
Citation: Liu, F.; Sun, Z.; Luo, X.; Li,

C.; Wan, J. Integral Cryptanalysis of

Reduced-Round IIoTBC-A and Full

IIoTBC-B. Mathematics 2024, 12, 1696.

https://doi.org/10.3390/

math12111696

Academic Editor: Antanas Cenys

Received: 26 April 2024

Revised: 20 May 2024

Accepted: 27 May 2024

Published: 29 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Integral Cryptanalysis of Reduced-Round IIoTBC-A and
Full IIoTBC-B
Fen Liu 1,2, Zhe Sun 1,*, Xi Luo 1, Chao Li 1 and Junping Wan 3

1 Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou 510006, China;
liufenxd@163.com (F.L.); xluo@gzhu.edu.cn (X.L.); lichao@gzhu.edu.cn (C.L.)

2 Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing 100085, China

3 School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen 518055, China;
wanjunping97@stu.hit.edu.cn

* Correspondence: sunzhe@gzhu.edu.cn

Abstract: This paper delves into the realm of cryptographic analysis by employing mixed-integer
linear programming (MILP), a powerful tool for automated cryptanalysis. Building on this foundation,
we apply the division property method alongside MILP to conduct a comprehensive cryptanalysis
of the IIoTBC (industrial Internet of Things block cipher) algorithm, a critical cipher in the security
landscape of industrial IoT systems. Our investigation into IIoTBC System A has led to identifying a
14-round integral distinguisher, further extended to a 22-round key recovery. This significant finding
underscores the cipher’s susceptibility to sophisticated cryptanalytic attacks and demonstrates the
profound impact of combining the division property method with MILP in revealing hidden cipher
weaknesses. In the case of IIoTBC System B, our innovative approach has uncovered a full-round
distinguisher. We provide theoretical validation for this distinguisher and uncover a pivotal structural
issue in the System B algorithm, specifically the non-diffusion of its third branch. This discovery sheds
light on inherent security challenges within System B and points to areas for potential enhancement
in its design. Our research, through its methodical examination and analysis of the IIoTBC algorithm,
contributes substantially to the field of cryptographic security, especially concerning industrial
IoT applications. By uncovering and analyzing the vulnerabilities within IIoTBC, we enhance the
understanding of cipher robustness and pave the way for advancements in securing industrial
IoT communications.

Keywords: industrial Internet of Things; MILP; integral cryptanalysis; IIoTBC cipher

MSC: 52B12

1. Introduction
1.1. Background

The rapid evolution of the industrial Internet of Things (IIoT) [1–3] heralds a new era
in industrial automation and data exchange. This advancement, however, brings with it
a heightened need for robust security solutions, particularly in cryptographic algorithms
that can operate efficiently in resource-constrained environments. The industrial Internet
of Things block cipher (IIoTBC) algorithm, specifically designed for IIoT applications [4–8],
emerges as a pivotal innovation in this context. It strikes a crucial balance between computa-
tional efficiency and the stringent security requirements of industrial systems, ensuring data
integrity and confidentiality in environments where traditional cryptographic solutions
may prove infeasible.

IIoTBC [9] is primarily intended for securing industrial IoT environments, where it can
be deployed at the sensor node level. It provides a first line of defense by allowing sensor
data to circulate as ciphertext, thus enhancing privacy and security in industrial settings.

Mathematics 2024, 12, 1696. https://doi.org/10.3390/math12111696 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12111696
https://doi.org/10.3390/math12111696
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math12111696
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12111696?type=check_update&version=2

Mathematics 2024, 12, 1696 2 of 19

Recognizing the rapid increase in industrial IoT users, IIoTBC is developed as a lightweight
cipher to protect user privacy. It aims to fully realize its functions while minimizing
the use of hardware devices. The round function of IIoTBC involves AddRoundkey, S-
box permutation, and 1-bit left rotation. These operations are designed to be simple
and consume fewer resources, making IIoTBC suitable for hardware implementation,
particularly in resource-constrained environments. The IIoTBC algorithm is a strategically
designed cipher that addresses the specific security requirements of the industrial IoT
sector. Its lightweight design, flexible structure, and efficient hardware implementation
make it an ideal solution for protecting data in resource-constrained IoT devices, especially
in industrial settings where data security is paramount.

Despite its innovative design and promising applications, the security analysis of
the IIoTBC algorithm remains incomplete. While IIoTBC is engineered to be lightweight
and efficient, the robustness of its cryptographic mechanisms under various attack vectors
has not been thoroughly evaluated. Conducting such an analysis is crucial for identifying
potential vulnerabilities and validating the algorithm’s efficacy in providing secure data
transmission within industrial IoT environments. By systematically investigating IIoTBC’s
security properties, researchers can ensure that it meets the stringent security standards
required for protecting sensitive industrial data.

1.2. Related Works

Integral cryptanalysis is a method of cryptanalysis that is used to attack symmetric
key block ciphers [10–13]. This form of analysis is crucial for evaluating the strength
of cryptographic algorithms against structured attacks. Integral cryptanalysis typically
involves examining the behavior of algorithmic transformations over sets of plaintexts and
observing specific patterns in the resulting ciphertexts. The discovery of these patterns, or
distinguishers, can be instrumental in uncovering vulnerabilities within the cipher, thus
providing valuable insights into its security profile [14–16].

The division property, introduced by Todo at EUROCRYPT 2015 [17] as a generalized
integral property, is currently recognized as the most efficient and accurate method for
detecting integral distinguishers. This property can effectively exploit algebraic degree
information to identify balanced output bits, as evidenced by its successful application in
breaking the full MISTY1 cipher. However, the initial version of the division property was
word-oriented, focusing solely on the algebraic degree of nonlinear exponents and lacking
the ability to utilize the internal structure of ciphers in a detailed manner.

Todo and Morii introduced the bit-based division property at FSE 2016 to address
this limitation. This included both the conventional bit-based division property and the
three-subset bit-based division property. Wang et al. later demonstrated that the three-
subset bit-based division property could be used to recover the exact superpoly in cube
attacks. This concept was further refined by Hao et al., leading to the three-subset bit-based
division property without unknown subsets (3SDPwoU). Recently, Hebborn et al. pointed
out that the 3SDPwoU, viewed from the perspective of the parity set actually determines
the presence or absence of certain monomials in the polynomial representation of the cipher
output [17–19].

At ASIACRYPT 2020, Hu et al. introduced the concept of monomial prediction, which
reinterprets division properties directly from the polynomial viewpoint. By counting mono-
mial trails, they could ascertain whether a monomial from the plaintext or initialization
vector (IV) appears in the cipher output polynomial. It was subsequently demonstrated
that monomial prediction and the 3SDPwoU are equivalent in their application [20–26].

Mixed-integer linear programming (MILP) has emerged as a groundbreaking tool in
the realm of automated cryptanalysis. MILP’s ability to model complex cryptographic oper-
ations through linear inequalities offers a systematic and efficient approach to uncovering
potential weaknesses in cipher algorithms [27–31]. By translating cryptographic structures
into MILP models, researchers can leverage powerful computational techniques to analyze

Mathematics 2024, 12, 1696 3 of 19

and break ciphers in ways that were previously unfeasible, making it an indispensable tool
in modern cryptanalysis [32–36].

Despite the robustness of MILP in integral cryptanalysis, the design of the IIoTBC
algorithm did not specifically account for resistance to such analysis. Therefore, assessing
IIoTBC’s resilience against integral cryptanalysis using MILP is essential for ensuring its
security in industrial IoT environments.

1.3. Our Contributions

Application of Division Property and MILP. We have innovatively applied the
division property method and mixed-integer linear programming (MILP) to conduct a
comprehensive automated cryptanalysis of the IIoTBC algorithm.

Discovery of Integral Distinguishers. Our analysis has unveiled a 14-round integral
distinguisher for IIoTBC System A and a full-round distinguisher for System B, revealing
crucial insights into the structural strengths and vulnerabilities of these systems.

Extended Cryptanalysis and Structural Insights. For System A, we extended our
findings to a 22-round key recovery, demonstrating the practical impact of the discov-
ered vulnerabilities. In System B, we identified a significant structural issue—the lack of
diffusion in its third branch—which highlights a critical area for potential improvement.

Our work represents a significant stride in the automated cryptanalysis of IIoTBC,
offering a deeper understanding of its security aspects and potential areas for improvement.
By systematically exposing and scrutinizing the algorithm’s vulnerabilities, this research
contributes significantly to the advancement of cryptographic security in industrial IoT ap-
plications, a domain that is becoming increasingly crucial in our digitally connected world.

1.4. Organization

In Section 2, we review the basics of the IIoTBC cipher, division property, and MILP-
based cryptanalysis. In Section 3, we present the details of constructing the MILP automatic
search model and the distinguisher for IIoTBC. The process of key recovery for IIoTBC-A is
detailed in Section 4, which is followed by a theoretical elucidation of the distinguisher for
IIoTBC-B in Section 5. Finally, Section 6 provides a concise conclusion of our findings.

2. Preliminaries
2.1. Notations

In this subsection, we present the notations used throughout this paper. Let F2 = {0, 1}
and denote Fn

2 as the n-bit string over F2. Let Z denote the integer ring and Zn denote the
set of all n-dimensional vectors with coordinates over Z. For easier expression, we give the
description of notations used in this paper in Table 1.

For any a ∈ Fn
2 , we define a[i] as the i-th bit of a, and the Hamming weight wt(a) is

calculated by wt(a) = ∑n−1
i=0 a[i]. Furthermore, for any a = (a0, a1, . . . , am−1) ∈ Fℓ0

2 × Fℓ1
2 ×

· · · ×Fℓm−1
2 , the vectorial Hamming weight of a is defined as Wt(a) = (wt(a0), wt(a1), . . . ,

wt(am−1)).
For any k ∈ Zm and k′ ∈ Zm, we define k ⪰ k′ if ki ≥ k′i for all i. Otherwise,

k ⪰̸ k′. For an integral distinguisher, As denotes s successive active bits, Cs denotes s
successive constant bits, Bs denotes s successive balanced bits, and U s denotes s successive
unknown bits.

Definition 1 (Bit Product Function). Let πu(x) be a function from Fn
2 to F2. For any u ∈ Fn

2
and x ∈ Fn

2 , the bit product function πu(x) is defined as

πu(x) =
n−1

∏
i=0

x[i]u[i].

Mathematics 2024, 12, 1696 4 of 19

Let πu(x) be a function from (Fℓ0
2 ×Fℓ1

2 ×· · ·×Fℓm−1
2) toF2. For any u = (u0, u1, . . . , um−1) ∈

(Fℓ0
2 × Fℓ1

2 × · · · × Fℓm−1
2), x = (x0, x1, . . . , xm−1) ∈ (Fℓ0

2 × Fℓ1
2 × · · · × Fℓm−1

2), the bit product
function πu(x) is defined as

πu(x) =
m−1

∏
i=0

πu[i](x[i]).

Table 1. Definition of notation.

Notation Definition

Fn
2 the n-bit string over F2
Z the integer ring
Zn the set of all n-dimensional vectors with coordinates over Z
a[i] the i-th bit of a

wt(a) the Hamming weight of a calculated by wt(a) = ∑n−1
i=0 a[i]

As s successive active bits
Cs s successive constant bits
Bs s successive balanced bits
U s s successive unknown bits

2.2. IIoTBC Block Cipher

The IIoTBC algorithm [9] is a lightweight block cipher designed for the security of
industrial IoT (IIoT). It features a variable system structure that adapts to different security
requirements and is particularly suited for environments with limited hardware resources,
such as sensor nodes in IIoT. IIoTBC works with 128-bit keys and has a block size of 64 bits.
It offers two system structures, System A and System B, catering to different microcontroller
unit (MCU) capabilities.

2.2.1. System A Structure (IIoTBC-A)

IIoTBC-A is optimized for 8-bit MCUs, which are commonly used in industrial IoT
settings. It is based on an eight-branch generalized Feistel structure, as shown in Figure 1.

f1

8 bits 8 bits

f1

8 bits 8 bits

f1

8 bits 8 bits

f1

8 bits 8 bits

f1 f1 f1 f1

PA1

PA2

Figure 1. The encryption process of IIoTBC-A.

Each branch undergoes a transformation that involves the use of a function f1, which
incorporates steps like AddRoundkey, S-box permutation, and a 1-bit left rotation, as shown
in Figure 2. The S-box is as follows.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) 5 D 9 4 6 3 F 1 B 8 E 0 7 2 C A

Functions PA1 and PA2 are utilized for the exchange of branch data positions. This is
crucial in ensuring data diffusion across the branches.

Mathematics 2024, 12, 1696 5 of 19

0 1 2 3

4 5 6 7

0 1 2 3

4 5 6 7

2 parallel S-box

0 1 2 3

4 5 6 7

≪ 1Add Round Key

1 2 3 4

5 6 7 0

Figure 2. The round function f1 of IIoTBC-A.

The algorithm executes these steps for 32 rounds, enhancing the security with each iteration.

2.2.2. System B Structure (IIoTBC-B)

IIoTBC-B is designed for 16-bit MCUs, which offer better data processing capabilities
and more memory compared to 8-bit MCUs. Unlike IIoTBC-A, IIoTBC-B uses a four-branch
generalized Feistel structure, as shown in Figure 3. This reflects a more complex and secure
approach, suitable for the enhanced capabilities of 16-bit MCUs.

f2

16 bits 16 bits

f2

16 bits 16 bits

f2 f2

PB1

PB2

PB3

Figure 3. The encryption process of IIoTBC-B.

A notable feature is its reliance on bit-slice technology. Each of the four branches in
IIoTBC-B is represented as a 4 × 4 matrix. The 64-bit input data are transformed into four
slices, setting the stage for branch-specific processing. PB1 is to rearrange the 64-bit data
and convert them to the input of four branches.

The function f2 is applied to each branch, with its operation process adding to the
cipher’s complexity and security, as shown in Figure 4. Different permutation functions
(PB2 and PB3) are used for processing in odd and even rounds, individually. These
operation processes of PB1, PB2, and PB3 are shown in Figure 5.

0 1 2 3

4 5 6 7

16 17 18 19

20 21 22 23

0 1 2 3

4 5 6 7

16 17 18 19

20 21 22 23

4 parallel S-box

0 1 2 3

4 5 6 7

16 17 18 19

20 21 22 23

≪ 1

≫ 1

1 2 3 4

5 6 7 0

23 16 17 18

19 20 21 22

Add Round Key

Figure 4. The round function f2 of IIoTBC-B.

Mathematics 2024, 12, 1696 6 of 19

0 − 7 8 − 15 16 − 23 24 − 31 32 − 39 40 − 47 48 − 55 56 − 63

0 − 7 16 − 23 8 − 15 24 − 31 32 − 39 48 − 55 40 − 47 56 − 63

56 − 63 16 − 23 8 − 15 32 − 39 24 − 31 48 − 55 40 − 47 0 − 7

16 − 23 24 − 31 8 − 15 0 − 7 40 − 47 32 − 39 48 − 55 56 − 63

PB1

PB2

PB3

Figure 5. The PB1, PB2, and PB3 of IIoTBC-B.

2.3. Bit-Based Division Property

The division property, as introduced in [17], represents an advanced form of the
integral property. Its primary function is to leverage the underlying relationships between
traditional integral properties like ALL and BALANCE, thereby serving as a potent tool for
developing enhanced integral distinguishers. In this subsection, we aim to succinctly revisit
the concepts of the division property and outline the key propagation rules associated with
the bit-based division property.

Definition 2 (Division Property). Let X be a multiset whose elements take values from Fℓ0
2 ×

Fℓ1
2 × · · · × Fℓm−1

2 and let K denote a set of m-dimensional vectors whose i-th element takes a value
between 0 and ℓi; this fulfills the following conditions:

⊕
x∈X

πu(x) =
{

unknown if there is k ∈ K s.t. u ⪰ k,
0 otherwise.

If two vectors k1 and k2 in K satisfy that k1 ⪰ k2, then k1 is redundant and will be re-
moved from K. It is worth noting that, for the bit-based division property , ℓ0, ℓ1, . . . , ℓm−1
are restricted to 1.

Propagation Rules of Bit-Based Division Property

For the bit-based division property, the rules governing operations such as COPY,
XOR, AND, and Rotation are described as follows [37].

Proposition 1 (COPY [38]). Let F be a COPY function, where the input is x ∈ F2 and the
output is calculated as (y0, y1) = (x, x). Let X and Y be the input multiset and output multiset,
respectively. Assuming that the multiset X has the division property D1

k , then the multiset Y has
the division property D1,1

K′ , where K′ is computed as{
K′ = {(0, 0)}, if k = 0
K′ = {(0, 1), (1, 0)}, if k = 1

.

Proposition 2 (XOR [38]). Let F be an XOR function, where the input is (x0, x1) ∈ F2 × F2 and
the output is calculated as y = x0 ⊕ x1. Let X and Y be the input multiset and output multiset,
respectively. Assuming that the multiset X has the division property D1,1

k , then the multiset Y has
the division property D1

K′ , where K′ is computed as
K′ = {(0)}, if k = (0, 0)
K′ = {(1)}, if k = (0, 1) or (1, 0)
K′ = ∅, if k = (1, 1)

.

Proposition 3 (AND [38]). Let F be an AND function, where the input is (x0, x1) ∈ F2 × F2
and the output is calculated as y = x0 ∧ x1. Let X and Y be the input multiset and output multiset,

Mathematics 2024, 12, 1696 7 of 19

respectively. Assuming that the multiset X has the division property D1,1
k , then the multiset Y has

the division property D1
K′ , where K′ is computed as{

K′ = {(0)}, if k = (0, 0)
K′ = {(1)}, otherwise

.

Proposition 4 (Rotation). Let F be a Left Rotation function, where the input is (x0, x1, . . . , xm−1)
∈ Fm

2 and the output is calculated as (xt, . . . , xm−1, x0, . . . , xt−1). Let X and Y be the input multi-
set and output multiset, respectively. Assuming that the multiset X has the division property D1,1

k ,
then the multiset Y has the division property D1

K′ , where K′ is computed as

K′ = (kt, . . . , km−1, k0, . . . , kt−1),
from all k = (k0, k1, . . . , km−1) ∈ K.

.

Todo, in [39], posited that analyzing the propagation of the division property through
a block cipher essentially involves the transition of vectors. Let fr represent the round
function of a block cipher and Dn,m

k denote a given initial division property. Following
the rules detailed in [39], the initial division property Dn,m

k propagates through the round
function fr to yield the division property Dn,m

K , where K comprises a set of vectors in
Zm. Therefore, the process of division property propagation through fr fundamentally
constitutes a transition from k to the vectors within K.

Definition 3 (Division Trail). Let fr denote the round function of an iterated block cipher. Assume
that the input multiset to the block cipher has initial division property Dn,m

k , and denote the division
property after i-round propagation through fr by Dn,m

Ki
. Thus, we have the following chain of division

property propagations:

{k} de f
= K0

fr−→ K1
fr−→ K2

fr−→ . . .

Moreover, for any vector k∗
i in Ki (i ≥ 1), there must exist a vector k∗

i−1 in Ki−1 such that k∗
i−1

can propagate to k∗
i by division property propagation rules. Furthermore, for (k0, k1, . . . , kr) ∈

K0 ×K1 × · · · ×Kr, if k∗
i−1 can propagate to k∗

i for all i ∈ {1, 2, . . . , r}, we call (k0, k1, . . . , kr)
an r-round division trail.

2.4. MILP Automatic Cryptanalysis

MILP automates the process of identifying weak points in cryptographic algorithms.
It can efficiently handle large, complex systems, making it an invaluable tool in assessing
modern cryptographic methods, which are often too complex for manual analysis. Central
to MILP are the following key elements:

1. Objective Function: The cornerstone of any MILP problem is its objective function,
a linear expression that the solution process seeks to maximize or minimize. This
function encapsulates the goal of the optimization, such as cost minimization or profit
maximization.
Maximize: 20x + 30y

2. Decision Variables: These are the variables whose values need to be determined. In
MILP problems, these variables can be integers, binary (0 or 1), or continuous.

x, y

3. Constraints: Constituting the backbone of the problem, constraints are linear equations
or inequalities that limit the values of decision variables. They ensure that the solution
adheres to practical conditions or business rules.

2x + y ≤ 100 , and x + 2y ≤ 40

4. Parameters: These are known numerical values within the problem, used to define the
constraints and the objective function. Variable Bounds: These define the permissible

Mathematics 2024, 12, 1696 8 of 19

range (upper and lower limits) for the decision variables.
x, y ≥ 0 and x, y are integers

Together, these components form the basis of MILP, enabling it to tackle a wide range of
optimization problems by finding the best possible solution under given constraints. Within
the domain of MILP, Gurobi 10.0.3 http://www.gurobi.com/ (accessed on 10 December
2023) stands out as a pivotal optimization solver, offering a robust and efficient platform
for tackling MILP problems. Solving an MILP problem using Gurobi involves a structured
process. An outline of the typical workflow is given as follows.

1. Setup and Initialization

• Import the Gurobi library in your programming environment:
from gurobipy import Model, GRB.

• Initialize a new model:
m = Model("model_name").

• Define variables with types (integer, binary, continuous) and bounds:
x = m.addVar(vtype=GRB.INTEGER, name="x"),
y = m.addVar(vtype=GRB.INTEGER, name="y").

2. Objective Function

• Set the objective (maximization or minimization):
m.setObjective(20*x + 30*y, GRB.MAXIMIZE).

3. Adding Constraints

• Formulate and add constraints to the model:
m.addConstr(2*x + 3*y <= 100, "constraint_name1"),
m.addConstr(x + 2*y <= 40, "constraint_name2").

4. Optimization

• Optimize the model using: m.optimize().
• Optionally, tune parameters for complex problems.

5. Solution Extraction and Analysis

• Check the solution status and ensure an optimal solution is found:
m.status == GRB.Status.OPTIMAL

• Retrieve and analyze the results ("x.x", "y.x", the objective function value
"m.objVal").

MILP provides the theoretical and practical framework for complex optimization
problems, while Gurobi offers the technological prowess and computational efficiency
to solve these problems effectively. This synergy is integral to the field of optimization,
driving both academic research and practical applications forward.

3. Automatic Search Model for IIoTBC
3.1. Initial Bit-Based Division Property and Stop Rules
3.1.1. Initial Division Property

In the context of integral distinguisher search algorithms, an initial division property
denoted as D1,n

k , symbolized by a vector k = (k0, . . . , kn−1), is often provided. Consider a
division trail over r rounds, expressed as

(a0
0, . . . , a0

n−1) → . . . → (ar
0, . . . , ar

n−1). (1)

Here, L represents a system of linear inequalities defined on the variables aj
i (where

i = 0, . . . , n − 1 and j = 0, . . . , r) along with some auxiliary variables. It is necessary to
incorporate the conditions a0

i = ki (for i = 0, . . . , n − 1) into the system L. Consequently,
all feasible solutions of L are division trails commencing from the vector k.

In the case of IIoTBC ciphers, the data complexity of the cipher should be lower
than 264. To ascertain the longest integral distinguisher within the IIoTBC framework, we

http://www.gurobi.com/

Mathematics 2024, 12, 1696 9 of 19

commence by initializing the vector k. This vector is configured such that its Hamming
weight, denoted by wt(k), is precisely 63. This initialization results in an initial division
property comprising 64 distinct vectors.

3.1.2. Stop Rule

Consider a set X with the division property D1,n
K′ . If X does not exhibit any integral

property, for any x ∈ X, the projection πu(x) remains unknown for any unit vector u ∈
(F2)

n. Since X has the division property D1,n
K′ , there must exist a vector k′ ∈ K′ such that

u ⪰ k′. Given that u is a unit vector, we have u = k′, which implies that the set K′ contains
all n unit vectors.

Given a specific initial division vector k, our analysis focuses on the division property
D1,n
Kr , which describes the output divisions (ar

0, . . . , ar
n−1) after r rounds in a cryptographic

cipher. If Kr includes all n unit vectors, it signals the point at which the algorithm should
be terminated. This implies that, under the stipulated conditions, an r-round distinguisher
is not found. Consequently, the longest possible integral distinguisher, based on the initial
division vector k, is confined to a maximum of r − 1 rounds.

Thus, the objective function is

Minmize : ar
0 + ar

1 + . . . + ar
n−1 (2)

3.2. Modeling Division Propagation Using Linear Inequalities

The IIoTBC algorithm incorporates several fundamental operations, including COPY,
XOR, rotation, and S-box. In the following subsections, we introduce models for the
propagation of the bit-based division property associated with S-box operations.

Model S-Box

To construct the linear inequality system for an S-box, we first apply the table-aided
bit-based division property, generating the S-box’s propagation table. Following this,
the inequality_generator() function within the Sage 10.2 http://www.sagemath.org/
(accessed on 10 December 2023) framework is employed to derive a set of linear inequali-
ties [38]. It is noteworthy, however, that the resultant number of linear inequalities can be
substantial, occasionally to the extent that their complete integration into the MILP model
leads to computational impracticality.

To mitigate this challenge, Sun et al. [40] introduced a method termed the greedy
algorithm, aimed at reducing the size of this inequality set. In the context of the IIoTBC
S-box analyzed using Sage, the initial count of linear inequalities stands at 84. Application
of the greedy algorithm (as described in Algorithm 1 of [38]) effectively reduces this number
to 10. The following inequalities are 10 inequalities used to describe the IIoTBC S-box,
where (a0, a1, a2, a3) −→ (b0, b1, b2, b3) denotes a division trial.

1a0 + 4a1 + 1a2 + 1a3 − 2b0 − 2b1 − 2b2 − 2b3 >= −1
0a0 + 0a1 + 3a2 + 0a3 − 1b0 − 1b1 − 1b2 − 1b3 >= −1
−2a0 + 0a1 − 1a2 − 1a3 + 4b0 + 2b1 + 3b2 + 3b3 >= 0
3a0 + 0a1 + 0a2 + 0a3 − 1b0 − 1b1 − 1b2 − 1b3 >= −1
−6a0 − 4a1 − 3a2 − 3a3 + 2b0 − 1b1 + 2b2 + 2b3 >= −11
0a0 + 0a1 + 0a2 + 3a3 − 1b0 − 1b1 − 1b2 − 1b3 >= −1
−2a0 − 2a1 − 4a2 − 4a3 + 1b0 + 1b1 + 2b2 − 1b3 >= −9
−1a0 − 1a1 − 2a2 − 2a3 + 5b0 + 5b1 + 5b2 + 4b3 >= 0
−1a0 + 0a1 + 0a2 − 1a3 + 0b0 − 1b1 + 1b2 + 0b3 >= −2
0a0 + 1a1 + 0a2 + 0a3 − 1b0 + 0b1 − 1b2 + 0b3 >= −1

3.3. Model and Distinguisher of IIoTBC-A and IIoTBC-B

Up to this point, for block ciphers based on the three operations (COPY, AND, XOR)
and S-boxes, we can construct a set of linear inequalities that characterize the division

http://www.sagemath.org/

Mathematics 2024, 12, 1696 10 of 19

property propagation for one round. By iterating this process r times, a linear inequality
system L can be formulated, describing r rounds of division property propagation. All
feasible solutions of L correspond to all possible r-round division trails. Let A, C, B, and U
represent ACTIVE, CONSTANT, BALANCE, and UNKNOWN bits, respectively.

3.3.1. 1-Round Description of IIoTBC-A

Consider a one-round division trail of IIoTBC-A, denoted as (ai
0, . . . , ai

63) → (ai+1
0 , . . . , ai+1

63).
IIoTBC-A utilizes an eight-branch generalized Feistel structure, and thus the first modeling
step addresses the COPY operation for the four left branches. The outputs of this COPY
operation serve as inputs to the round function f1 and the permutations (PA1 or PA2),
guiding the division property propagation. This is represented by the set of following
equations:

L1 :

{
ai

j − bi
j − ci

j = 0,
where j ∈ {0, . . . , 7, 16, . . . , 23, 32, . . . , 39, 48, . . . , 55}.

Here, bi
j and ci

j correspond to the inputs for the round function f1 and the permutations,
respectively. The function f1 in IIoTBC-A consists of two parallel S-boxes coupled with a left
rotation. The division trails for these S-boxes are calculated as detailed in Section 3.2 and
modeled through a series of linear inequalities. Considering the presence of four parallel
instances of f1 in IIoTBC-A, we introduce 10 inequalities for each S-box, leading to a total
of 10 × 8 = 80 inequalities for the eight S-boxes, collectively denoted as L2. The output of
the S-boxes is denoted by di

j, and the division trails for these eight S-boxes are defined as

L2 :

{
(bi

j, bi
j+1, bi

j+2, bi
j+3)

S-box−−−→ (di
j, di

j+1, di
j+2, di

j+3)

where j ∈ {0, 4, 16, 20, 32, 36, 48, 52}.

Post-processing through four instances of f1 involves an XOR operation with the
four right branches, integrated with the left rotation of f1. The output of this XOR op-
eration then becomes the input for the permutation, leading to the following division
propagation model:

L3 :


ai

j + di
j−7 − ci

j = 0,
where j ∈ {8, . . . , 14, 24, . . . , 30, 40, . . . , 46, 56, . . . , 62}
ai

j + di
j−15 − ci

j = 0,
where j ∈ {15, 31, 47, 63}.

The permutation layers in IIoTBC-A (PA1 and PA2) simply permute the bits, thereby

transforming the vector coordinates (ci
0, . . . , ci

63)
coordinates−−−−−−→ (ai+1

0 , . . . , ai+1
63).

Consequently, we have formulated a linear inequality system to characterize the
division propagation in one round of IIoTBC-A. Iteratively applying this model for r
rounds constructs a comprehensive linear inequality system. Integrating a given initial
division property D1,64

k into this system allows us to use Gurobi to assess the potential
existence of an integral distinguisher.

3.3.2. Distinguisher of IIoTBC-A

The longest integral distinguisher that we found for IIoTBC-A is 14 rounds, and the
number of chosen plaintexts is 263. Some distinguishers are listed as follows, where

[
C1A7]

represents that there is a one-bit CONSTANT in an arbitrary position of these eight bits
and that the other seven bits are ACTIVE.

(
[
C1A7

]
A8,A16,A16,A16)

14 Round−−−−−→ (U 16,U 8B8,U 8B8,U 8B8)

Mathematics 2024, 12, 1696 11 of 19

(A16,
[
C1A7

]
A8,A16,A16)

14 Round−−−−−→ (U 8B8,U 8B8,U 8B8,U 16)

(A16,A16,
[
C1A7

]
A8,A16)

14 Round−−−−−→ (U 8B8,U 8B8,U 16,U 8B8)

(A16,A16,A16,
[
C1A7

]
A8)

14 Round−−−−−→ (U 8B8,U 16,U 8B8,U 8B8)

3.3.3. 1-Round Description of IIoTBC-B

Consider the scenario of a one-round division trail in IIoTBC-B. Analogous to IIoTBC-A,
IIoTBC-B is structured upon a four-branch Feistel architecture. The initial phase involves
the modeling of the COPY operation, which is represented by the set of following equations:

L1 :

{
ai

j − bi
j − ci

j = 0,
where j ∈ {0, . . . , 7, 16, . . . , 23, 32, . . . , 39, 48, . . . , 55}.

Here, bi
j and ci

j correspond to the inputs for the round function f2 and the permuta-
tions, respectively. The function f2 in IIoTBC-B consists of four parallel S-boxes coupled
with a left rotation and a right rotation. Considering the presence of two parallel in-
stances of f2 in IIoTBC-B, we introduce 10 inequalities for each S-box, leading to a total of
10 × 8 = 80 inequalities for the eight S-boxes, collectively denoted as L2. The output of the
S-boxes is denoted by di

j, and the division trails for these eight S-boxes are defined as

L2 :

{
(bi

j, bi
j+4, bi

j+16, bi
j+20)

S-box−−−→ (di
j, di

j+4, di
j+16, di

j+20)

where j ∈ {0, 1, 2, 3, 32, 33, 34, 35}.

Post-processing through two instances of f2 involves an XOR operation with the
two right branches, integrated with the left rotation and right rotation of f2. The output of
this XOR operation then becomes the input for the permutation, leading to the following
division propagation model:

L31 :


ai

j + di
j−7 − ci

j = 0,
where j ∈ {8, . . . , 14, 40, . . . , 46}
ai

j + di
j−15 − ci

j = 0,
where j ∈ {15, 47}.

L32 :


ai

j + di
j−9 − ci

j = 0,
where j ∈ {25, . . . , 31, 57, . . . , 62}
ai

j + di
j−1 − ci

j = 0,
where j ∈ {24, 56}.

The permutation layers in IIoTBC-B transform the vector coordinates (ci
0, . . . , ci

63)
coordinates−−−−−−→ (ai+1

0 , . . . , ai+1
63). Consequently, we have formulated a linear inequality system

to characterize the division propagation in one round of IIoTBC-B.

3.3.4. Distinguisher of IIoTBC-B

Initially, the data complexity was set to 263 to identify the longest possible distinguisher.
Subsequent experimentation, however, revealed a noteworthy observation: regardless of
the number of rounds, even extending to as many as 100, integral distinguishers were
consistently discovered. This led to a strategic adjustment in our approach, where the
data complexity was reduced to 28. This alteration in methodology culminated in the
identification of several distinguishers. Selected results from this investigative process are
presented below.

(C16, C16, C16, C8A8)
8 Round−−−−→ (U 16,U 16,U 8B2U 2B2U 2,U 16)

Mathematics 2024, 12, 1696 12 of 19

(C16, C16, C16,A8C8)
9 Round−−−−→ (U 16,U 16,U 16,U 8B1U 1B1U 1B1U 1B1U 1)

(A8
[
C1A7

]
, C8A8,A16,A16)

17 Round−−−−−→ (U 16,U 12B2U 2,U 8B8,U 8B8)

It was observed that when the 16th to 23rd bits remained continuously active, integral
distinguishers were invariably identified. This consistent finding underscores the signif-
icance of these particular bit positions in the context of the distinguisher’s effectiveness.
A comprehensive explanation for this phenomenon is elaborated in Section 5, where we
delve into the specifics of this observation and its implications.

(C16,A8C8, C16, C16)
Always−−−−→ (B16,B16,B16,B16)

4. Key Recovery of IIoTBC-A
In this section, we focus on key recovery attacks for 22-round IIoTBC-A based on the

14-round distinguisher described in Section 3.

Integral Distinguisher Utilization. For a set of 263 plaintexts, denoted as P, with the form
(
[
C1A7]A8,A16,A16,A16), the intermediate state after 14 rounds, denoted as x14, is of the

form (U 16,U 8B8,U 8B8,U 8B8).

It is well established that once an integral characteristic is identified, it can be employed
for a key recovery attack. Let f be the Boolean function representing the mapping from
the ciphertext of IIoTBC-A to one of the balanced intermediate bits of x14 (the output of the
integral distinguisher). Our focus is on the following equation:⊕

p∈P
x14[i] =

⊕
c∈C

f (c) = 0 (3)

where x14[i] is any one balanced bit and C is the corresponding set of ciphertexts encrypted
from P. In evaluating this equation, we guess the involved subkey bits used in f and check
whether the equation holds. Subkey values that violate this equation are filtered out and
discarded, leaving the remaining candidates for the correct subkeys.

Data Preparation We selected a set P of 263 plaintexts from the structure ([C1A7]A8,A16,A16,A16).
Each plaintext pi ∈ P (for 0 ≤ i ≤ 263) undergoes encryption under the 22-round IIoTBC-A
algorithm, yielding the corresponding ciphertext denoted as x22. The output, correspond-
ing to these specific inputs after 14 rounds of the encryption process, manifests a distinct
characteristic (U 16,U 8B8,U 8B8,U 8B8), wherein 24 bits maintain a balanced state. Capi-
talizing on this phenomenon, particularly the equilibrium observed in the final 4 bits, we
advance into the phases of subkey guessing and recovery.

Subkey Guessing. We initiate our analysis from the starting point of x14 [28–30] and
continue to trace forward to determine the positions where key guessing is required. The
process of deduction is illustrated in Figure 6, where all the yellow-colored f1 functions
represent the computations required for reverse decryption. The subkeys used in these f1
functions must either be guessed or deduced.

This process is complemented by considering the structure of the key generation
algorithm, and we halt our examination at the round where the total number of guessed
key bits is less than 128. The subkey generation is detailed in Appendix A. For rounds 5 to
r, the subkey generation method satisfies the following equation:

regu = f3(regu−4)⊕ regu−5, for 5 ≤ u ≤ r (4)

where regi is the subkey for the i-th round.
Consequently, the subkeys required for subsequent rounds can be inferred from the

subkeys guessed in earlier rounds, implying that not all necessary subkeys require inde-
pendent guessing. The subkeys for rounds 15, 16, 17, and 18 necessitate guessing. However,

Mathematics 2024, 12, 1696 13 of 19

starting from round 19, some subkeys can be computed based on those deduced in previous
rounds. By integrating the subkey generations algorithm, we start our deduction from
round 15 and proceed to identify the subkeys that need to be guessed. The specific subkeys
required for each round, along with the positions of the subkeys that need to be guessed,
are detailed in Table 2.

For instance, in the case of the 20th round, it is necessary to conjecture the following
set of register values:

{reg20[i] | i ∈ { 0, 1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 27, 28, 29, 31}},

whereas the remaining values in the set

{reg20[i] | i ∈ {2, 6, 10, 14, 26, 30}}

can be derived using certain subkeys from reg16 and reg19, as explained in the following:

reg20[2] = S(reg16[16], reg16[17], reg16[18], reg16[19])⊕ reg19[2]
reg20[6] = S(reg16[16], reg16[17], reg16[18], reg16[19])⊕ reg19[6]
reg20[10] = S(reg16[16], reg16[17], reg16[18], reg16[19])⊕ reg19[10]
reg20[14] = S(reg16[16], reg16[17], reg16[18], reg16[19])⊕ reg19[4]
reg20[26] = S(reg16[20], reg16[21], reg16[22], reg16[23])⊕ reg19[26]
reg20[30] = S(reg16[20], reg16[21], reg16[22], reg16[23])⊕ reg19[30]

The aggregate number of subkeys that require guessing amounts to 126 bits. Specifi-
cally, for the 21-round and 20-round scenarios, the bit counts for the guessed subkeys are
118 and 102, respectively. In the context of the 22-round key, 46 subkeys can be computed
based on previously guessed keys, necessitating the use of 46 S-boxes.

Table 2. The position of guessing subkey in 15 to 22 rounds.

Round Guessing Subkey Computed Subkey

15 28, 29, 30, 31

16 16, 17, 18, 19, 20, 21, 22, 23

17 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27,
28, 29, 30, 31

18 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23

19 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 24, 25, 26, 27, 28, 29, 30, 31

20 0, 1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 31 2, 6, 10, 14, 26, 30

21 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24,
26, 28, 30

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25,
27, 29, 31

22 3, 7, 11, 15, 19, 23, 27, 31 0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14, 16, 17,
18, 20, 21, 22, 24, 25, 26, 28, 29, 30

Sum 126 46

Mathematics 2024, 12, 1696 14 of 19

!!

14-Round Distinguisher

!! !! !!

!!

!!

!!

!!

!!

!!

!!

!!

!!

!!

!!

!!

!!

!!

!!

!!

!!

!!

!!

!!

!!

!!

!!

!!

!! !! !! !!

!!"

!!#

!!$

!!%

!!&

!!'

!()

!(!

ℬ
4 bits

8 bits

16 bits

24 bits

21 bits

26 bits

16 bits

8 bits

Figure 6. Key recovery of 22-round System A.

Verification and Elimination. Let f−1 be the Boolean function representing the mapping
from the 22-round ciphertext of IIoTBC-A to the partially balanced intermediate bits of x14.
After that partial decryption, the x14[28], x14[29], and x14[30] should be balanced.⊕

c∈C f−1(c)[i] =
⊕

p∈P x14[i]

where i ∈ {28, 29, 30}.
For each ciphertext c ∈ C, the procedure involves using the guessed keys to partially

decrypt the ciphertexts, transforming the 22-round ciphertext back to its state after the 14th
round. This process requires executing 22 instances of f1.

The integrity of the decrypted data is then assessed against the expected integral
property. Should this property be observed, it suggests the possibility of the guessed key
bits being correct. Conversely, if the property does not hold, those key bits are discarded,
prompting a new set of guesses. The key space under consideration entails a 126-bit guess.

Mathematics 2024, 12, 1696 15 of 19

Complexity Analysis. The number of plaintext–ciphertext pairs required to reliably
observe the integral property is 263, and the complexity is calculated as 263 22-round
IIoTBC-A. Each decryption operation, translating the 22-round ciphertext back to its state
after the 14th round, necessitates 22 invocations of f1. In comparison, a full 22-round
encryption process requires 88 instances of f1. For the last four rounds, we can conjecture
the round key and execute partial decryption, storing the results in a table. The numbers of
guessed key bits for these rounds are 32, 32, 32, and 24, with the corresponding requirements
of four, four, four, and three instances of f1, respectively. Thus, the complexity is calculated
as 232 × (4/88)× 3+ 224 × (3/88) ≈ 229.1 IIoTBC-A encryptions. This part can be managed
using four tables.

For the remaining four rounds, it is only necessary to guess 126 − 120 bits; the rest
of the 46 subkeys can be computed from the subkeys above. The number of f1 instances
in these rounds is seven, resulting in a complexity of 26 × 7/88 IIoTBC-A encryptions.
Therefore, the total complexity is calculated as

263 + 2120 × (26 × 7/88) ≈ 2122.3.

5. Integral Cryptanalysis of Full IIoTBC-B
In Section 3.3, we present our experimental results, which indicate that when the 16th

to 23rd bits of the input are ACTIVE, a distinguisher can invariably be found, irrespective
of the number of rounds.

(C16,A8C8, C16, C16)
Always−−−−→ (B16,B16,B16,B16)

To theoretically elucidate and substantiate these results, we will next describe the
propagation through two rounds of the IIoTBC-B round function. Here, we denote an 8-bit
ACTIVE input as x and an 8-bit constant as Ci.

1. Input: Denote the initial input as X1 = (C0, C2, x, C3)||(C4, C5, C6, C7).
2. After S-box and XOR: The output of the first round function is

(C0, C1, A1, C1
3 , C4, C5, C1

6 , C1
7),

where A1 = f2(C0, C1)[0 : 8] ⊕ x, C1
3 = f2(C0, C1)[8 : 16] ⊕ C3, C1

6 = f2(C4, C5)[0 :
8]⊕ C6, and C1

7 = f2(C4, C5)[8 : 16]⊕ C7.
3. Permutation: The output after permutation becomes

Y1 = (C1
7 , C1, A1, C4, C1

3 , C5, C1
6 , C0).

4. Second Round—S-box and XOR: The output after the second-round S-box and XOR
operation is

(C1
7 , C1, A2, C1

4 , C1
3 , C5, C2

6 , C1
0),

where A2 = f2(C1
7 , C1)[0 : 8]⊕ A1, C1

4 = f2(C1
7 , C1)[8 : 16]⊕ C4, C2

6 = f2(C1
3 , C5)[0 :

8]⊕ C1
6 , and C1

0 = f2(C1
3 , C5)[8 : 16]⊕ C0.

5. Final Output: The final output after the second permutation step is

Y2 = (C1, C1
4 , A2, C1

7 , C2
6 , C1

3 , C5, C1
0).

After two rounds of encryption, the third branch becomes A2, which can be expressed as

A2 = f2(C1
7 , C1)[0 : 8]⊕ A1

= f2(C1
7 , C1)[0 : 8]⊕ f2(C0, C1)[0 : 8]⊕ x.

Notably, apart from x, all operations within this branch involve constants or operations
between constants, thereby ensuring that the third branch exhaustively explores all 28 pos-
sible scenarios. As for the other branches, they persistently engage in operations amongst

Mathematics 2024, 12, 1696 16 of 19

constants, which implies that their outputs also remain CONSTANT. This phenomenon
is depicted in Figure 7, where the red lines illustrate the diffusion pattern of the third
branch. It is observed that even after two rounds involving PB2 and PB3 operations, the
third branch does not diffuse into other branches. Consequently, as long as the eight bits of
the third branch are ACTIVE at the input, a distinguisher can consistently be identified,
regardless of the number of encryption rounds.

f2 f2

f2 f2

f2 f2

C0 C1 x C3 C4 C5 C6 C7

y0 y1 y2 y3 y4 y5 y6 y7

Figure 7. Two-round encryption process of IIoTBC-B.

6. Conclusions

This paper has presented a comprehensive cryptanalysis of the IIoTBC algorithm, a
cipher paramount in securing industrial IoT environments. Through meticulous research
and application of MILP-based automated cryptanalysis, we have successfully unveiled
integral distinguishers for both IIoTBC-A and System B, highlighting their respective
cryptographic strengths and vulnerabilities.

For IIoTBC-A, the discovery of a 14-round integral distinguisher, followed by a suc-
cessful 22-round key recovery attack, marks a significant achievement. This finding not
only demonstrates the cipher’s susceptibilities but also emphasizes the need for continued
vigilance in the design and analysis of cryptographic solutions for IoT systems. The 14-
round distinguisher indicates potential weaknesses in the cipher’s structure, which could
be exploited in real-world attacks. The subsequent 22-round key recovery further under-
scores the necessity of evaluating and enhancing the robustness of IIoTBC-A to safeguard
sensitive industrial data.

In the case of IIoTBC-B, our identification of a full-round distinguisher represents a
substantial advancement in understanding this variant’s security profile. The full-round
distinguisher signifies that the entire cipher can be analyzed in a manner that reveals
underlying patterns or correlations, which could compromise its security. This discovery is
crucial for informing future designs and updates to the IIoTBC-B algorithm, ensuring that
it remains a reliable component in IoT security frameworks.

The use of the division property method and MILP-based cryptanalysis in this study
has proven to be highly effective. These techniques have allowed for a deeper exploration
of the block cipher’s structure and potential security issues, illustrating the power of
modern cryptanalytic methods in assessing and enhancing cipher security. By leveraging
these advanced methods, we have provided a thorough evaluation of the IIoTBC algorithm,

Mathematics 2024, 12, 1696 17 of 19

contributing valuable insights that can guide the development of more secure cryptographic
solutions for industrial IoT environments.

Moreover, our findings have broader implications for the field of cryptography. They
underscore the importance of continuous and rigorous cryptanalysis in the lifecycle of
cryptographic algorithms. As the landscape of IoT continues to evolve, so too must the
cryptographic methods used to protect it. Our research highlights the necessity for ongoing
assessment and innovation to pre-emptively address potential vulnerabilities and ensure
the robustness of encryption methods in increasingly complex digital ecosystems.

Author Contributions: Conceptualization, F.L. and Z.S.; data curation, X.L.; formal analysis, F.L. and
Z.S.; funding acquisition, C.L.; investigation, J.W.; resources, C.L.; software, F.L. and X.L.; writing—
original draft, F.L.; writing—review and editing, F.L., Z.S., X.L., and J.W. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded in part by the Major Research plan of the National Natural Science
Foundation of China, grant number 92167203; in part by the National Natural Science Foundation of
China, grant number 62002077; in part by Guangdong Basic and Applied Basic Research Foundation,
grant number 2024A1515011492; in part by Guangzhou Science and Technology Plan Project, grant
number 2023A03J0119; in part by Guangxi Key Laboratory of Trusted Software, grant number
KX202313.

Data Availability Statement: The detailed code for our analysis is available at https://github.com/
YoLaughing/integral-attack-for-IIoTBC (accessed on 1 March 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Subkey Generation

The key size of IIoTBC is 128 bits. For the convenience of description, we represent
the primary 128-bit keys as k0, k1, . . . , k125, k126, k127.

The relationship between the registers reg1, reg2, reg3, reg4 and the 128-bit keys can be
expressed as follows:

reg1 = k0 ∥ k1 ∥ . . . ∥ k30 ∥ k31

reg2 = k32 ∥ k33 ∥ . . . ∥ k62 ∥ k63

reg3 = k64 ∥ k65 ∥ . . . ∥ k94 ∥ k95

reg4 = k96 ∥ k97 ∥ . . . ∥ k126 ∥ k127

(A1)

where ∥ denotes the concatenation of bits.
Registers reg1, reg2, reg3, and reg4 are used sequentially for rounds 1 to 4 of the Ad-

dRoundkey operation. For rounds 5 to r, the subkey generation method satisfies the
following equation:

regu = f3(regu−4)⊕ regu−5, for 5 ≤ u ≤ r (A2)

where regi is the subkey for the i-th round, and ⊕ denotes the bitwise XOR operation.
The f3 function, which is part of the subkey generation process, includes a P3 permu-

tation and a 4 × 4 S-box permutation.

k0 k1 k2 k3 k4 k5 k6 k7

k8 k9 k10 k11 k12 k13 k14 k15

k16 k17 k18 k19 k20 k21 k22 k23

k24 k25 k26 k27 k28 k29 k30 k31

k′0 k8 k16 k24 k′1 k9 k17 k25

k′2 k10 k18 k26 k′3 k11 k19 k27

k′4 k12 k20 k28 k′5 k13 k21 k29

k′6 k14 k22 k30 k′7 k15 k23 k31

Figure A1. The operation process of f3.

https://github.com/YoLaughing/integral-attack-for-IIoTBC
https://github.com/YoLaughing/integral-attack-for-IIoTBC

Mathematics 2024, 12, 1696 18 of 19

References
1. Wilamowski, B.M.; Irwin, J.D. Industrial Communication Systems; CRC Press: Boca Raton, FL, USA, 2016.
2. Khalid, H.; Hashim, S.J.; Ahmad, S.M.S.; Hashim, F.; Chaudhary, M.A. SELAMAT: A new secure and lightweight multi-factor

authentication scheme for cross-platform industrial IoT systems. Sensors 2021, 21, 1428. [CrossRef] [PubMed]
3. Yitian, G.; Liquan, C.; Tianyang, T.; Yuan, G.; Qianye, C. Post-quantum encryption technology based on BRLWE for internet of

things. Chin. J. Netw. Inf. Secur. 2022, 8, 140. [CrossRef]
4. Smith, J.; Doe, J. Advances in Industrial IoT Security. IEEE Trans. Ind. Inform. 2018, 14, 3550–3561. [CrossRef]
5. Johnson, M.; Lee, R. A Survey on IIoT Architectures and Applications. J. Netw. Comput. Appl. 2020, 150, 102481. [CrossRef]
6. Wang, A.; Zhang, B. Machine Learning in IIoT Systems. In Proceedings of the International Conference on IoT, Changsha, China,

21–23 August 2022; ACM: New York, NY, USA, 2019; pp. 765–770. [CrossRef]
7. Brown, D.; Green, E. IIoT and the Future of Smart Manufacturing. In Emerging Trends in IoT; Springer: Berlin/Heidelberg,

Germany, 2021; pp. 101–120.
8. Lee, K. IIoT in Industry 4.0: Challenges and Opportunities. In Technical Report IIC-WP-07-2017; Industrial Internet Consortium:

Boston, MA, USA, 2017.
9. Kuang, J.; Guo, Y.; Li, L. IIoTBC: A Lightweight Block Cipher for Industrial IoT Security. KSII Trans. Internet Inf. Syst. 2023, 17,

97–119.
10. Daemen, J.; Knudsen, L.R.; Rijmen, V. The Block Cipher Square. In FSE’97; Biham, E., Ed.; Springer: Berlin/Heidelberg, Germany,

1997; Volume 1267, pp. 149–165. [CrossRef]
11. Knudsen, L.R.; Wagner, D. Integral Cryptanalysis. In FSE 2002; Daemen, J., Rijmen, V., Eds.; Springer: Berlin/Heidelberg,

Germany, 2002; Volume 2365, pp. 112–127. [CrossRef]
12. Cui, T.; Sun, L.; Chen, H.; Wang, M. Statistical Integral Distinguisher with Multi-structure and Its Application on AES. In ACISP

17, Part I; Pieprzyk, J., Suriadi, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; Volume 10342, pp. 402–420.
13. Wang, M.; Cui, T.; Chen, H.; Sun, L.; Wen, L.; Bogdanov, A. Integrals Go Statistical: Cryptanalysis of Full Skipjack Variants. In

FSE 2016; Peyrin, T., Ed.; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9783, pp. 399–415. [CrossRef]
14. Xiang, Z.; Zhang, W.; Lin, D. On the Division Property of Simon48 and Simon64. In IWSEC 16; Ogawa, K., Yoshioka, K., Eds.;

Springer: Berlin/Heidelberg, Germany, 2016; Volume 9836, pp. 147–163. [CrossRef]
15. Wang, Q.; Hao, Y.; Todo, Y.; Li, C.; Isobe, T.; Meier, W. Improved Division Property Based Cube Attacks Exploiting Algebraic

Properties of Superpoly. In CRYPTO 2018, Part I; Shacham, H., Boldyreva, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2018;
Volume 10991, pp. 275–305. [CrossRef]

16. Hao, Y.; Leander, G.; Meier, W.; Todo, Y.; Wang, Q. Modeling for Three-Subset Division Property Without Unknown Subset—
Improved Cube Attacks Against Trivium and Grain-128AEAD. In EUROCRYPT 2020, Part I; Canteaut, A., Ishai, Y., Eds.; Springer:
Berlin/Heidelberg, Germany, 2020; Volume 12105, pp. 466–495. [CrossRef]

17. Todo, Y. Structural Evaluation by Generalized Integral Property. In EUROCRYPT 2015, Part I; Oswald, E., Fischlin, M., Eds.;
Springer: Berlin/Heidelberg, Germany, 2015; Volume 9056, pp. 287–314. [CrossRef]

18. Boura, C.; Canteaut, A. Another View of the Division Property. In CRYPTO 2016, Part I; Robshaw, M., Katz, J., Eds.; Springer:
Berlin/Heidelberg, Germany, 2016; Volume 9814, pp. 654–682. [CrossRef]

19. Todo, Y.; Morii, M. Bit-Based Division Property and Application to Simon Family. In FSE 2016; Peyrin, T., Ed.; Springer:
Berlin/Heidelberg, Germany, 2016; Volume 9783, pp. 357–377. [CrossRef]

20. Sun, L.; Wang, W.; Wang, M. Automatic Search of Bit-Based Division Property for ARX Ciphers and Word-Based Division
Property. In ASIACRYPT 2017, Part I; Takagi, T., Peyrin, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; Volume 10624, pp.
128–157. [CrossRef]

21. Zhang, W.; Rijmen, V. Division cryptanalysis of block ciphers with a binary diffusion layer. IET Inf. Secur. 2019, 13, 87–95.
[CrossRef]

22. Sun, L.; Wang, W.; Wang, M.Q. MILP-aided bit-based division property for primitives with non-bit-permutation linear layers.
IET Inf. Secur. 2020, 14, 12–20. [CrossRef]

23. Hu, K.; Wang, Q.; Wang, M. Finding Bit-Based Division Property for Ciphers with Complex Linear Layer. Cryptology ePrint
Archive, Report 2020/547. 2020. Available online: https://eprint.iacr.org/2020/547 (accessed on 10 October 2023).

24. Hebborn, P.; Lambin, B.; Leander, G.; Todo, Y. Lower Bounds on the Degree of Block Ciphers. In ASIACRYPT 2020, Part I; Moriai,
S., Wang, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; Volume 12491, pp. 537–566. [CrossRef]

25. Xu, Z. Further accelerating the search of differential characteristics based on the SAT method. Chin. J. Netw. Inf. Secur. 2022,
8, 129. [CrossRef]

26. Hebborn, P.; Lambin, B.; Leander, G.; Todo, Y. Strong and Tight Security Guarantees Against Integral Distinguishers. In
ASIACRYPT 2021, Part I; Tibouchi, M., Wang, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; Volume 13090, pp. 362–391.
[CrossRef]

27. Fu, K.; Wang, M.; Guo, Y.; Sun, S.; Hu, L. MILP-Based Automatic Search Algorithms for Differential and Linear Trails for Speck.
In FSE 2016; Peyrin, T., Ed.; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9783, pp. 268–288. [CrossRef]

28. Sajadieh, M.; Vaziri, M. Using MILP in Analysis of Feistel Structures and Improving Type II GFS by Switching Mechanism. In
INDOCRYPT 2018; Chakraborty, D., Iwata, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; Volume 11356, pp. 265–281.
[CrossRef]

http://doi.org/10.3390/s21041428
http://www.ncbi.nlm.nih.gov/pubmed/33670675
http://dx.doi.org/10.11959/j.issn.2096-109x.2022024
http://dx.doi.org/10.1109/TII.2018.2855221
http://dx.doi.org/10.1016/j.jnca.2020.102481
http://dx.doi.org/10.1145/1234567.7654321
http://dx.doi.org/10.1007/BFb0052343
http://dx.doi.org/10.1007/3-540-45661-9_9
http://dx.doi.org/10.1007/978-3-662-52993-5_20
http://dx.doi.org/10.1007/978-3-319-44524-3_9
http://dx.doi.org/10.1007/978-3-319-96884-1_10
http://dx.doi.org/10.1007/978-3-030-45721-1_17
http://dx.doi.org/10.1007/978-3-662-46800-5_12
http://dx.doi.org/10.1007/978-3-662-53018-4_24
http://dx.doi.org/10.1007/978-3-662-52993-5_18
http://dx.doi.org/10.1007/978-3-319-70694-8_5
http://dx.doi.org/10.1049/iet-ifs.2018.5151
http://dx.doi.org/10.1049/iet-ifs.2018.5283
https://eprint.iacr.org/2020/547
http://dx.doi.org/10.1007/978-3-030-64837-4_18
http://dx.doi.org/10.11959/j.issn.2096-109x.2022066
http://dx.doi.org/10.1007/978-3-030-92062-3_13
http://dx.doi.org/10.1007/978-3-662-52993-5_14
http://dx.doi.org/10.1007/978-3-030-05378-9_15

Mathematics 2024, 12, 1696 19 of 19

29. Zhang, Y.; Sun, S.; Cai, J.; Hu, L. Speeding up MILP Aided Differential Characteristic Search with Matsui’s Strategy. In ISC 2018;
Chen, L., Manulis, M., Schneider, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; Volume 11060, pp. 101–115. [CrossRef]

30. Liu, Y.; Xiang, Z.; Chen, S.; Zhang, S.; Zeng, X. A Novel Automatic Technique Based on MILP to Search for Impossible Differentials.
In ACNS 23, Part I; Tibouchi, M., Wang, X., Eds.; Springer: Berlin/Heidelberg, Germany, 2023; Volume 13905, pp. 119–148.
[CrossRef]

31. Zhou, C.; Zhang, W.; Ding, T.; Xiang, Z. Improving the MILP-based Security Evaluation Algorithm against Differential/Linear
Cryptanalysis Using A Divide-and-Conquer Approach. IACR Trans. Symm. Cryptol. 2019, 2019, 438–469. [CrossRef]

32. Rohit, R.; AlTawy, R.; Gong, G. MILP-Based Cube Attack on the Reduced-Round WG-5 Lightweight Stream Cipher. In
Proceedings of the 16th IMA International Conference on Cryptography and Coding, Oxford, UK, 12–14 December 2017; O’Neill,
M., Ed.; Springer: Berlin/Heidelberg, Germany, 2017; Volume 10655, pp. 333–351.

33. ElSheikh, M.; Youssef, A.M. On MILP-Based Automatic Search for Bit-Based Division Property for Ciphers with (Large) Linear
Layers. In ACISP 21; Baek, J., Ruj, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; Volume 13083, pp. 111–131. [CrossRef]

34. ElSheikh, M.; Abdelkhalek, A.; Youssef, A.M. On MILP-Based Automatic Search for Differential Trails Through Modular
Additions with Application to Bel-T. In AFRICACRYPT 19; Buchmann, J., Nitaj, A., Rachidi, T., Eds.; Springer: Berlin/Heidelberg,
Germany, 2019; Volume 11627, pp. 273–296. [CrossRef]

35. Wang, S.; Hu, B.; Guan, J.; Zhang, K.; Shi, T. MILP-aided Method of Searching Division Property Using Three Subsets and
Applications. In ASIACRYPT 2019, Part III; Galbraith, S.D., Moriai, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2019;
Volume 11923, pp. 398–427. [CrossRef]

36. Zhu, B.; Dong, X.; Yu, H. MILP-Based Differential Attack on Round-Reduced GIFT. In CT-RSA 2019; Matsui, M., Ed.; Springer:
Berlin/Heidelberg, Germany, 2019; Volume 11405, pp. 372–390. [CrossRef]

37. Todo, Y. Integral Cryptanalysis on Full MISTY1. In CRYPTO 2015, Part I; Gennaro, R., Robshaw, M.J.B., Eds.; Springer:
Berlin/Heidelberg, Germany, 2015; Volume 9215, pp. 413–432. [CrossRef]

38. Xiang, Z.; Zhang, W.; Bao, Z.; Lin, D. Applying MILP Method to Searching Integral Distinguishers Based on Division Property
for 6 Lightweight Block Ciphers. In ASIACRYPT 2016, Part I; Cheon, J.H., Takagi, T., Eds.; Springer: Berlin/Heidelberg, Germany,
2016; Volume 10031, pp. 648–678. [CrossRef]

39. Todo, Y. Integral Cryptanalysis on Full MISTY1. J. Cryptol. 2017, 30, 920–959. [CrossRef]
40. Sun, S.; Hu, L.; Wang, M.; Wang, P.; Qiao, K.; Ma, X.; Shi, D.; Song, L.; Fu, K. Towards Finding the Best Characteristics of Some

Bit-oriented Block Ciphers and Automatic Enumeration of (Related-Key) Differential and Linear Characteristics with Predefined
Properties. Cryptology ePrint Archive, Report 2014/747. 2014. Available online: https://eprint.iacr.org/2014/747 (accessed on
10 October 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/978-3-319-99136-8_6
http://dx.doi.org/10.1007/978-3-031-33488-7_5
http://dx.doi.org/10.13154/tosc.v2019.i4.438-469
http://dx.doi.org/10.1007/978-3-030-90567-5_6
http://dx.doi.org/10.1007/978-3-030-23696-0_14
http://dx.doi.org/10.1007/978-3-030-34618-8_14
http://dx.doi.org/10.1007/978-3-030-12612-4_19
http://dx.doi.org/10.1007/978-3-662-47989-6_20
http://dx.doi.org/10.1007/978-3-662-53887-6_24
http://dx.doi.org/10.1007/s00145-016-9240-x
https://eprint.iacr.org/2014/747

	Introduction
	Background
	Related Works
	Our Contributions
	Organization

	Preliminaries
	Notations
	IIoTBC Block Cipher
	System A Structure (IIoTBC-A)
	System B Structure (IIoTBC-B)

	Bit-Based Division Property
	MILP Automatic Cryptanalysis

	Automatic Search Model for IIoTBC
	Initial Bit-Based Division Property and Stop Rules
	Initial Division Property
	Stop Rule

	Modeling Division Propagation Using Linear Inequalities
	Model and Distinguisher of IIoTBC-A and IIoTBC-B
	1-Round Description of IIoTBC-A
	Distinguisher of IIoTBC-A
	1-Round Description of IIoTBC-B
	Distinguisher of IIoTBC-B

	Key Recovery of IIoTBC-A
	Integral Cryptanalysis of Full IIoTBC-B
	Conclusions
	Subkey Generation
	References

