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Abstract: This paper undertakes a revisit of the sunk cost fallacy, which refers to the tendency of
people to persist investing resources into something, even if it is destined to have no good outcome.
We emphasize that the utilities associated with different alternatives are not static for decision makers,
which is exactly opposite to the traditional perspective. This paper argues that the utility of an option
may change due to the choice of another option, suggesting that decisions considered irrational by the
traditional analytical method, i.e., sunk cost fallacy, may be rational. We propose a novel analytical
method for decision making with sunk cost when considering the utility change and validate the
effectiveness of this method through mathematical modeling and computational experiments. This
paper mathematically describes such decision-making problems, analyzing the impact of changes in
the utilities across different alternatives on decision making with a real-world example. Furthermore,
we develop a two-stage stochastic optimization model for such decision-making problems and employ
the sample average approximation (SAA) method to solve them. The results from computational
experiments indicate that some decisions traditionally considered irrational are, in fact, rational
when the utility of an option changes as a result of choosing another option. This paper, therefore,
highlights the significance of incorporating utility changes into the decision-making process and
stands as a valuable addition to the literature, offering a refreshed and effective decision-making
method for improved decision making.

Keywords: sunk cost fallacy; decision analysis; two-stage stochastic optimization; sample average
approximation

MSC: 90-10

1. Introduction

Sunk costs refer to costs that have already been incurred and cannot be recovered,
including time, money, resources, etc., invested in a project or decision option. These costs
should not influence current decision making because they are irretrievable [1]. Notably,
sunk cost is different from opportunity cost, which refers to the loss of potential gain
from other alternatives when one alternative is chosen. Previous research believes that
rational decisions should focus on future potential costs and benefits, rather than past
expenditures [2,3]. There are numerous examples of sunk costs in everyday life. For
instance, if someone has purchased a movie ticket and the ticket is non-refundable, the
money spent on the ticket becomes a sunk cost, as it cannot be recovered regardless of
whether the movie is attended. In the financial domain, sunk costs refer to the funds that
have been invested and cannot be recovered, such as the costs that cannot be recouped
through selling stocks or bonds. In corporate management, they cover resources that have
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been invested by the company, such as machinery and equipment purchases, which cannot
be recovered by ceasing production or shutting down factories.

1.1. Literature Review

Research on sunk costs and related biases spans various domains, shedding light on
decision-making processes. Several studies confirm the presence of the sunk cost effect,
highlighting its intricate relationship with cognitive processes. Ronayne et al. [4] underscore
the roles of cognitive reflection and crystallized intelligence in decision making influenced
by sunk costs. However, Ott et al. [5] present alternative explanations, challenging the
traditional understanding of this effect. Moreover, individual differences in decision-
making strategies are explored by Yan and Otto [6], while Guan et al. [7] link impulsive
behavior to anticipated regret and after-sale risk, revealing nuanced factors contributing
to the sunk cost phenomenon. Leal et al. [8] emphasize its impact on business decisions,
while Duin et al. [9] highlight the importance of certainty and uncertainty in shaping
decision-making outcomes.

Studies also delve into diverse contexts, enriching our understanding of sunk costs’
influence. Sehl et al. [10] contrast children’s and adults’ anticipation of sunk costs, indi-
cating developmental differences in decision making. Jhang et al. [11] connect childhood
environments to the sunk-cost fallacy, while Perignat and Fleming [12] explore its mani-
festation in research project termination, elucidating its implications in various settings.
Beyond these, research extends to education, sports, and industry concentration, offering a
comprehensive view of sunk costs’ effects. Bhayani [13] de-bates the impact of payment
methods on higher education, while Farah and Baker [14] analyze its implications in tal-
ent development within the NHL draft. Lieberman [15] examines its effects on industry
dynamics, and Deslatte and Stokan [16] investigate its role in local government sustainabil-
ity efforts. Schmitzer-Torbert [17] examines mind-fulness’s influence, while Devoto and
DeFulio [18] compare behavior-based and scenario-based procedures. Jain and Chen [19]
investigate its implications in pricing decisions, and Ma [20] studies its effect on car in-
surance policyholders’ behavior. Moreover, age-related differences in sunk cost decision
making are highlighted by Huai et al. [21], while leadership skills in mitigating the sunk
cost fallacy are emphasized by Smith [22]. Additionally, neural mechanisms underlying
sunk cost effects are revealed by Wang et al. [23], and consumer behavior tendencies in life
insurance pricing are uncovered by Carson et al. [24]. Finally, Negrini et al. [25] contributes
to understanding risk and loss aversion dynamics through the discovery of a reverse sunk
cost effect in investment decisions.

Economists and psychologists have long been interested in how sunk costs influ-
ence decision makers’ behavior [26]. Many individuals have an aversion to losses and
worry about wasting resources, as illustrated by the scenario where people may compel
themselves to watch a movie that they have no desire to see, simply because they fear
to waste the money spent on tickets. Sunk costs often sway people’s decisions, leading
them to exhibit a tendency to persist investing resources such as money, effort, or time, a
phenomenon known as the sunk cost fallacy [27,28]. However, rational decision making
should be based on whether one desires to continue watching the movie, rather than the
amount paid for the tickets. The decision at hand should not take into account the act of
purchasing tickets but rather be made with the mindset of watching a free movie. If the
utility of the movie is lower than expected, rational individuals should exit and engage in
more meaningful activities, considering that they would only incur a minor loss, whereas
continuing to watch the movie would prolong the sense of loss. Sunk cost fallacy, also
referred to as the Concorde effect, highlights the situation in the 1960s when the British
and French governments continued to fund the development of the Concorde aircraft
despite its apparent lack of economic viability, and ultimately leading to a commercial
disaster [29]. Therefore, excessive focus on sunk costs when we make decisions, whether
by businesses or individuals, may result in erroneous choices [30], such as persisting with
investments in a failing project solely due to prior substantial investments of capital and
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time. Therefore, rational decision makers should eliminate the influence of sunk costs
when making investment decisions. However, classical economic theories consider the
sunk cost fallacy under the premise that the utilities of different alternatives are static
and invariant for decision makers [31]; that is, if one is chosen, the utilities of the other
alternatives remain unchanged.

1.2. Contributions and Organization

Interestingly, we notice that the utilities of different alternatives may not be static
for decision makers, i.e., the utility of an option may change due to the choice of another
option. For example, a rational decision maker has two alternatives: going to cinema
for a movie or staying at home. Choosing to watch an unsatisfactory movie instead of
going back home may not be driven solely by the fear of wasting the ticket money. Rather,
due to the need to commute back home from the cinema, the utility of staying at home
decreases and is actually lower than that of continuing to watch the movie. Thus, seemingly
irrational decisions indicated by the sunk cost fallacy may actually be rational in certain
circumstances.

Traditionally, in decision-making problems related to the choice of different alterna-
tives, the utilities of alternatives are treated as deterministic and static for decision makers.
However, this paper proposes that the utilities are actually dynamic; that is, the utilities
of different alternatives may change during the decision-making process. This research,
thus, revisits sunk cost fallacy and contributes a novel perspective to the existing literature,
considering the impact of utility changes on decision-making problems with sunk cost.

Specifically, this paper analyzes the changes in the utilities of two alternatives during
the proceeding of decision making and their impacts on the decision making. By contrasting
with the traditional analytical method, this paper argues that if the utilities of different
alternatives are altered by decision making, then decisions perceived as irrational indicated
by the sunk cost fallacy may, in fact, be rational decisions. For a quantitative study of this
framework, a two-stage stochastic optimization model is developed, and the paper analyzes
how optimal decisions should be made in situations where utilities fluctuate [32,33]. The
results of computational experiments validate our proposed model and solution method.
Specifically, in some scenarios, our proposed method leads to the rational and optimal
decision, while the traditional analytical method results in a loss of utility.

Therefore, our proposed method distinguishes itself from the existing literature in the
following three aspects:

(i) We consider the utility changes of different alternatives during the decision-making
process for decision makers.

(ii) We propose a novel mathematical model for solving our studied decision-making
problem, which is a two-stage stochastic binary optimization model.

(iii) We verify the effectiveness of our proposed method through comprehensive computa-
tional experiments.

The remainder of this paper is organized as follows. Section 2 states the decision-
making problem with sunk cost and illustrates it through a real-world example. Section 3
establishes a two-stage stochastic optimization model for this decision-making problem.
Section 4 designs four sets of simulation experiments, analyzes the experimental results,
and draws insights. Section 5 concludes this paper.

2. Problem Statement

We consider a decision-making problem with sunk cost as follows [6]. For a rational
decision maker with the objective of maximizing the utility, there are two options A and
B at time point one with the utilities ã and b, respectively, where ã represents a random
utility for option A, and b is a deterministic utility for option B. Choosing option A requires
a deterministic cost, denoted as c. Once option A is invested, it cannot be refunded. Before
choosing option A, the decision maker has an estimated utility value of ã, denoted by â.
Furthermore, the realized value of ã, denoted by a, can only be observed after choosing
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option A. The decision maker faces the decision of choosing between options A and B at
time point one. If option A is chosen and the realized value a is observed, there remains an
opportunity to switch to option B; that is, the decision maker can choose to continue with
option A or switch to option B at time point two. However, if option B is initially chosen,
the opportunity to switch to option A is lost, which means that the decision maker obtains
a utility b.

Given the above introduction, when a decision maker is confronted with two options
at time point one, it is difficult to assign specific numerical values to â and b; instead, they
often analyze the difference between them. Standing at time point one, it is straightforward
to see that as long as â − b > c, that is, the utility increment generated by option A exceeds
the utility of option B, a rational decision maker should choose option A.

If choosing option A at time point one and observing the realized value a, the decision
maker needs to make the further decision between continuing with option A or switching
to option B at time point two. According to the classical economic theory, if a ≥ b, a
rational decision maker should continue with option A; otherwise, the decision maker
should switch to option B. Conversely, if the decision maker realizes that a < b but feels
compelled to continue with option A because the cost has already been invested and cannot
be recovered, the decision is deemed irrational, falling into the sunk cost fallacy.

However, the traditional sunk cost fallacy mentioned above overlooks some factors.
For the decision maker, choosing option A may, under some circumstances, result in the
utility of option B changing from b to b′, and in general b′ < b. In other words, the
utilities of options are sometimes not static, and the utility of option B may change due
to the choice of option A. Considering the change of utility from b to b′ for option B, the
rational decision should be: if a ≥ b′, the decision maker should continue with option A;
if a < b′, the decision maker should switch to option B. Therefore, if a < b but a ≥ b′, the
seemingly irrational decision of the decision maker under the traditional analytical method
is actually rational. For better illustration, the flowchart of the decision-making process for
the problem mentioned above considering the utility change is illustrated in Figure 1.
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2.1. An Illustrative Example of a Manufacturing Enterprise

We consider a real-world example of a manufacturing enterprise, who is currently
facing a decision between two options: plan A producing on the new production line,
while plan B continuing production on the current old production line. ã denotes the profit
obtained per unit time when producing on the new production line, and ã is considered
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a random variable. Before choosing plan A, the enterprise has an estimated value â of ã,
and the realized value a of ã can only be observed after choosing plan A. c denotes the
investment cost per unit time for the new production line, and b denotes the profit obtained
per unit time when producing on the current old production line, and b is considered a
deterministic value. It is assumed that for this enterprise, if plan A is chosen and the benefit
of the new production line is not as expected, there is still an opportunity to switch back to
the original old production line; however, if plan B is chosen initially, the opportunity to
update the production line will be missed.

It is straightforward to see that as long as â − b > c, that is, the expected increase
in profit brought by the new production line exceeds the input cost, a rational enterprise
should choose plan A to update the production line. Suppose the enterprise decides to
choose plan A and, after a period of production, observes the realized profit value a is lower
than â. Subsequently, according to the classical economic theory, if a ≥ b, the enterprise
should continue producing on the new production line; if a < b, the enterprise should
switch back to the original old production line. If the enterprise realizes that a < b but feels
compelled to continue with plan A because the cost of updating the old production line
has already been invested and cannot be recovered, the decision is irrational, falling into
the sunk cost fallacy.

However, some practical factors are ignored for the enterprise in the traditional sunk
cost fallacy mentioned above. For instance, if the enterprise chooses plan A to update
the production line, it is necessary to recruit new technical personnel, spend time and
energy training workers, and require some time to adapt to the new mode of production.
Consequently, if the enterprise finds that the profit after updating the production line is
lower than before, and decides to switch back to the old production line, the enterprise
needs to lay off the new technical personnel, spend time and energy converting the new
production line back to the old one, and after a series of disturbances, the productivity
of workers may decrease. Therefore, the profit of plan B would change from b to b′, and
b′ < b. In this case, the rational decision should be: if a ≥ b′, the enterprise should continue
producing on the new production line; if a < b′, the enterprise should opt for plan B,
i.e., switch back to the original old production line. Therefore, if a < b but a ≥ b′, the
seemingly irrational decision of the enterprise under the traditional analytical method is
actually rational.

2.2. Other Real-World Examples

There are various decision-making problems with sunk cost in daily life, such as
Examples 1 and 2 shown below.

Example 1. For a rational decision maker, consider that there are two alternatives for spending
Friday evening: plan A is to go to the cinema to watch a movie; and plan B is to stay at home and
watch TV. We assume that, for the decision maker, if plan A is chosen and the movie turns out to be
unsatisfactory, there is still an opportunity to switch to plan B and watch TV at home. However, if
plan B is chosen initially, the opportunity to switch to plan A is lost due to missing the movie. If the
decision maker chooses plan A to go to the cinema, he may need to spend time changing clothes and
commuting from home to the cinema. Consequently, when the decision maker chooses plan A and
intends to return home to watch TV after finding the movie unsatisfactory, he also needs to spend
time commuting back home, etc., resulting a decline in the utility of plan B. In other words, the
utilities of both plans are not static, and the utility of plan B may change due to the choice of plan A.
Therefore, the seemingly irrational decision of the decision maker under the traditional analytical
method is actually rational in some situations.

Example 2. Upon graduation, a university student may receive multiple job offers but can only
choose one. If the chosen job turns out to be unsatisfactory upon starting, the student may not
necessarily seek out other job opportunities. The reason is that the student may not necessarily be
influenced by sunk cost fallacy but rather by the fact that other job opportunities have been filled, or
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he would not be able to get the high salary as before if switching to another job; that is, the utilities
of different alternatives have changed.

In summary, through abstracting and mathematically describing real-world problems,
we demonstrate that the utilities of different alternatives in decision making are not static
and are subject to change. That is, the utility of one alternative may change with the
implementation of another alternative. Therefore, what may appear as an irrational decision
(i.e., the sunk cost fallacy) under traditional views may actually be rational in certain
circumstances. We also present a decision-making flowchart considering utility changes in
this section, and Section 3 establishes a mathematical programming model for a detailed
analysis of this issue.

3. Mathematical Models and Solution Approach

This section develops a two-stage stochastic optimization model for the research
problem in Section 2 and employs the SAA method to solve the model.

3.1. Two-Stage Stochastic Optimization Model

The studied decision-making process unfolds in two stages: the first stage is to make
decisions prior to the occurrence of uncertainty, while the second stage involves decision
making after the uncertainty is realized while considering the utility change. Therefore, a
two-stage stochastic optimization method is employed to model the above problem. The
assumptions of the optimization model are as follows:

(i) The model considers that there are two options A and B for the decision maker.
(ii) The utility of option A is a random parameter, while the utility of option B is deter-

ministic.
(iii) Choosing option A requires a deterministic cost, which cannot be refunded once

option A is chosen.
(IV) If option A is chosen, there remains an opportunity to switch to option B. However, if

option B is initially chosen, the opportunity to switch to option A is lost.
(V) After choosing option A, if the decision maker wants to switch to option B, the utility

of option B has changed relative to its original utility.

In the first stage, the decision maker is tasked with choosing between options A
and B, with the objective of maximizing the overall expected utility of both stages. The
parameters and variables for the first stage decision problem are defined in Table 1. If
option A is chosen in the first stage, and the decision maker observes the realized value a of
the random parameter ã, the traditional analytical method assumes that the utility of option
B remains unchanged at b. However, the method proposed in this paper suggests that, due
to the choice of option A, the utility of option B undergoes a decrease, updated to b′ and
b′ < b. Subsequently, in the second stage, the decision maker is required to choose between
continuing with option A and switching to option B to maximize the current total utility if
the decision maker chooses option A at the first stage. The parameters and variables for the
second-stage decision-making problem are defined in Table 2.

We further denote by u(ã) the overall utility obtained by the decision maker when
choosing option A at the first stage. Since the decision in the first stage must be made
before the uncertainty realizes, u(ã) is an expression containing random parameter ã. After
the random parameter is realized, denoted by a, we represent the overall realized utility by
u(a) if the decision maker chooses option A at the first stage.
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Table 1. Definition of parameters and variables for the first-stage decision-making problem.

Parameters

ã Utility of option A, treated as a random parameter.
b Utility of option B, treated as deterministic.

Decision Variables

x1
Decision under the traditional analytical method: x1 ∈ {0, 1};
x1 = 1 indicates choosing option A;
x1 = 0 indicates choosing option B.

x2

Decision under the method proposed in this paper:
x2 ∈ {0, 1};
x2 = 1 indicates choosing option A;
x2 = 0 indicates choosing option B.

Table 2. Definition of parameters and variables for the second-stage decision-making problem.

Parameters

a Utility observed by the decision maker after choosing option A in
the first stage.

b′ Utility of option B updated due to the choice of option A.
c Cost invested for option A, which cannot be recovered.

Decision Variables

y1(a)

Decision under the traditional analytical method: y1(a) ∈ {0, 1};
y1(a) = 1 indicates continuing with option A when the observed
utility of option A is a;
y1(a) = 0 indicates switching to option B when the observed
utility of option A is a.

y2(a)

Decision under the method proposed in this paper: y2(a) ∈ {0, 1};
y2(a) = 1 indicates continuing with option A when the observed
utility of option A is a;
y2(a) = 0 indicates switching to option B when the observed
utility of option A is a.

The two-stage stochastic optimization model under the traditional analytical method
is defined as follows:

Model I-1:
max

(
1 − x1

)
b + x1E[u(ã)] (1)

subject to
x1 ∈ {0, 1}.

Model I-2:
u(a) = max y1(a)a +

[
1 − y1(a)

]
b − c (2)

subject to
y1(a) ∈ {0, 1}.

The two-stage stochastic optimization model under the method proposed in this paper
is defined as follows:

Model II-1:
max

(
1 − x2

)
b + x2E[u(ã)] (3)

subject to
x2 ∈ {0, 1}.

Model II-2:
u(a) = max y2(a)a +

[
1 − y2(a)

]
b′ − c (4)
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subject to
y2(a) ∈ {0, 1}.

The objective functions (1)–(4) maximize the total expected utility in respective stages
under different analytical methods.

To evaluate the decision effectiveness of the traditional analytical method and the
method proposed in this paper, we define the decision utility loss. When x1 = x2 = 0, the
decision maker chooses option B in the first stage; therefore, there is no sunk cost. When
x1 = x2 = 1, the decision maker chooses option A in the first stage. For the observed value
a of the random parameter ã in the second stage, we define u1(a) and u2(a) as the realized
utilities for the decisions under the traditional analytical method and the method proposed
in this paper, respectively, where

u1(a) = max y1(a)a +
[
1 − y1(a)

]
b′ − c,

u2(a) = max y2(a)a +
[
1 − y2(a)

]
b′ − c.

Then the decision utility loss of the traditional analytical method compared to the
method proposed in this paper is defined as

L = u2(a)− u1(a). (5)

3.2. Solution Method: SAA

Since u(a) is nonlinear of a in the first stage decision-making problem, using u[E(ã)]
instead of E[u(ã)] may lead to incorrect decisions [34]. In this case, we should consider the
distribution of the random parameter ã and employ methods such as SAA for solution [35].
The main idea of the sample average approximation (SAA) is to replace E[u(ã)] with the
empirical average utility of finite samples. Specifically, we draw a certain number of
samples from the probability distribution of the uncertain parameter ã for approximating
E[u(ã)]. To this end, we generate N observations a1, . . . , aN from the distribution of the
random parameter ã and obtain the estimated Ê[u(ã)] = N−1 ∑N

i=1 u(ai). Based on this
estimator, decisions x1 and x2, i.e., choosing option A or B, can be made for the first stage.
If option A is chosen in the first stage, the decision maker then makes the second-stage
decisions y1(ai) and y2(ai), i.e., continuing with option A or switching to option B, based
on the observed values ai (i ∈ {1, . . . , N}) of the random parameter ã.

Therefore, the approximate models for Model I and II are denoted as Models I′ and II′,
respectively, shown as follows:

Model I′-1:

max
(

1 − x1
)

b + x1 ∑N
i=1 u(ai)

N
(6)

subject to
x1 ∈ {0, 1}.

Model I′-2 (i ∈ {1, 2, . . . , N}):

u(ai) = max y1(ai)ai +
[
1 − y1(ai)

]
b − c (7)

subject to
y1(ai) ∈ {0, 1}.

Model II′-1:

max
(

1 − x2
)

b + x2 ∑N
i=1 u(ai)

N
(8)

subject to
x2 ∈ {0, 1}.
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Model II′-2 (i ∈ {1, 2, . . . , N}):

u(ai) = max y2(ai)ai +
[
1 − y2(ai)

]
b′ − c (9)

subject to
y2(ai) ∈ {0, 1}.

For the observed value ai (i ∈ {1, 2, . . . , N}) of the random parameter ã in the sec-
ond stage, we define u1(ai) and u2(ai) as the realized utility for the decisions under the
traditional analytical method and the method proposed in this paper respectively, where

u1(ai) = max y1(ai)ai +
[
1 − y1(ai)

]
b′ − c,

u2(ai) = max y2(ai)ai +
[
1 − y2(ai)

]
b′ − c.

Subsequently, the estimated decision utility loss of the traditional analytical method
relative to the method proposed in this paper is

L̂ = LN =
1
N

N

∑
i=1

[
u2(ai)− u1(ai)

]
. (10)

4. Computational Experiments

In this section, we conduct computational experiments on the example of the manu-
facturing enterprise provided in Section 2.1 and solve the two-stage stochastic optimization
model using the SAA method. By comparing with the traditional analytical method, we
verify the effectiveness of the proposed method in this paper.

For the manufacturing enterprise mentioned in Section 2.1, we assume that the random
parameter ã in plan A follows a uniform distribution, i.e., ã ∼ U(20, 100). The profit of
plan B at time point one is set to b = 50. If plan A is chosen at time point one, the profit
of plan B changes to b′ = 40 actually. Four sets of simulation experiments are conducted
with N = 1000 in each experiment. Experiments 1 and 3 simulate the traditional analytical
method without considering the parameter b′, while experiments 2 and 4 simulate our
proposed method in this paper with the parameter b′ = 40. In experiments 1 and 2, we set
the plan A’s investment cost to be c = 20 that mimics the high-cost scenario, while c = 10
in experiment 3 and 4 mimics the low-cost scenario. The setup of experimental data in this
study is designed based on the real situation of a manufacturing company, which reflects
the essence of a class of two-stage decision-making problems that enterprises face. The
experiment results are presented in Table 3.

Table 3. Results of the four sets of simulation experiment.

Experiment No. Model ã b b′ c x ∑N
i=1 y(ai)

1 Model I′ U(20, 100) 50 / 20 0 /
2 Model II′ U(20, 100) 50 40 20 0 /
3 Model I′ U(20, 100) 50 / 10 1 610
4 Model II′ U(20, 100) 50 40 10 1 746

In experiments 1 and 2, due to the relatively high cost of updating the old production
line in plan A, the optimal decision for the enterprise at time point one is to choose plan
B, with profit b = 50. Experiment 3 simulates the traditional analytical method, which
considers that the profit of plan B remains unchanged at b. Therefore, the optimal decision
at time point one is to choose plan A; among the 1000 scenarios at time point two, the
enterprise continues producing on the new production line under 610 scenarios. Experiment
4 simulates the method proposed in this paper, with b′ = 40 < b, indicating a decrease in
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the profit of plan B after choosing plan A. In this case, the optimal decision at time point
one is still to choose plan A; among the 1000 scenarios at time point two, the enterprise
continues producing on the new production line under 746 scenarios. The estimated
decision utility loss of the traditional analytical method compared to the proposed method
in this paper is

LN =
1

1000

1000

∑
i=1

[
u2(ai)− u1(ai)

]
= 0.711.

Comparing experiments 3 and 4, there are 136 scenarios at time point two where the
decisions differ, after the enterprise chooses plan A and finds that the profit of the new
mode of production is lower than expected. The traditional analytical method suggests that
the enterprise should switch to plan B, while the method proposed in this paper suggests
that the enterprise should continue with plan A. Among these 136 scenarios, the decision
to continue producing on the new production line, considering the change in the profit of
plan B due to the choice of plan A, is actually rational according to the method proposed in
this paper. However, the traditional analytical method considers the decision of continuing
producing on the new production line as irrational, implying a sunk-cost fallacy, thus
resulting in a loss of profit.

Therefore, when faced such a decision-making problem, the enterprise should take
into account the profit change of plan B to maximize the expected profit. In order to
demonstrate the impact of the profit change of plan B on decision making, we plot the
variation diagram of the optimal decision at time point one for the enterprise using our
proposed method, i.e., considering the change of profit of plan B. Under the settings of
ã ∼ U(20, 100) and c = 10, Figure 2 displays the decision that the enterprise should make
between plan A and plan B at time point one under different parameter combinations of b
and b′. For parameter combinations within the region shaded with red diagonal lines, such
as b = 45 and b′ = 40, the enterprise should choose plan A at time point one, and then
make the optimal decision at time point two based on the realized profit values a, b′ and
c using Model II′-2 and obtain the corresponding profit of max{a − c, b′ − c}. For those
combinations within the region filled with blue cross lines, such as b = 55 and b′ = 30, the
enterprise should choose plan B at time point one and obtain profit of b.
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In summary, we conduct computational experiments with data simulated from the real
situation of a manufacturing enterprise. The enterprise faces decision-making problems
related to choosing between plan A and plan B, with the goal of maximizing the profit.
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The simulation experiments compare the effectiveness of our proposed method with the
traditional analytical method. Results show that the proposed method outperforms the
traditional method in decision making in some circumstances. The experiments demon-
strate the importance of considering the variations of profit, especially in scenarios where
the sunk cost fallacy may lead to a loss of profit. The decision area map at time point one
further illustrates the impact of profit variations on the optimal decision-making strategies.
Overall, the experiments highlight the significance of incorporating profit variations into
the decision-making process for improved outcomes in manufacturing enterprises.

5. Conclusions

This paper revisits the sunk cost fallacy and proposes that the utilities of different
alternatives are not static for decision makers; that is, the utility of an option may change
due to the choice of another option. Therefore, what appears to be an irrational decision
under the traditional analytical method is actually rational. This paper, therefore, stands as
a valuable addition to the existing literature, offering a refreshed and effective decision-
making method with sunk cost considering the utility changes.

We provide a mathematical description for such decision-making problems, analyze
the impact of changes in the utility of different alternatives on decision making, and illus-
trate the proposal with a real-world example of the manufacturing enterprise. Furthermore,
this paper establishes a two-stage stochastic optimization model for such decision-making
problems, defines decision utility loss, an indicator to evaluate the effectiveness of different
decisions, and solves the model using the SAA method. The results of computational
experiments indicate that considering the change in the utility of an option due to the
choice of another option, decisions considered irrational by traditional analytical methods
are, in fact, rational in some scenarios, and the decisions obtained from the traditional
analytical method may actually lead to a loss of utility.

This paper considers two options in the discussion of the decision-making problem
with sunk cost, and the decision-making process in our study is divided into two stages.
There are generally three directions for future research. Firstly, consider other types of
decision-making scenarios, such as multiple options and multi-stage decision making, and
researchers can make comprehensive comparative analysis with other decision-making
models based on the real-world data. Secondly, when the utility variations of multiple
alternatives become more complicated, the modeling and solving algorithms of decision
problems considering sunk costs become more challenging, which are directions worth
investigating in the future. Thirdly, future research can explore the psychological aspects
of decision making influenced by sunk cost fallacy in fields like cognition, organizational
behavior, and team management.
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