of serving cus-
tomers for each vehicle, establishing service time windows for each customer, ensuring
delivery times align with specified time windows, and meeting constraints such as the
total demand served by each vehicle on each route, not exceeding the maximum vehicle
capacity. By extending traditional VRPTW models to incorporate factors such as multi-
trip, logistics companies can enhance the utilization of small delivery trucks and reduce
operational costs. This optimization leads to fewer vehicle miles traveled, lower fuel con-
sumption, and reduced emissions per delivery, thus mitigating the environmental impact
of urban logistics operations. Moreover, the introduction of multiple time window options
enables carriers to distribute delivery demands more evenly throughout the day, thereby
alleviating peak-hour congestion and reducing the overall carbon footprint of last-mile
delivery services. Additionally, by improving delivery efficiency and customer satisfaction,
these optimizations contribute to the long-term viability and competitiveness of logistics
businesses, fostering economic sustainability within the industry.

The main contributions of this paper are as follows: (1) formally defining the MTVRP
MTW and formulating the problem as a mixed-integer linear programming (MILP) model
to minimize the total vehicle travel distance; (2) designing a tailored iterated local search
(ILS) heuristic for solving practical-scale instances of the MTVRPMTW, within which an
improved Solomon greedy insertion algorithm is proposed to generate the initial solution
suitable for multiple time windows and multiple route scenarios, along with the design
of local search operators such as Or-opt and Relocate and Random Exchange perturba-
tion operations; (3) conducting extensive computational experiments to demonstrate the
effectiveness of the proposed model and algorithm.

The paper is organized as follows: Section 2 reviews related research on MTVRP and
its variants. In Section 3, we define the MTVRPMTW and provide a MILP model for it.
Section 4 describes the proposed ILS heuristic for solving the MTVRPMTW. In Section 5,
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we present and discuss the computational results. Section 6 concludes the paper and
provides future research directions.

2. Literature Review

In recent years, there has been a growing body of research on variations of the MTVRP.
For a comprehensive overview of the MTVRP and its variants, as well as the solving
algorithms, it is recommended to refer to the study by Cattaruzza et al. [8].

François et al. [9] explore an MTVRPTW, whereby they design an integrated solu-
tion method when time windows are involved. Additionally, they examine two objective
functions: total duration and travel times; minimizing the total travel time can lead to
impractical increases in waiting time. Sethanan et al. [10] introduced an integer linear
programming formulation and a hybrid differential evolution algorithm incorporating a
genetic operator with a fuzzy logic controller to tackle the MTVRP with backhauls and a
diverse fleet. Coelho et al. [11] also studied the MTVRP with backhauls and a diverse fleet,
incorporating docking constraints where certain vehicles cannot serve specific customers.
Their objective function reflects realistic costs, including fixed and distance-based vehicle
costs, along with a cost per customer visited. They proposed a trajectory search heuristic
named GILS-VND, and they proved that their method obtains competitive solutions and
improves the company solutions leading to significant savings in transportation costs.
Cattaruzza et al. [12] study the MTVRPTW, considering release dates (the release date rep-
resents the date when their requested merchandise becomes available at the depot). They
proposed an approach that tackles this problem using a population-based algorithm, em-
ploying a giant tour representation for individuals. Zhen et al. [13] extended the MTVRPTW
with release dates to the multi-depot version and formulated this as a MILP model. A hy-
brid particle swarm optimization algorithm and a hybrid genetic algorithm are developed
to solve this problem. Pan et al. [14] studied the multi-trip time-dependent VRP with time
windows (MT-TDVRPTW); they designed a hybrid meta-heuristic algorithm to solve the
problem, leveraging the adaptive large neighborhood search for guided exploration and the
variable neighborhood descend for intensive exploitation. Grangier et al. [15] studied the
two-echelon MTVRP, incorporating constraints typical in city logistics such as time window
constraints, synchronization constraints, and multiple trips at the secondary level. They
proposed an adaptive large neighborhood search method to tackle this problem. Recently,
Yang [16] proposed an exact price-cut-and-enumerate method (EPCEM). The EPCEM
can be used to solve the capacitated MTVRPTW and its four variants: the CMTVRPTW
with loading times, the CMTVRPTW with limited trip duration, the CMTVRPTW with
release dates, and the drone routing problem. They show that the EPCEM significantly
outperformed the state-of-the-art exact method through extensive numerical experiments.
However, there is no literature focusing on the MTVRPMTW and its solution methods.

There have been several studies on the VRP considering multiple time windows
(VRPMTW). For example, Ibaraki et al. [17] proposed local search algorithms for the
VRPMTW, treating each customer’s time window constraint as a penalty function, and
efficiently minimizing total penalties through dynamic programming. Beheshti et al. [18]
tackled the multi-objective VRP with multiple prioritized time windows, present a mathe-
matical model for this problem, and proposed a cooperative coevolutionary multi-objective
quantum genetic algorithm to address it, with a new local search strategy. Belhaiza et al. [19]
introduced a hybrid variable neighborhood tabu search heuristic for the VRPMTW. Addi-
tionally, they presented a minimum backward time slack algorithm designed for a multiple
time windows environment, which adjusts arrival and departure times based on recorded
waiting time and delay. Schaap et al. [20] focused on the VRPMTW, aiming to optimize
routes to ensure customer satisfaction within specified time windows. Their approach
utilizes a large neighborhood search metaheuristic with dynamic programming to select
optimal time windows for each customer, complemented by computationally efficient move
descriptors. Although the works described above studied the VRP with the consideration
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of multiple time windows, they allowed the vehicles to perform only one trip during the
planning horizon.

3. Problem Description and Formulation

In this section, we formally define the MTVRPMTW and formulate this problem as a
MILP model.

3.1. Problem Description

The MTVRPMTW can be formally defined on a directed graph G = (V, A), where
V = N ∪ {0, |N|+ 1} is the set of vertices, and A = {(i, j)|i, j ∈ N, i ̸= j, i ̸= |N|+ 1, j ̸= 0}
is the set of arcs. N = {1, 2, . . . , n} represent n customers, 0 represents the depot, and
|N| + 1 represents a duplicate of the depot. Each customer i ∈ N has a service time si
and a known demand qi. Unlike in many general VRPs, each customer i ∈ N has mi time
windows represented by TWi =

{[
e1

i , l1
i
]
, . . . ,

[
emi

i , lmi
i
]}

, where mi denotes the number of

time window of customer i. If the selected time window for serving customer i is
[
ep

i , lp
i

]
,

the vehicle must wait until time ep
i to serve customer i if it arrives at customer i earlier

than ep
i , resulting in a waiting time wkr

i . The vehicle is not allowed to serve customer i
after lp

i . Each arc (i, j) ∈ A is associated with a travel time ti,j and a travel distance di,j,
both of which satisfy the triangle inequality. Let K denote a fleet of homogeneous vehicles
with capacity Q. A trip is defined as a sequence of vertices visits that starts from the
depot, visits a sequence of customers within any of time window, and returns to the depot.
A tour is defined as a sequence of trips performed by the same vehicle chronologically.
Let R = {1, 2, . . . , rUB} represent the set of trips, where rUB is an upper bound on the
number of trips. Each vehicle is allowed to perform several trips that do not overlap in
time (called a tour) within the period of schedule [0, T], that is, the time window of the
depot. To describe this case clearly, Figure 1 illustrates an example of an MTVRPMTW with
13 customers. Each customer has 2–3 time windows. Vehicles V1 and V2 each execute two
trips. The trip for vehicle V1 is 0→1→8→3→7→0→9→11→4→0, and for vehicle V2, it is
0→2→13→10→0→6→12→5→0. The time windows for serving customers are indicated
by bold black lines.
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Figure 1. A schematic diagram of the MTVRPMTW.

The following assumptions for the MTVRPMTW are considered:

• Each customer is visited once by a vehicle in a trip;
• The total demand in each trip does not exceed the vehicle capacity Q;
• The times of different trips of the same vehicle do not overlap;
• The selected service time windows are accepted by the customers;
• Each trip of a vehicle starts from the depot, visits the required customer vertices

according to the planned route, and returns to the depot;
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• The end time of the last trip of each vehicle does not exceed time T.

3.2. Model Formulation

We first present the notations used in this paper in Table 1.

Min Z = ∑
(i,j)∈A

dij ∑
k∈K

∑
r∈R

xkr
ij (1)

∑
k∈K

∑
r∈R

ykr
i = 1, ∀i ∈ N (2)

∑
j∈N\{i}

xkr
ij = ∑

j∈N\{i}
xkr

ji = ykr
i , ∀i ∈ N ∪ {0}, k ∈ K, r ∈ R (3)

∑
i∈N

qiykr
i ≤ Q,∀k ∈ K, r ∈ R (4)

akr
i + si + tij ≤ akr

j + M
(

1− xkr
ij

)
, ∀i ∈ N ∪ {0}, j ∈ N, k ∈ K, r ∈ R (5)

akr
i + si + ti0 ≤ akr

N+1 + M
(

1− xkr
i0

)
, ∀i ∈ N, k ∈ K, r ∈ R (6)

akr
N+1 ≤ akr+1

0 , ∀k ∈ K, r ∈ R\{n} (7)

akr
N+1 < T, ∀k ∈ K, r ∈ R (8)

∑
p∈{1,2,...,mi}

ukr
ip = ykr

i , ∀i ∈ N, k ∈ K, r ∈ R (9)

ep
i ukr

ip ≤ akr
i + wkr

i , ∀i ∈ N ∪ {0}, p ∈ {1, 2, . . . , mi}, k ∈ K, r ∈ R (10)

akr
i + wkr

i + si − T
(

1− ukr
ip

)
≤ l

p

i
ukr

ip, ∀i ∈ N, p ∈ {1, 3, . . . , mi}, k ∈ K, r ∈ R (11)

xkr
ij ∈ {0, 1}, ∀k ∈ K, r ∈ R, i ∈ N ∪ {0}, j ∈ N ∪ {0} (12)

ykr
i ∈ {0, 1}, ∀k ∈ K, r ∈ R, i ∈ N ∪ {0} (13)

akr
i ≥ 0, ∀k ∈ K, r ∈ R, i ∈ N ∪ {0, |N|+ 1} (14)

ukr
ip ∈ {0, 1}, ∀k ∈ K, r ∈ R, i ∈ N, p ∈ {1, 2, . . . , mi} (15)

wkr
i ≥ 0, ∀k ∈ K, r ∈ R, i ∈ N ∪ {0} (16)

The objective function (1) minimizes the total distance of vehicles. Constraint (2)
ensure that each customer is serviced by exactly one vehicle in one trip. Constraint (3)
represents the flow balance constraint, stating that when a customer i ∈ N is serviced
by vehicle k in trip r, the number of arcs entering customer point i equals the number of
arcs leaving it. When i represents the depot 0 or |N|+ 1, the number of arcs entering the
depot equals the number of arcs leaving it. Constraint (4) ensures that the total demand of
serviced customers in a single trip of each vehicle does not exceed the vehicle’s capacity
Q. Constraints (5)–(6) indicate that when vehicle k traverses i and j in trip r, i.e., xkr

ij = 1,
and also indicate the relationship of arrival time at j and i. Constraint (7) indicates that for
any vehicle k, the arrival time at the depot at the end of the previous trip r must be less
than or equal to the departure time from the depot at the beginning of the subsequent trip
r + 1. Constraint (8) ensures that the end time of each vehicle’s single trip does not exceed
T. Constraint (9) represents that when vehicle k services customer i in trip r, it must do
so within only one of the available time windows. Constraints (10) and (11) ensure that
vehicles must provide a service to customer i within one of its time windows

[
ep

i , lp
i

]
; if a

vehicle arrives at customer i earlier than ep
i , it must wait until ep

i to begin service, with
the waiting time denoted as wkr

i ; otherwise, the waiting time is 0, and the vehicle is not
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allowed to service customer i after time lp
i . Constraints (12)–(16) define the feasible range

of decision variables xkr
ij , ykr

i , akr
i , ukr

ip, and wkr
i .

Table 1. The notations used in this paper.

Sets and indexes

N ∪ {0, |N|+ 1} The set of nodes. Node 0 represents the depot, |N|+ 1 represents a
duplicate of the depot, N = {1, 2, . . . , n} represents the customers

R The set of trips, R = {1, 2, . . . , rUB} where rUB is an upper bound on the
number of trips (e.g., rUB = n)

A The set of arcs (i, j), A = {(i, j)|i, j ∈ N}
K The set of vehicles, K = {1, 2, . . . , K}

TWi

The set of time windows of each customer
i ∈ N, TWi =

{[
e1

i , l1
i
]
, . . . ,

[
emi

i , lmi
i
]}

where mi is the number of time
windows of customer i

Parameters

qi Demand of each customer i ∈ N
tij Travel time tij is associated with arc (i, j)
dij Travel distance dij is associated with arc (i, j)
si Service time of each customer i ∈ N[

ep
i , lp

i

]
The pth time window of customer i ∈ N

mi Number of time windows of customer i ∈ N
Q Capacity of each vehicle

[0, T] Time window of the depot
M A big positive number

Decision variables

akr
i

Continuous variable, indicates the time at which trip r of vehicle k visits
nodes i ∈ N, akr

0 (resp. akr
N+1) is the time at which the route r starts (resp.

ends) at the depot

xkr
ij

Binary variable, if trip r of vehicle k travels through arc (i, j), xkr
ij = 1;

otherwise, xkr
ij = 0

ykr
i

Binary variable, if trip r of vehicle k visits vertex i, ykr
i = 1; otherwise,

ykr
i = 0

ukr
ip

Binary variable, if trip r of vehicle k visits vertex i in pth time window
ukr

ip = 1; otherwise, ukr
ip = 0

wkr
i The waiting time of vehicle k at customer i in trip r

4. ILS Heuristic for the MTVRPMTW

The MTVRPMTW is an extension of the MTVRPTW. Therefore, the MTVRPMTW
studied in this paper is an NP-hard problem. For small-scale instances of this problem,
optimal solutions can be obtained using optimization software such as CPLEX or Gurobi.
However, for large-scale instances, CPLEX or Gurobi often struggle to find exact solutions.
Hence, an ILS algorithm is proposed in this paper to address the MTVRPMTW. ILS is a
simple, robust, and efficient metaheuristic algorithm [21]. Its basic idea is to start from
an initialization and optimize it using local search methods. Subsequently, the optimized
solution is perturbed to escape from the current local optimum and continue with the
local search. This process is repeated multiple times, with each iteration using the solution
obtained from the previous search as the new starting point, until a stopping condition is
met. The ILS algorithm has been successfully applied to various combinatorial optimization
problems, such as the traveling salesman problem [22–24] and the VRP and its variants [25–29].

Based on the ILS algorithm framework, this paper designs a tailored ILS heuristic to
solve the MTVRPMTW, with the following specific steps:

Step 1: Improved Solomon greedy insertion algorithm to generate initialization.
Step 2: Before the termination criteria are met:
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Local search: Perform local search on the current solution using Or-opt and Relocate
operators. Or-opt optimizes the total travel distance of vehicles, producing a locally
optimal solution, while Relocate reduces the number of vehicles based on the locally
optimal solution.

Perturbation: When the current solution is trapped in a local optimum, perturb the
solution using Random Exchange to escape the current local optimum.

Termination criteria: This paper adopts the number of iterations as the termination
condition; that is, when the number of iterations exceeds a given threshold, the algorithm
terminates and outputs the current best solution obtained.

4.1. Generating Initial Solution by Improved Solomon Greedy Insertion Algorithm

This section focuses on the characteristics of the MTVRPMTW and improves the
Solomon insertion algorithm [30] for generating the initial solution to the MTVRPMTW.
The steps of the improved Solomon greedy insertion algorithm are as follows:

Step 1: Initializing Customer Time Windows
Each customer has multiple time windows, so we default to use the first time window

when constructing the initial solution.
Step 2: Initializing Vehicle Routes
In the initial solution generation phase, we first select a seed customer among all the

customers as the first customer to be inserted into the path, the point corresponding to the
seed customer is called the seed node, and the customer furthest away from the warehouse
point is preferred when selecting the seed customer. This step initializes a vehicle route
containing the depot, the delivery location of the seed customer, and a copy of the depot
for the return trip.

Step 3: Route Planning
Starting from the seed node, construct vehicle routes using a greedy strategy. The specific

steps are as follows:
Depart from the seed node and, while ensuring the vehicle load capacity is met,

determine the optimal customer point and its corresponding time window to insert into the
current route, based on the existing route and unvisited customers. This follows two rules:

Rule 1: Determine the optimal insertion positions i(u) and j(u) for each unvisited
customer point u in the current route based on Equations (17)–(20) and select the best
time window at the current insertion position. Equation (20) represents the time difference
when the start of service time for the subsequent node is delayed after inserting point
u, where bj and bju denote the start of service time for the subsequent node before and
after inserting point u, respectively. Equation (19) represents the increase in travel distance
when inserting point u, where tij denotes the travel time between nodes i and j, and µ
represents the weight coefficient for the distance between i(u) and j(u). Equation (18) is
the weighted sum of the increase in travel time and the delay in service time, representing
the time cost incurred when inserting customer point u, where α1 and α2 represent the
weight coefficients for these two indicators. Equation (17) minimizes the time cost when
inserting customer u, aiming to minimize travel distance. By sequentially attempting to
insert between two nodes in the existing route, while ensuring the vehicle load capacity
is met and no time window constraints are violated, determine the optimal positions i(u)
and j(u) for inserting customer u to minimize the time cost, as well as the selected time
window at the optimal position, where ρ represents the index of points in the existing route
and m represents the number of nodes in the existing route (including the depot copy).

c1(i(u), u, j(u)) = min
{

c1
(
iρ−1, u, jρ

)}
, ρ = 1, 2, . . . , m (17)

c1(i, u, j) = α1c11(i, u, j) + α2c12(i, u, j), α1 + α2 = 1; α1 ≥ 0, α2 ≥ 0 (18)

c11(i, u, j) = diu + duj − µdij, µ ≥ 0 (19)

c12(i, u, j) = bju − bj (20)
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Rule 2: When inserting a customer point, in addition to considering the time cost
incurred by Equation (18) in Rule 1, this rule also takes into account the waiting time
generated by inserting customer point u. It selects a time window that is closest to the
arrival time and does not violate the time window constraint (i.e., no lateness is allowed).
Equation (22) incorporates both the waiting time generated by inserting customer point
u and the time cost generated by inserting u in Rule 1. wui represents the waiting time
of the vehicle at customer point u, and λ represents the weight coefficient for the waiting
time, where (λ > 0). Based on Equations (21) and (22), the customer point u∗ that generates
the lowest total time cost among all uninserted u points is selected, i.e., the best customer
point to insert in the current route, and the optimal insertion positions i(u) and j(u) are
determined according to Rule 1.

c2(i(u∗), u, j(u∗)) = max{c2(i(u), u, j(u))} (21)

c2(i(u), u, j(u)) = −λwui − c1(i, u, j) (22)

Based on the aforementioned rules, the optimal customer point is selected from the
unvisited customer points, and it is inserted at its optimal insertion position. During the
insertion process, the vehicle’s load, arrival time, and the list of selected time windows
are continuously updated to ensure compliance with vehicle load constraints and that
no customer time windows are violated, thus constructing vehicle routes that meet the
requirements. When there are no optimal customer points left for insertion, a virtual depot
is inserted, initiating a new trip until no further trips can be added. At this point, a new
vehicle is added, and the above process is repeated until all customers have been visited.

The coding of the solution representation of Figure 1 for the MTVRPMTW problem is
shown in Figure 2. The first layer is represented as the order in which each vehicle visits the
customer, and the second layer is represented as the time window in which the customer
is visited.
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4.2. Local Search and Perturbation Operators

According to the characteristics of the MTVRPMTW, this section designs two local search
operators, Or-opt [31] and Relocate, and one perturbation operator, Random Exchange.

Or-opt Operator: This operator removes three arcs from the same route (including
multiple trips), where the three initial nodes are sequentially connected to the end node of
another route, forming new three arcs.

In Figure 3, for each r in the initialization, where r represents the route of vehicle v.
Within route r, “△” denotes the depot, and “#” denotes the customer. Specifically, i− 1, i,
i + 1, i + 2, j, and j + 1 represent the corresponding six customers, x1, x2, y1, y2, z1, and z2,
in the route. In each iteration, we update the solution through the following steps. First,
ensure that the number of customer points between y1 and x1 reaches a predetermined
value. Second, ensure that z1 is not located between x1 and y1. Then, we remove arcs
(x1, x2), (y1, y2), and (z1, z2) and add arcs (x1, y2), (y1, z2), and (z1, x2), thus forming a
new vehicle route. Next, based on the arrival time at customer points, we reselect the
customer time windows and check whether the vehicle load and arrival time of the vehicle
route meet the requirements, thereby determining whether a local candidate solution is
generated. Finally, aiming to minimize the total travel distance of the vehicles, we select
the best solution from the candidate solution set for the relocation operation.
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Figure 3. An example of Or-opt operator.

Relocate Operator: Under the premise of ensuring that vehicle load and time windows
do not violate constraints, this operator sequentially embeds customer points from one
path into another path.

As illustrated in Figure 4, paths R1 and R2 are paths from different vehicles.
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Within route R1 and R2, “△” denotes the depot, and “#” denotes the customer.
Specifically, y1, y2, y3, and y4 represent the four customers served by route R1. x1, x2, x3,
and x4 represent the four customers served by route R2. In each iteration, we update the
solution through the following steps. Relocate involves that the customer point y2 in R1 and
is then embedded between the customer points x2 and x3 of R2. We remove each customer
point in each vehicle route in turn, try to insert it into the vehicle path of another vehicle,
record the reduction of the total vehicle travel time before and after the operation for each
feasible solution, and perform the Relocate operation on the vehicle route with the lowest
reduction after the vehicle routing operation for all vehicles. For the embedded customer
points, the operator selects the time window closest to the deadline (i.e., with the shortest
waiting time) based on the arrival time. It then checks whether the vehicle path satisfies the
load and time window constraints, thereby determining whether a local candidate solution
is generated. The purpose of this operator is to reduce the number of vehicles. When the
number of vehicles decreases, the solution is moved; otherwise, it is discarded.

When the algorithm becomes trapped in a local optimum, it is necessary to escape
from it by introducing perturbations. In this paper, we employ the Random Exchange
method for perturbation.

Random Exchange Perturbation: This operation involves randomly swapping two
customer points between two paths. First, two vehicle paths, R1 for vehicle V1 and R2 for
vehicle V2, are randomly selected. Next, two customer points, u1 from R1 and u2 from
R2, are randomly chosen for swapping. Subsequently, the algorithm checks whether the
vehicle load and time windows are violated and determines whether a feasible solution
is produced.

4.3. The ILS Heuristic Procedure

Algorithm 1 illustrates the whole procedure of the ILS heuristic for solving the MTVRP
MTW. Initially, the algorithm generates an initial solution using the improved Solomon
algorithm, as depicted in steps 1–3. The local search phase is outlined in steps 4–11, where
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the Or-opt operator is utilized to optimize vehicle routing paths, and the Relocate operator
is employed to optimize vehicle usage. We perform the Or-opt operator on the vehicle path
of each vehicle in turn, record the feasible solution of the total vehicle travel path reduction
to form a candidate solution set, and then select the optimal solution in all candidate
solution sets for the movement of Relocate. After the Relocate is executed on the customer
point of each vehicle in the solution, choosing the move with the most improvement in the
total travel time of the vehicle, we then find the local optimal solution. In cases where the
local search becomes trapped in a local optimum, perturbation operations are executed, as
described in steps 12–16. Subsequently, a subset of solutions with the minimum number
of vehicles from the local optimal solution set is selected. The Or-opt operator is then
applied again to optimize the routing paths of solutions within this subset. Finally, the best
solution with the minimum total travel distance from the selected subset is returned, as
demonstrated in steps 17–23.

Algorithm 1: The ILS heuristic for the MTVRPMTW

Input: Instance of the MTVRPMTW, Maximum iteration number TT, Maximum perturbation
time G
Output: Customer time window selection, vehicle routes, Total vehicle travel distance
1: Improved Solomon insertion algorithm generates initial solution s0//see Section 4.1
2: Local optimal solution set S, S← {}
3: The best solution s∗ ← s0 , Iteration count t← 0 , Perturbation count g← 0
4: while t < TT and g < G do
5: t← t + 1 , g← g + 1
6: Update s∗ ← Or-opt (s0)//see Section 4.2
7: Update S← S ∪ s∗

8: s′ ← Relocate (s∗)//see Section 4.2
9: if vehiclenumberof s′ < vehiclenumberof s∗ then
10: s∗ ← s′ , initialize S← {} , initialize t← 0
11: continue
12: else
13: Perturbation operation: Random exchange (s′)//see Section 4.2
14: Accept all perturbation solution s∗ ← s′

15: end if
16: end while
17: sv ← The minimum number of vehicles from set S
18: S∗ ← {si ∈ S | vehiclenumberof(si) = min(vehiclenumber) sv}
19: for s in S∗ do
20: Optimizing vehicle routing: Or-opt (s)//see Section 4.2
21: end for
22: s∗ ← solution in S∗ with shortest travel distance
23: Return s∗

5. Numerical Experiments

This section validates the effectiveness of the proposed MTVRPMTW model and
ILS heuristic through case study experiments. Solomon “2” class datasets with “C”, “R”,
and “RC” types of instances, characterized by dispersed customer distribution resembling
real-world scenarios, are selected for this purpose. Since a wide time window would cover
the entire working day, and the time windows may overlap, we generate the instances
with non-overlapped time windows. Specifically, 14 case studies with non-overlapped
time windows are chosen, including C201, C205-C208, R201, R205, R209, R211, RC201, and
RC205–RC208. Additionally, 1–2 time windows, aligned with the characteristics of Solomon
instances, are added to each customer in these cases, resulting in new two different scales
of instances whose names starting with the letters “P” and “L”, respectively. For example,
instance PC201 is generated from Solomon instance C201 with the first 10 customers by
adding additional time windows and changing other parameters, while LC201 has all 100
customers of C201.
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For the generation of multiple time windows, we count the width of the time window
of the original Solomons instances. If the width of the time window is greater than 1/3 of
the planning period, the instance is discarded because the time windows will overlap if
the time windows are generated. The time windows of the selected instances are divided
into two categories, one has a fixed-width time window, and the other has a non-fixed-
width time window. If the first category is based on the start time and end time of the
original time window, we randomly generate a time window with the same width as the
original time window to ensure that it does not overlap with the original time window
and does not exceed the working day time. For the second category, the time window
between the maximum and minimum widths of the time window for the instances is
randomly generated.

The basic parameters of these new instances are shown in Table 2. All case study
experiments were conducted using the Java programming language within the Eclipse
4.24.0 development environment and utilizing CPLEX version 12.10. Additionally, all ex-
periments were performed on a personal computer equipped with a configuration of a
2.60 GHz CPU and 32 GB RAM.

Table 2. The basic parameters of these new instances.

Parameter Value

n 10, 100
Q 100, 200
T 960, 1000, 3390
mi 2, 3

5.1. Comparison with the MTVRPTW

We compare the results of solving small instances using the MTVRPMTW model with
those using the MTVRPTW model to validate the effectiveness of considering multiple
time windows. The model for the MTVRPTW is as follows:

Min Z = ∑
(i,j)∈A

dij ∑
k∈K

∑
r∈R

xkr
ij (23)

eiykr
i ≤ akr

i + wkr
i , ∀i ∈ N{0}, k ∈ K, r ∈ R (24)

akr
i + wkr

i + si − T
(

1− ykr
i

)
≤ liykr

i , ∀i ∈ N, k ∈ K, r ∈ R (25)

Constraints: (2)–(8), (12)–(14), (16).
Comparatively, in the MTVRPTW model, the variable ukr

ip is not present, indicating
the absence of considerations for selecting service time windows. In contrast to the con-
straints (9)–(11) in the MTVRPMTW model, the constraints (24)–(25) in the MTVRPTW
model ensure that vehicles visit customers within their unique time windows.

Table 3 presents the results of solving small-scale instances using CPLEX under both
MTVRPMTW and MTVRPTW models. It is worth noting that the instances solved under
the MTVRPTW model have parameters identical to those solved under the MTVRPMTW
model, except that each customer has only one time window. In Table 3, ZMTVRPMTW
denotes the total vehicle travel distance for instances solved under the MTVRPMTW model,
and ZMTVRPTW represents the total vehicle travel distance for instances solved under
the MTVRPTW model. ∆Z indicates the proportionate difference in total vehicle travel
distance between the two models, calculated according to Equation (26). “AVG” represents
the average total vehicle travel distance for the solved instances, as well as the average
difference in total travel distance between the MTVRPMTW and MTVRPTW models.

∆Z =
ZMTVRPMTW − ZMTVRPTW

ZMTVRPTW
× 100% (26)
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Table 3. Computational results under the MTVRPMTW and MTVRPTW solved by CPLEX.

Instance Q n mi K ZMTVRPMTW ZMTVRPTW ∆Z

PC201 100 10 3 1 151.8 195.7 −22.43%
PC205 100 10 3 1 151.8 185.7 −18.26%
PC206 100 10 3 1 151.8 185.7 −18.26%
PC207 100 10 3 1 151.8 185.7 −18.26%
PC208 100 10 3 1 151.8 185.7 −18.26%
AVG 151.8 187.7 −19.09%

PR201 100 10 3 1 194.2 254.3 −23.63%
PR205 100 10 2 1 194.2 222.7 −12.80%
PR209 100 10 2 1 194.2 202.3 −4.00%
PR211 100 10 2 1 194.2 194.2 0.00%
AVG 194.2 218.4 −10.11%

PRC201 200 10 3 1 165.9 218.5 −24.07%
PRC205 200 10 2 1 165.9 215.5 −23.02%
PRC206 200 10 2 1 165.9 211.6 −21.60%
PRC207 200 10 2 1 165.9 201.6 −17.71%
PRC208 200 10 2 1 165.9 165.9 0.00%

AVG 165.9 202.6 −17.28%

From Table 3, it can be observed that in the small instances comprising 14 sets of
10 customers, both the MTVRPMTW and MTVRPTW models yield exact solutions using
the optimization solver CPLEX. In each instance, the number of vehicles used by thr
MTVRPMTW and MTVRPTW are consistent. The total travel distance of the exact solution
for the MTVRPMTW, considering multiple time windows, is consistently less than the total
vehicle travel distance of the MTVRPTW, which considers only one time window. The travel
distances for all instances within the given group are the same for the MTVRPMTW.
This is because each group’s instances have the same customers but with different time
windows. Although the time windows for each customer have different widths, they
satisfy the time window constraints for having the same optimal paths, resulting in their
having the same travel distances. On average, for type “C” instances, this reduction
amounts to 19.09% in total vehicle travel distance; the type “R” instances reduce the total
vehicle travel distance by 10.11%; and the “RC” type instances reduce the total vehicle
travel distance by 17.28%. Upon comparing the results of each instance set within the
14 groups, it is evident that the total vehicle travel distance can be reduced by up to 24.07%.
In practical transportation operations, this translates directly to reduced transportation
costs. Furthermore, it is observed that the results of solving identical types of instances in
the MTVRPMTW are consistent. This consistency arises from the relaxation provided by the
presence of multiple time windows, enabling better solutions when solving smaller-scale
instances of the MTVRPMTW.

5.2. Performance of the ILS Heuristic

To validate the performance of the ILS heuristic in solving the MTVRPMTW problem,
both small-scale and large-scale instances were addressed using the ILS heuristic. The large-
scale instances involved 100 customers. Tables 4 and 5 present the results for two types
of instances solved by the ILS heuristic for the MTVRPMTW problem. After several case
experiments, we set TT and G for the study with 100 customers to be 2000 and 1000,
respectively. In Table 4, ZILS and ZCPLEX, respectively, denote the total vehicle travel
distances for instances solved by the ILS heuristic and the optimization solver CPLEX,
while tILS and tCPLEX (in seconds) represent the time taken for solving the instances by the
ILS heuristic and CPLEX, respectively. ∆Z indicates the proportional difference in total
vehicle travel distances between these two solutions, while ∆t indicates the proportional
difference in solution times between the two methods. The formulae for calculating ∆Z and
∆t are provided in Equations (27) and (28).
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∆Z =
ZILS − ZCPLEX

ZCPLEX
× 100% (27)

∆t =
tILS − tCPLEX

tCPLEX
× 100% (28)

Table 4. Computational results comparing the ILS heuristic and CPLEX for solving the small-scale
instances of MTVRPMTW.

Instance Q n mi K
CPLEX ILS Heuristic

∆Z ∆t
ZCPLEX tCPLEX ZILS tILS

PC201 100 10 3 1 151.8 6.5 151.8 0.05 0.00% −99.23%
PC205 100 10 3 1 151.8 13.3 151.8 0.08 0.00% −99.40%
PC206 100 10 3 1 151.8 8.6 151.8 0.03 0.00% −99.65%
PC207 100 10 3 1 151.8 6.2 152.2 0.05 0.26% −99.19%
PC208 100 10 3 1 151.8 7.5 152.2 0.04 0.26% −99.47%
PR201 100 10 3 1 194.2 0.6 194.2 0.03 0.00% −95.00%
PR205 100 10 2 1 194.2 0.7 194.4 0.02 0.10% −97.14%
PR209 100 10 2 1 194.2 0.4 194.4 0.02 0.10% −95.00%
PR211 100 10 2 1 194.2 0.6 194.4 0.02 0.10% −96.67%

PRC201 200 10 3 1 165.9 88.4 166.7 0.02 0.48% −99.98%
PRC205 200 10 2 1 165.9 127.7 165.9 0.03 0.00% −99.98%
PRC206 200 10 2 1 165.9 96.1 166.0 0.01 0.06% −99.99%
PRC207 200 10 2 1 165.9 85.3 166.0 0.01 0.06% −99.99%
PRC208 200 10 2 1 165.9 91.8 166.0 0.01 0.06% −99.99%

AVG 169.0 38.1 176.0 0.04 0.11% −98.62%

Table 5. Computational results on the large-scale instances of the MTVRPMTW solved by the
ILS heuristic.

Instance Q n mi
S-Insert ILS-or ILS-Relocate ILS

K ZS-Insert tS-Insert K ZILS-or tILS-or K ZILS-relocate tILS-relocate K ZILS tILS

LC201 200 100 3 4 1966.5 19.1 4 1652.0 24.4 4 1600.3 10.2 4 1595.5 27.8
LC205 200 100 3 4 2187.9 30.4 4 1756.4 28.6 4 1784.9 13.0 4 1594.3 29.4
LC206 200 100 3 4 2022.2 27.5 4 1361.3 28.3 4 1539.3 14.7 4 1463.4 37.4
LC207 200 100 3 4 1928.0 28.6 4 1512.8 23.3 4 1489.9 19.1 3 1647.6 35.6
LC208 200 100 3 4 1810.1 25.3 4 1357.3 16.3 4 1385.6 18.1 4 1296.3 23.6
LR201 200 100 3 4 1937.8 31.6 4 1305.0 27.1 4 1519.4 21.2 3 1337.4 27.9
LR205 200 100 2 3 1398.7 21.5 3 1088.6 33.8 3 1180.6 26.1 3 1115.5 31.4
LR209 200 100 2 3 1417.6 13.7 3 1200.5 24.1 3 1208.1 12.7 3 1179.2 26.2
LR211 200 100 2 3 1326.6 22.6 3 1164.1 21.4 3 1195.3 16.5 3 1116.1 36.4

LRC201 200 100 3 4 1908.8 17.0 4 1449.7 28.4 4 1503.1 18.5 4 1445.3 29.6
LRC205 200 100 2 4 1564.9 28.4 4 1718.9 30.2 4 1902.2 16.3 4 1718.9 33.8
LRC206 200 100 2 3 1268.9 25.0 3 1285.1 40.1 3 1325.1 21.0 3 1235.4 38.1
LRC207 200 100 2 4 1231.6 25.7 4 1321.5 34.7 4 1380.5 15.1 3 1317.0 29.7
LRC208 200 100 2 4 1428.5 16.3 4 1433.8 25.4 4 1471.7 13.5 4 1479.5 36.1

AVG 1791.2 23.8 1400.5 27.6 1463.3 16.9 1395.8 31.6

From Table 4, it can be observed that the discrepancy between the total vehicle travel
distances obtained by the ILS heuristic and those obtained by CPLEX is minimal. The ILS
heuristic obtains the optimal solutions of five instances. The average gap between the total
vehicle travel distances obtained by the ILS heuristic and the exact solutions obtained by
CPLEX is 0.11%. The computing times for all instances using the ILS heuristic are much less
than those using CPLEX. The ILS solution time for all three types of instances is relatively
consistent, ranging from 0.01 to 0.08 s. CPLEX has the largest computing time 127.7 s.
On average, the percentage of saving computing time is 98.62%. This suggests that the
performance of the ILS heuristic in solving the MTVRPMTW problem is satisfactory.
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When solving large-scale instances with 100 customers, as shown in Table 5, the ILS
heuristic can find the solutions within 750 s. The average computing time of all instances
is 448.01 s. This demonstrates the good performance of the ILS heuristic in solving the
MTVRPMTW problem. To further explore the initial solution and the performance of
each operator in the algorithm, on the same number of iterations, we carried out an
improved Solomon insertion algorithm, local search only, with Or-opt based on the initial
solution, and local search only with Relocate operator based on the initial solution. Table 5
shows the number of vehicles used, expressed as K, the total travel distance of vehicles
expressed as ZS−Insert, ZILS−or, ZILS−relocate, and ZILS, and the computing time of the
solution under different solution conditions expressed as tS−Insert, tILS−or, tILS−relocate, and
tILS. The solution results show that the solution obtained by operator Or-opt is better than
Relocate, and the solution obtained by ILS is better than the others. The results of LR201 and
LRC207 also show that the number of vehicles obtained by the ILS is less than the others,
so it can be concluded that the algorithm can effectively reduce the number of vehicles
through local search and perturbation. The ILS heuristic can find the solutions within 60 s.
The average computing time of all instances is 31.6 s. But the instance in Table 5 are large-
scale problems, CPLEX cannot produce results in a reasonable time. This demonstrates the
good performance of the ILS heuristic in solving the MTVRPMTW problem.

6. Conclusions

This paper, aimed at optimizing urban last-mile delivery logistics through adaptations
of multiple trips and multiple time window options for vehicle routing, makes significant
contributions to sustainable development goals by improving delivery efficiency and
customer satisfaction, enhancing resource efficiency, and fostering economic viability
within the logistics sector. Given the complexity of the MTVRPMTW, solving large-scale
instances using optimization software such as CPLEX is challenging. To address this,
a tailored ILS heuristic is developed to solve the problem. An improved Solomon greedy
insertion algorithm, suitable for scenarios with multiple time windows and multiple routes,
is proposed to generate the initial solution. Additionally, local search operators, including
Or-opt and Relocate, as well as Random Exchange perturbation operations, are designed.
Computational results demonstrate the effectiveness of the proposed model and algorithm.
Compared to the MTVRPTW model, considering multiple time windows allows carriers to
flexibly plan vehicle routes and select service time windows, thereby reducing the number
of vehicles used and the total travel distance.

In conclusion, this paper delves into the more complex variants of the multi-trip
vehicle routing problem (VRP) at a theoretical level, thereby enriching the theoretical and
methodological research system in the field of the VRP. At a practical level, it provides useful
insights for solving complex problems in logistics and distribution and offers decision-
making support for future logistics planning and optimization.

To deepen the study of this problem, the following aspects can be developed in the
future: (1) The multi-trip vehicle path problem for multiple delivery addresses with priority
rankings can be studied. For multiple delivery addresses with different time periods,
customers often have different priority rankings with different satisfaction levels, and the
actual delivery should take the cost of delivery and customer satisfaction into account at
the same time. (2) Multiple delivery options can be considered in the MTVRPMTW. It is
possible to add consideration of the shared delivery location in the study of multi-trip
vehicle paths with multiple delivery addresses, add the limitation of storage space in the
shared delivery location, and set different delivery costs for door-to-door delivery and
shared delivery addresses to carry out an in-depth study on the multi-trip vehicle path
problem considering multiple delivery options. (3) More efficient ILS local search operators
can also be designed to improve the solution quality based on this problem. (4) An exact
algorithm can be developed for the multi-trip vehicle path problem considering flexible
delivery options. More efficient exact algorithms can be studied, which can provide more
reliable and high-quality solutions for large-scale problems in practical applications.
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