
Citation: Wen, J.; Li, H.; Liu, L.; Lan,

C. Enhancing Security and Efficiency: A

Fine-Grained Searchable Scheme for

Encryption of Big Data in Cloud-Based

Smart Grids. Mathematics 2024, 12,

1512. https://doi.org/10.3390/

math12101512

Academic Editor: Cheng-Chi Lee

Received: 13 March 2024

Revised: 6 May 2024

Accepted: 8 May 2024

Published: 13 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Enhancing Security and Efficiency: A Fine-Grained Searchable
Scheme for Encryption of Big Data in Cloud-Based Smart Grids
Jing Wen 1, Haifeng Li 2,3,* , Liangliang Liu 4,* and Caihui Lan 1

1 School of Information Engineering, Lanzhou City University, Lanzhou 730070, China;
wj_83@lzcu.edu.cn (J.W.); lan_ch@lzcu.edu.cn (C.L.)

2 School of Computer and Information Science, Qinghai University of Science and Technology,
Xining 810016, China

3 Department of Computer Technology and Applications, Qinghai University, Xining 810016, China
4 School of Statistics and Information, Shanghai University of International Business and Economics,

Shanghai 201620, China
* Correspondence: lihaifeng@qhu.edu.cn (H.L.); liangliang@suibe.edu.cn (L.L.)

Abstract: The smart grid, as a crucial part of modern energy systems, handles extensive and diverse
data, including inputs from various sensors, metering devices, and user interactions. Outsourcing
data storage to remote cloud servers presents an economical solution for enhancing data management
within the smart grid ecosystem. However, ensuring data privacy before transmitting it to the cloud is
a critical consideration. Therefore, it is common practice to encrypt the data before uploading them to
the cloud. While encryption provides data confidentiality, it may also introduce potential issues such
as limiting data owners’ ability to query their data. The searchable attribute-based encryption (SABE)
not only enables fine-grained access control in a dynamic large-scale environment but also allows for
data searches on the ciphertext domain, making it an effective tool for cloud data sharing. Although
SABE has become a research hotspot, existing schemes often have limitations in terms of computing
efficiency on the client side, weak security of the ciphertext and the trapdoor. To address these
issues, we propose an efficient server-aided ciphertext-policy searchable attribute-based encryption
scheme (SA-CP-SABE). In SA-CP-SABE, the user’s data access authority is consistent with the search
authority. During the search process, calculations are performed not only to determine whether
the ciphertext matches the keyword in the trapdoor, but also to assist subsequent user ciphertext
decryption by reducing computational complexity. Our scheme has been proven under the random
oracle model to achieve the indistinguishability of the ciphertext and the trapdoor and to resist
keyword-guessing attacks. Finally, the performance analysis and simulation of the proposed scheme
are provided, and the results show that it performs with high efficiency.

Keywords: searchable encryption; attribute-based encryption; server-aided decryption; trapdoor
indistinguishability; random oracle model

MSC: 68P25

1. Introduction

The smart grid stands as a pivotal advancement in the future of energy, marking a
transformative leap forward and modernization of traditional power systems. Compared to
conventional grids, the smart grid harnesses advanced technologies and digital solutions to
make the processes of transmitting, distributing, and monitoring electricity more intelligent,
efficient, and reliable. It represents a critical pathway for the future evolution of power
systems. Through continuous real-time monitoring, control, and optimization of power sys-
tem operations, the smart grid enhances energy utilization efficiency and system stability.
Moreover, big data technology offers robust support to the smart grid by gathering, storing,
and analyzing vast data sets, unveiling patterns, trends, and potential issues within power

Mathematics 2024, 12, 1512. https://doi.org/10.3390/math12101512 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12101512
https://doi.org/10.3390/math12101512
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-4475-8310
https://orcid.org/0000-0001-7702-8173
https://doi.org/10.3390/math12101512
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12101512?type=check_update&version=1

Mathematics 2024, 12, 1512 2 of 18

system operations. Harnessing big data analytics enables the smart grid to accurately
forecast load demands, optimize energy distribution, and achieve intelligent maintenance
and management of power supply equipment. Consequently, the integration of smart grid
and big data not only elevates energy systems’ intelligence and efficiency, but also bolsters
efforts toward sustainable energy development and heightened energy security. Neverthe-
less, it faces security challenges, especially concerning cryptographic and network security
issues. In the smart grid, safeguarding the security and privacy of data is paramount given
the implications for energy supply stability, user privacy, and critical infrastructure opera-
tion. Hence, addressing security concerns in the smart grid demands vigilant attention and
the implementation of robust cryptographic measures to protect system security. Cloud
computing [1] provides ubiquitous access, high flexibility, low cost and scalability, making
the cloud an attractive option for storing and managing data due to almost unlimited
storage space and powerful processing capabilities. Outsourcing data storage to remote
cloud servers presents an economical solution for enhancing data management within the
smart grid ecosystem. Data sharing [2] is critical in data management. Attribute-based
encryption has proven effective in enabling fine-grained access control and is considered
as a valuable tool for realizing cloud data sharing. The concept of attribute-based encryp-
tion was first proposed by Sahai et al. [3]. Subsequently, Goyal et al. [4] discussed the
differences and connections between key-policy attribute-based encryption (KP-ABE) and
ciphertext-policy attribute-based encryption (CP-ABE), and proposed a KP-ABE scheme
based on a tree access structure. At the same time, Bethencourt et al. [5] introduced the
first CP-ABE scheme. In practice, users typically only need access to specific data rather
than all data they can be permitted to access. Therefore, it is often necessary to control data
access privileges and ensure encrypted data searchability in cloud computing environments.
To achieve both encrypted data searchability and access control simultaneously, scholars
have combined searchable encryption with attribute encryption and proposed numerous
searchable attribute-based encryption schemes [6–16].

1.1. Motivation

We consider an example of the application of SABE for smart grids.
Smart grids integrate advanced communication and information technologies into

the power system, enabling real-time monitoring and control of power flow, distribution,
and management. Smart meters are a crucial component of smart grids, collecting and
transmitting consumer electricity usage data as well as monitoring the status and load of
the grid.

In such a system, ensuring the security of smart meter data is of the utmost importance.
The SABE can be employed to securely store and control access to the data while allowing
for authorized users to effectively search encrypted data without revealing sensitive infor-
mation. For instance, in smart grids, smart meter data typically include vital information
such as user details, electricity consumption, and grid status. By utilizing SABE, these
data can be securely encrypted and associated with multiple attributes, such as “User ID”,
“Timestamp”, and “Electricity Consumption”, while grid status data may be labeled with
“Geographic Location” and “Date”.

Authorized users can search the encrypted data based on their access privileges. For
instance, when an authorized user, such as an operator from a utility company, needs to
inquire about a user’s electricity consumption within a specific time period, they can utilize
SABE to perform an encrypted search within the encrypted smart meter data. The system
matches the encrypted data based on the search keywords provided by the user, which are
within their permissions, such as the specific user’s ID and a timestamp for a designated
time period. The system then returns the matched ciphertext data as search results to the
search user without revealing any other sensitive data information.

This application of SABE in smart grids not only ensures the security and privacy
of data, but also enables efficient searching and access control of encrypted data, thereby
enhancing the security and efficiency of smart grid systems.

Mathematics 2024, 12, 1512 3 of 18

Despite the significant benefits and conveniences to smart grids, SABE still faces two
main challenges. One is that many existing SABE schemes are unable to resist keyword
guessing attacks. The other is that many existing SABE schemes require expensive pairing
operations which pose a formidable challenge to search efficiency. Thus, it is essential to
design a novel SABE scheme that can simultaneously resist keyword guessing attacks and
mitigate the decryption burden.

1.2. Contributions

To fill the above-mentioned gaps, in this paper, we propose a new searchable attribute-
based encryption scheme (SA-CP-SABE) with the following contributions:

(1) We propose a searchable attribute-based encryption scheme (SA-CP-SABE) utilizing
a ciphertext policy based on the tree access structure. Our SA-CP-SABE scheme has two
distinctive features: first, it employs the same tree structure for both data encryption and
keyword encryption, thereby ensuring consistent search rights and access permissions;
second, it includes assisted decryption functionality, that is, it can enable a third party to
verify whether a ciphertext matches a user’s query based on the trapdoor. Additionally,
the third party can leverage the search outcome to aid the user in decrypting the ciphertext.
To the best of our knowledge, none of the existing SABE schemes in the smart grid can
simultaneously resist keyword guessing attacks and mitigate the decryption burden so far.

(2) In the random oracle model, we prove that SA-CP-SABE satisfies indistinguisha-
bility between keyword ciphertexts and trapdoors. Compared with schemes in the liter-
ature [9–16], SA-CP-SABE can prevent keyword substitution attacks in both ciphertexts
and trapdoors while also providing resistance against keyword guessing attacks. Fur-
thermore, we conduct theoretical and experimental analyses of the SA-CP-SABE scheme,
demonstrating its superior performance compared to that of the existing schemes.

1.3. Related Work

To enable user searching on the ciphertext domain, Song et al. [17] initially introduced
the concept of searchable encryption and developed a symmetric searchable encryption
scheme. In 2004, Boneh et al. [18] devised the first public key searchable encryption
(PEKS) scheme. The PEKS scheme can delegate the search trapdoor to a third party to
perform the search, while ensuring that the search trapdoor does not reveal any plaintext
information. PEKS has attracted significant research attention in the realm of information
security. Literature [19,20] discusses the keyword guessing attack based on the fact that the
keyword space is much smaller than the key space in practical applications. Additionally,
literature [21] explores the utilization of server assistance to enhance the efficiency of the
scheme and proposes a server-aided PEKS scheme.

In 2005, Sahai et al. [3] initially introduced the concept of attribute-based encryp-
tion (ABE) where ciphertexts and keys are associated with sets of descriptive attributes.
This allows a ciphertext to be decrypted by multiple users, overcoming the traditional
limitation of decrypting a ciphertext with only a single key. Since the detailed work on
attribute encryption provided by Goyal et al. [4] and Bethencourt et al. [5], attribute-based
encryption has attracted widespread attention. ABE schemes have been applied in various
domains such as video-on-demand [22], electronic medical health record access [23], and
social networking site access operations [24]. To meet the data searchability requirement
in data sharing environments, Li et al. [25] proposed a ciphertext policy-based searchable
attribute-based encryption scheme by integrating ABE and PEKS concepts. In recent years,
with the maturation of cloud computing technology, numerous searchable attribute-based
encryption schemes have been proposed, providing ideal application scenarios for search-
able attribute-based encryption [6–16]. However, searchable attribute-based encryption
means that a keyword index must be searchable by a group of users. This leads to its
construction method being more complex than traditional public key searchable schemes.
From a construction perspective, the searchable attribute-based encryption schemes men-
tioned above can generally be divided into two categories. One category [6–8] combines

Mathematics 2024, 12, 1512 4 of 18

attribute encryption with public-key searchable encryption. Specifically, it encrypts data
using attribute encryption to achieve access control, and then utilizes traditional search-
able encryption techniques to process keywords, thus enabling ciphertext searchability.
However, this approach may lead to the separation of data access rights and search rights.
In other words, it could expose keyword information (which may be sensitive) during
searches conducted by users without data access permissions.The other category [9–16] uti-
lizes attribute encryption techniques to regulate user search privileges with a construction
process similar to attribute encryption. However, these schemes possess certain drawbacks.
The ciphertext models featuring indistinguishable keywords in the literature [9–12] are
relatively weak as these security models lack the capability to perform trapdoor queries.
In other words, these security models assume that attackers cannot access the trapdoor.
This assumption is only suitable for scenarios where the search is conducted by the data
owner themself or a fully trusted third party. Clearly, such security models are inadequate
in a cloud computing environment where ciphertext searches are primarily conducted
by a semi-trusted cloud. Although the security models in the literature [13–16] incorpo-
rate trapdoor queries, their schemes fail to meet the defined security criteria because the
keywords in the ciphertexts can be replaced with other keywords. More specifically, after
obtaining keyword w and its corresponding trapdoor through a trapdoor query, an attacker
can carry out a keyword-guessing attack by modifying the attacked ciphertext (associated
with keyword w) into another ciphertext (associated with keyword w′) and then using the
trapdoor for verification. Consequently, during the security game’s challenge phase, the
attacker can win the game by altering the keywords of the challenging ciphertext to another
valid ciphertext contained within the intercepted trapdoor. Additionally, in the schemes
presented in the literature [9–16], the keywords in the trapdoor can also be substituted with
other keywords, thus failing to prevent insider keyword guessing attacks [26].

ABE schemes often involve a significant number of pairing and exponential operations,
which means that the devices at the user side need more computations to share or access the
data. This is obviously unacceptable for some devices with limited computational resources
or in scenarios with high real-time demands. To meet the real-time encryption requirements
of certain applications, scholars have recognized this issue and employed offline/online
encryption techniques [9,11]. Additionally, outsourced decryption techniques [12,14,27]
have been utilized to mitigate the decryption burden on the user side. A summary of the
related work is provided in Table 1, where “

√
” indicates that the specified scheme (row)

satisfies the security property (column), “×” indicates that the specified scheme (row) does
not satisfy the security property (column), and “-” indicates that the attack is not considered
in this work.

Table 1. Security Analysis for Existing Schemes.

Schemes Consistent with Data Access and
Search Permissions

Supporting
Trapdoor Queries

Based on the
Strategy

Server-Aided
Decryption

Literature [6] × √
CP-ABE

√

LFSE [7] × √
CP-ABE

√

LSABE [8] × - CP-ABE
√

DSF [9]
√ √

CP-ABE
√

ABKS-HD [10]
√ √

CP-ABE
√

Literature [12]
√ × CP-ABE

√

Literature [11]
√ × CP-ABE

√

Literature [13]
√ √

CP-ABE ×
LABSE [16]

√ √
KP-ABE

√

KSF-OABE [14] × √
KP-ABE

√

FKS-HPABE [15]
√ √

CP-ABE ×
Literature [25] -

√
KP-ABE ×

Mathematics 2024, 12, 1512 5 of 18

1.4. Organization

The remainder of the paper is organized as follows. We present some preliminaries in
Section 2. In Section 3, we define the system model and the security model of our scheme.
In Section 4, we propose the concrete construction of the proposed SA-CP-SABE scheme.
In Section 5, we provide the security analysis as well as the performance evaluation of our
scheme. Finally, we draw the conclusion of the whole paper in Section 6.

2. Preliminaries
2.1. Notations

Table 2 provides the summary of notations used in our proposed scheme.

Table 2. Notations and their meanings.

Notation Meaning Notation Meaning

q a large prime params system parameters

Zq, Z∗
q Zq denotes the residue group modulo, Z∗

q = Zq/0 T the access structure

G1, G2
two multiplicative cyclic groups with the equal

prime order p x a node of the access tree T

e the bilinear pair map between the two groups atx
an attribute associated with the leaf node x in the

access tree

g the generator of the group G1 CT/CT′ the original ciphertext/the transformed ciphertext

g1, g2 two elements of the group G1 S the attribute set

MK/SK the system master key/the user’s private key Trapw the search trapdoor

2.2. Bilinear Pairs

We let G1 and G2 be the cyclic multiplicative groups of order q where q is a large prime,
and we let e : G1 × G1 → G2 be a bilinear map between the two groups satisfying the
following conditions:

(1) Bilinearity: ∀a, b ∈ Z∗
q , ∀g1, g2 ∈ G1, such that e(ga

1, gb
2) = e(g1, g2)

ab holds.
(2) Non-degeneracy: ∃g1, g2 ∈ G1, such that e(g1, g2) ̸= 1, where 1 is the unit element of

G2.
(3) Computability: For ∀g1, g2 ∈ G1, there exist efficient algorithms that can compute

e(g1, g2).

2.3. Difficult Assumptions

Assumption 1. Let B = (q, G1, G2, e) be a bilinear group system and g be a generator of group G1.
Given g, gγ1 , gγ2 , gγ3 , gγ2

3 , R ∈ G2, we determine whether R is equal to e(g, g)γ1γ2γ3 . Drawing
on the analysis of the literature [26,28], the difficult assumption above translates into proving
whether F = γ1γ2γ3 is independent of {P = (1, γ1, γ2, γ3, γ2

3), Q = (1)}, i.e., proving that there
are no coefficients {xij}, {yij} ∈ Zq satisfying equation ∑ xij pi pj = ∑ ykFk . Obviously, due to
F = γ1γ2γ3, there always exists an expression in {xij}, {yk} with some coefficient of γ1, γ2, γ3, γ2

3
no matter how pi, pj ∈ P is combined to take values. Therefore, determining whether R is equal to
e(g, g)γ1γ2γ3 is a difficult problem.

Based on the above analysis, the following difficult problem can be obtained.

Assumption 2. We let B = (q, G1, G2, e) be a bilinear group system and g ∈ G1 be a generator.
Given (g ∈ G1, gγ1 , gγ2 , R ∈ G1), we determine whether R is equal to e(g, g)γ1γ2

2 .

2.4. Access Tree

Definition 1 (Access Tree). An access tree is used to describe an access structure. Each interme-
diate node of tree x represents a relation function, which can be “or”, “with”, or other threshold.

Mathematics 2024, 12, 1512 6 of 18

Assuming that numx denotes the number of children of a node and kx represents its threshold,
0 ≤ kx ≤ numx is satisfied. Each leaf node of tree x represents an attribute item and threshold
kx = 1. In implementation, it is generally necessary to adopt a top-down approach to select a
polynomial of degree dx = kx − 1, qx for each node x, satisfying qx(0) = qp(x)(index(x)). Here,
p(x) denotes the parent of node x, and index(x) is the index of node x.

We let Tx denote the subtree of T with node x as the root. When x is a leaf node, keyword(x) =
atx represents the attribute value of the output leaf node. We say that attribute set S satisfies Tx
(denoted by Tx = 1) if and only if the following two conditions are met:

(1) When x is a leaf node, Tx(S) = 1 if and only if atx is an attribute in attribute set S.
(2) When x is an internal node, we compute Tz(S) for each child z of x. Tx(S) = 1 if and only if

there are at least kx children.

3. System Model and Security Model
3.1. System Model

The system consists of a Key Generation Center (KGC), a Data Owner (DO), a Cloud
Server Provider (CSP), and a Data User (DU). The system model is illustrated in Figure 1.

Figure 1. System model of the SA-CP-SABE scheme.

KGC: Responsible for generating private keys for data users and assisting them in
generating trapdoors.

DO: The DO acts as the ciphertext generator, i.e., it performs encryption of keywords
and uploads the encrypted ciphertext to the cloud server.

CSP: The CSP stores the ciphertext and conducts ciphertext search and transform
tasks.

DU: The user of the data who generates the trapdoor and delegates it to the cloud for
data search and performs decryption operations.

Definition 2. The proposed SA-CP-SABE scheme comprises the following six probabilistic
polynomial-time (PPT) algorithms:

(1) System Initialization: This PPT algorithm is executed by the KGC to initialize the global
system. Taking security parameter λ as input, it outputs the system master key, MK, and the
system public parameters, params.

(2) Encryption: This PPT algorithm is executed by the DO to perform encryption. Taking the
system public parameters, params, data m, keywords wm and access structure T as input, it
outputs the ciphertext, CT, which is then uploaded to the cloud.

Mathematics 2024, 12, 1512 7 of 18

(3) User Private Key Generation: This PPT algorithm is executed by the KGC to generate a user
private key. Taking the system public parameters, params, the system master key, MK, and
attribute set S as input, it outputs a user private key, SK.

(4) Trapdoor Generation: This PPT algorithm is executed by the DU to generate a search trapdoor.
Taking the system public parameters, params, the user private key, SK, and keyword w as
input, it outputs the trapdoor, Trapw.

(5) Search and Transformation: This PPT algorithm is executed by the CSP to perform search
and transformation operations. Taking the system public parameters, params, the keyword
ciphertext, CT, and trapdoor Trapw as input, it outputs the search result and server-aided
decrypted ciphertext CT′ and returns them to the search user.

(6) Decryption: This PPT algorithm is executed by the DU to perform decryption. Taking the
system public parameters, params, the ciphertext, CT′, and private key SK as input, it outputs
plaintext data m.

3.2. Security Model

In this section, we define two security models for our SA-CP-SABE scheme to specify
the capabilities and possible actions of the attacker by a game involving two participants:
the challenger and the attacker. In the security model, the challenger assumes a dual role.
First, the challenger interacts with the attacker, responding to queries that essentially serve
to ascertain the attacker’s capabilities and the type of information they can obtain. Second,
the challenger acts as a problem solver for challenging tasks, leveraging the attacker’s
capabilities and the information provided during the challenge phase to tackle difficult
problems. In searchable encryption schemes, two main security properties are typically
considered: ciphertext privacy security (IND-CKA) and trapdoor privacy security (IND-
KGA).

Ciphertext privacy security means that the ciphertext of a keyword does not reveal any
information about the keyword to an unauthorized attacker. The specific security model is
as follows:

Definition 3 (IND-CKA). Assuming A1 is the attacker and C is the challenger, the IND-CKA
security model is defined by security game GameCKA between the challenger, C , and the attacker,
A1. The game, GameCKA, is described as follows:

Initialization: Challenger C executes the system initialization algorithm, obtains system
parameters params and master key MK, and offers params to attacker A1.

Phase 1: Attacker A1 can initiate the following queries:
Hash queries: An attacker can, at any time, initiate hash queries of any message, and the

challenger returns the corresponding hash value.
Key queries: Upon receiving a set of attributes S by the attacker, the challenger simulates

private key sk and sends it to the attacker.
Trapdoor Queries: Upon receiving a set of attributes S and keyword w from the attacker, the

challenger simulates trapdoor Trapw and returns it to the attacker.
Challenge phase: At the end of Phase 1 queries, the attacker outputs A1 (m0, w0), (m1, w1)

with the same length and an access tree T∗ (where the set of attributes required to satisfy its access
rights has not been queried by the key queries). Challenger C randomly selects b ∈ {0, 1}, performs
the encryption algorithm on (mb, wb), and returns ciphertext CT∗ to the attacker.

Phase 2: The attacker continues to initiate the same queries as in Phase 1 with the following
restrictions:

(1) If attribute set S satisfies access tree T∗, key queries of S are prohibited.
(2) If attribute set S satisfies access tree T∗, trapdoor queries with (S, w∗

1) and (S, w∗
2) are

prohibited.

Guess: At the end of the game, attacker A1 outputs b
′ ∈ {0, 1}; if b

′
= b, the attacker wins

the game.

Mathematics 2024, 12, 1512 8 of 18

Attacker A1 has the advantage of winning the game defined as AdvGameCKA
A (λ) =∣∣∣Pr[b = b

′
]− 1

2

∣∣∣.
If advantage AdvGameCKA

A (λ) of attacker A1 in winning the game is negligible, the scheme
satisfies IND-CKA security.

Trapdoor privacy means that trapdoors do not reveal any information about relevant keywords
to unauthorized attackers. The specific security model is as follows.

Definition 4 (INA-KGA). Assuming that A1 is the attacker and C is the challenger, the INA-
KGA security model can be defined by security game GameKGA between the challenger, C , and the
attacker, A1, and game GameKGA is described as follows:

Initialization: Challenger C executes the system initialization algorithm, obtains the system
parameters, params, and the master key, and offers params to attacker A1.

Phase 1: The attacker at A1 can initiate the following queries:
Hash queries: An attacker can, at any time, initiate hash queries of any message, and the

challenger returns the corresponding hash value.
Key queries: Upon receiving a set of attributes S from the attacker, the challenger simulates the

private key, sk, and sends it to the attacker.
Trapdoor Queries: Upon receiving a set of attributes S and keyword w from the attacker, the

challenger simulates trapdoor Trapw and returns it to the attacker.
Challenge phase: The attacker selects the given set of challenge attributes S∗ (no private key

queries are queried) and keyword {w0, w1}. The challenger randomly selects b ∈ {0, 1} and returns
challenge trapdoor Tr. Here, data m, w ∈ {w0, w1}, and access structure T (S∗ meets T) are never
encrypted.

Phase 2: The attacker continues to initiate queries as in Phase 1 with the following restrictions:

(1) Encryption of data m, w ∈ {w0, w1}, and access structures T (S∗ satisfies T) is not permitted.
(2) Private key queries on attribute set S∗ are not permitted.

Guess: At the end of the game, attacker A1 outputs b
′ ∈ {0, 1}. If b

′
= b, the attacker wins

the game.
Attacker A1 has the advantage of winning the game defined as AdvGameKGA

A (λ) =∣∣∣Pr[b = b
′
]− 1

2

∣∣∣.
If advantage AdvGameKGA

A (λ) of attacker A1 in winning the game is negligible, the scheme
satisfies INA-KGA security.

4. Construction of the SA-CP-SABE Scheme

Next, we present the design of our SA-CP-SABE scheme. There are six polynomial-
time algorithms described as follows:

1. System initialization: this algorithm selects two multiplicative groups (G1, G2) with
the same prime order q. We define bilinear map e : G1 × G1 → G2, and g is the
generator of group G1. We choose four random numbers a, b, d, u ∈ Z∗

q and compute

f = gd, K1 = e(g, g)a and K2 = e(g, g)b. We define hash function H : {0, 1}∗ → G1.
Finally, PKG publishes system parameters params = {G1, G2, K1, K2, H, gu} and the
secret system master key MK = {a, b, d, u}. We use Li,s = ∏l∈I,l ̸=i (x − l)/(i − l) to
denote the Lagrange coefficients of i ∈ Zq and S = {s1, s2, · · · , sm ∈ Zq}.

2. Encryption: Given data m ∈ {0, 1}∗ and keyword wm ∈ G2, the DO selects a sym-
metric encryption algorithm (Enc, Dec) and encryption key ck and encrypts m with
algorithm Enc and key ck represented as Cm = Encck(m). Then, we define access
structure T and encrypt ck and keyword wm according to T in the following steps:

(1) We randomly select r ∈ Z∗
q and calculate Cck = ck · Kr

1, Cw = e(H(w)
r
, gu) · Kr

2,
C = f r.

(2) Using a top-down approach, we start from the root node, and for each
node x, we select polynomial qx of degree dx = kx − 1. When x is the

Mathematics 2024, 12, 1512 9 of 18

root node, we make qx(0) = r. Otherwise, we let qx(0) = qp(x)(index(x))
where p(x) is the parent of node x and index(x) is the index of node x.
We let Y denote the set of all leaf nodes. Each leaf node y corresponds
to a specific attribute value, which is denoted as aty. We compute CTat ={
∀aty ∈ Y : C1

y = gqy(0), C2
y = H(aty)

qy(0)
}

.

(3) Finally, we upload ciphertext {T, Cm, Cck, Cw, C, Cat} to the cloud.

3. User Private Key Generation: Once the KGC receives a request from a data user
(with attribute set S) to generate a key, it first randomly selects s ∈ Z∗

p and calculates

Dd = gags and Ds = g
b+s

d . Then, we randomize ri ∈ Z∗
q i=1,2,··· ,|S| and calculate

LS =
{
∀ati ∈ S : Di = gsH(ati)

ri , D
′
i = gri

}
. Finally, we send SK = {Dd, Ds, LS} to

the data user.
4. Trapdoor Generation: When the data user requests the search permission of keyword

w from the KGC, the KGC randomly selects k and calculates Tw = H(w)
u
d g

k
d and gk,

and returns it to the data user. After receiving it, the data user calculates the trapdoor,

Trapw =

Tr1 = Ds · Tw,

Tr
′
S =

{
∀ati ∈ S : Ei = gkDi, E

′
i = D

′
i

}, (1)

and sends it to the cloud server.
5. Search and Transform: Upon receiving Trapw, the cloud first verifies whether the

user’s attribute set S satisfies access control tree T in ciphertext CT. If not, it returns
⊥. Otherwise, the search is conducted as follows:

(1) The cloud defines two recursive algorithms, Test(CT, Trapw, x) and CS(CT, x),
which take as input ciphertext CT, trapdoor Trapw, attribute set S, and node
x in access tree T and return the result as follows. The actual attribute atx =
attr(x) is used to represent leaf node x.

(i) If x is a leaf node and atx = attr(x) ∈ S, then we define

Test(CT, Trapw, x) =
e(Ei, C1

x)

e(E′
i , C2

x)

=
e(gkgr H(atx)

sx , gqx(0))

e(gsx , H(atx)
qx(0))

= e(g, g)(k+s)qx(0)

(2)

CS(CT, x) = C1
x (3)

(ii) If x is a leaf node and atx = attr(x) /∈ S, then we define
Test(CT, Trapw, x) = ⊥, CS(CT, x) = ⊥.

(iii) If x is a non-terminal node, then we create the set Ax =
{z|Test(CT, Trapw, z) ̸= ⊥} where z is the left child of node x. When
|Ax| is less than the threshold kx, we make Dec(CT, SK, x) = ⊥. Other-
wise, we choose a subset of Ax that satisfies

∣∣∣Sx
′
∣∣∣ = kx, Sx

′ ⊆ Ax and

denote the set {i = index(z)|z ∈ S
′
x} by Sx. Finally, we define

Test(CT, Trapw, x)

= ∏
z∈Sx

′
Test(CT, Trapw, z)Li,Sx (0)

= e(g, g)(k+s)qx(0)

(4)

Mathematics 2024, 12, 1512 10 of 18

CS(CT, x)

= ∏
z∈Sx

′
CS(CT, z)Li,Sx (0)

= gqx(0)

(5)

(2) The cloud calls Test(CT, Trapw, R) and CS(CT, R) to obtain e(g, g)(k+s)r =
Test(CT, Trapw, R) and gr = CS(CT, R), respectively, where R is the root node.

(3) Ciphertext Verification.
The cloud server verifies whether e(Tr1, C) = Cw · Test(CT, Trapw, R) holds.

(i) If it holds, it implies that the keyword of the ciphertext matches the
keyword in the trapdoor. Therefore, the cloud returns the ciphertext as
follows:

CT
′
= {Cm, Cck, CR = Test(CT, Trapw, R), Cs = CS(CT, R)} (6)

(ii) If it does not hold, it indicates that the ciphertext is not the one searched
by the data user.
In fact, here are

e(Tr1, C) = e(Ds · Tw, f r)

= e(g
b+s

d H(w)
u
d g

k
d , gdr)

= e(gb+s+k H(w)u, gr)

= e(H(w)u, gr)e(g, g)bre(g, g)(k+s)r

= Cw · Test(CT, Trapw, R)

(7)

6. Decryption: The data user receives CT′ and calculates ck = Cck ·CR
e(Ddgk ,Cs)

. Finally, the data

user can obtain the plaintext m = Decck(Cm).

5. Analysis of the SA-CP-SABE Scheme
5.1. Security Analysis

Theorem 1. Under the random model, if there exists an attacker A who can win game GameCKA
with probability ε in polynomial time, then there exists a challenger C who can solve the hard
problem defined in Definition 1 with probability ε

2 in polynomial time.

Proof. Given an instance (g ∈ G1, gγ1 , gγ2 , gγ3 , gγ2
3 , R ∈ G2), challenger C performs the

GameCKA game with attacker A and solves the hard problem in Definition 1 by using
attacker A’s ability to determine whether R is equal to e(g, g)γ1γ2γ3 as follows:

Initialization: Challenger C selects four random numbers λ1, λ2, λ3, λ4 ∈ Z∗
q

and calculates f = (gγ1)λ3 , K1 = e(gγ1 , g)λ1 , and K2 = e(gγ1 , gγ2)λ2 . We de-
fine hash function H : {0, 1}∗ → G1. Finally, PKG issues system parameter
params = {G1, G2, h, K1, K2, H, f , (gγ1)λ4}. In fact, the system parameters set in this
way can be regarded as the system master key owned by KGC, denoted as MK =
a = λ1γ1, b = λ2γ1γ2, d = λ3γ1, u = λ4γ1.

Phase 1: Attacker A adaptively initiates the following queries:
H(w) queries: Upon receiving w from the attacker, challenger C first looks up list HL,

and if (w, Hw) ∈ HL, returns Hw. Otherwise, it randomly selects r ∈ Z∗
q , computes and

returns Hw = gr, and writes (w, Hw, r) to list HL.
Key queries: Upon receiving a set of attributes S from the attacker, challenger s ∈ Z∗

p,

randomly computes Dd = gλ1γ1(gγ1)s = gagγ1s and Ds = gsλ−1
3 (gγ2)λ2λ−1

3 = g
b+γ1s

d . Then,
it randomly selects ri ∈ Z∗

q i=1,2,··· ,|S| and computes

Mathematics 2024, 12, 1512 11 of 18

LS =

{
∀ati ∈ S : Di = (gγ1)sgrirati = gγ1sH(ati)

ri ,

D
′
i = gri

}
. (8)

Finally, we send SK = {Dd, Ds, LS} to the user. Here, rati satisfies H(ati) = grati and
can be obtained by querying H(ati).

Trapdoor queries: Given an attribute set S and keyword w by the attacker, the chal-
lenger first performs key queries with attribute set S to obtain SK = {Dd, Ds, LS}. We
randomly select k and compute Tw = grwλ4λ−1

3 gk = H(w)
u
d g

k×d
d and (gγ1)λ3k = gd×k.

Finally, we compute the trapdoor as

Trapw =

Tr1 = Ds · Tw,

Tr
′
S =

{
∀ati ∈ S : Ei = gd×kDi, E

′
i = D

′
i

} (9)

and return it to the attacker. Here, rw satisfies H(w) = grw , which can be obtained by
querying H(w).

Challenge phase: Once the decision is made to end the queries in Phase 1, the attacker
is given A (m0, w0), (m1, w1) with the same length and an access tree T∗ (the set of attributes
required to satisfy its access rights is not interrogated by the key). Challenger C randomly
selects b ∈ {0, 1} and r∗ ∈ Z∗

q , obtains qy(0) by the method in the encryption algorithm
based on the access tree, T∗, and returns the following ciphertext:

T∗, Cm = Eck(mb),

Cck = ck · e(gλ1γ1 , gγ3)
r∗
= ck · Kγ3r∗

1 ,

Cw = (grwγ3 , gu)Rr∗ = (H(wb), gu)Rr∗ ,

C = (gγ2
3)

λ3r∗
= f γ3r∗ ,

CTat =

∀aty ∈ Y : C1
y = (gγ3)qy(0),

C2
y = (gγ3)kraty qy(0) = H(aty)

γ3qy(0)

(10)

Phase 2: The attacker continues to initiate the same queries as in Phase 1, with the
following restrictions:

(1) If attribute set S satisfies access tree T∗, key queries of S are prohibited.
(2) If attribute set S satisfies access tree T∗, trapdoor queries with (S, w∗

1) and (S, w∗
2) are

prohibited.

Guess: At the end of the game, attacker A outputs b
′ ∈ {0, 1}, and if b

′
= b, the

attacker wins the game.
Obviously, when R = e(g, g)γ1γ2γ3 , the above ciphertext is a legitimate ciphertext.

Assuming that the attacker has the advantageous attack scheme of ε, when the cipher-
text is valid, the attacker can guess it correctly with the probability of 1

2 + ε. When
R ̸= e(g, g)γ1γ2γ3 , which is some random number to the attacker, the attacker can guess
accurately with probability 1

2 . Therefore, the challenger also has ε
2 probability of solving

the hard problem in Definition 1.

Theorem 2. Under the stochastic prediction model, if there exists an attacker A who can win with
GameKGA ε probability in polynomial time, then there exists a challenger C who can win the hard
problem in Definition 2 with ε

2 probability in polynomial time.

Proof. Given instance (g ∈ G1, gγ1 , gγ2 , R ∈ G1), challenger C performs the GameKGA
game with attacker A and uses the difficult problem in the definition of attacker A’s ability
to determine whether R is equal to gγ1γ2

2 , as follows:
Initialization: Challenger C selects four random numbers λ1, λ2, d, u ∈ Z∗

q and calcu-

lates f = gd, K1 = e(gγ1 , g)λ1 and K2 = e(g, gγ2)λ2 . We define hash function H : {0, 1}∗ →

Mathematics 2024, 12, 1512 12 of 18

G1. Finally, PKG issues system parameter params = {G1, G2, h, K1, K2, H, f , gu}. In fact, the
system parameters set in this way can be regarded as PKC with the system master key as
MK = {a = λ1γ1, b = λ2γ2, d, u}.

Phase 1: Attacker A adapts to initiate the following queries:
H(w) The query: Given w by the attacker, challenger C first looks up list HL, and if

(w, Hw) ∈ HL, it returns Hw. Otherwise, it randomly selects r ∈ Z∗
q , computes and returns

Hw = gr, and appends (w, Hw, r) to list HL.
Key queries: The attacker is given a set of attributes S, challenger s ∈ Z∗

p randomly com-

putes Dd = (gγ1)λ1 gs = gags and Ds = ((gγ2)λ2 gs)
d−1

= g
b+s

d . Then, it randomly selects
ri ∈ Z∗

q i=1,2,··· ,|S|, and computes LS =
{
∀ati ∈ S : Di = gsgrirati = gsH(ati)

ri , D
′
i = gri

}
.

Finally, it sends SK = {Dd, Ds, LS} to the user. Here, rati satisfies H(ati) = grati and can be
obtained by asking H(ati).

Trapdoor queries: Given an attribute set S and keyword w by the attacker, the chal-
lenger first performs key queries with attribute set S to obtain SK = {Dd, Ds, LS} . It

randomly selects k and computes Tw = (gγwugk)
d−1

= H(w)
u
d g

k
d and gk, and finally com-

putes the trapdoor,

Trapw =

Tr1 = Ds · Tw,

Tr
′
S =

{
∀ati ∈ S : Ei = gkDi, E

′
i = D

′
i

}
,

 (11)

and returns it to the attacker. Here, rw satisfies H(w) = grw , which can be obtained by
interrogating H(w).

Challenge phase: The attacker selects the given set of challenge attributes S∗ (no private
key queries performed) and keyword {w0, w1}. The challenger randomly selects b ∈ {0, 1}
and returns the challenge trapdoor Tr. Here, data m, w ∈ {w0, w1} and access structure T (
S∗ meets T) are never encrypted. The specific challenge trapdoor Tr is generated as follows:

(1) We randomly select l, ri ∈ Z∗
q i=1,2,··· ,|S∗ | and calculate

Tr
′
S∗ =

{
∀ati ∈ S∗ : Di = Rl grirati = Rl H(ati)

ri ,

D
′
i = gri

}
. (12)

(2) We calculate Tr1 = ((gγ2λ2)H(wb)
u)

d−1
.

(3) We return Trapwb =
{

Tr1, Tr
′
S∗

}
.

Phase 2: The attacker continues to initiate the queries as in Phase 1 with the following
restrictions:

(1) It is not possible to encrypt data m, w ∈ {w0, w1} and access structures T (S∗ meets
T).

(2) Private key queries cannot be performed on attribute set S∗.

Guess: At the end of the game, attacker A outputs b′ ∈ {0, 1}, if b
′
= b. The attacker

wins the game.
Obviously, considering random number s in key generation and k in trapdoor gen-

eration as being opposite to each other (i.e., s = −k = −lγ1γ2), and when R = gγ1γ2
2 , the

trapdoor described above is a legitimate one. Assuming the attacker has an advantage
of ε in breaking the scheme, under the condition of valid ciphertexts, the attacker can
correctly guess with a probability of 1

2 + ε. When R ̸= gγ1γ2
2 , it appears as a collection

of some random numbers to the attacker, and the probability of the attacker’s accurate
guess is 1

2 . Therefore, the challenger also has a probability of ε
2 to solve the difficult BDDH

problem.

Mathematics 2024, 12, 1512 13 of 18

5.2. Performance Analysis
5.2.1. Functionality Comparison

In this section, we compare the security and functionality features of our searchable
attribute-based encryption scheme with current searchable attribute-based encryption
schemes [9,10,13,16]. The comparison specifically includes ciphertext indistinguishability,
trapdoor indistinguishability, resistance to keyword guessing attacks, whether it employs
ciphertext policy or key policy, and whether it supports aided decryption. The comparison
results are presented in Table 3. Table 3 demonstrates that our scheme has significant
advantages in terms of security features.

Table 3. Comparison of security properties.

Schemes Ciphertext Indistin-
guishability

Trapdoor Indistin-
guishability

Keyword Guessing
Attack

Based on the
Strategy

Server-Aided
Decryption

DSF [9] No No Yes CP-ABE Yes
Literature [13] No No Yes CP-ABE No
ABKS-HD [10] No No Yes CP-ABE Yes

LABSE [16] No No Yes KP-ABE Yes
Ours Yes Yes No CP-ABE Yes

Yes: denotes that the specified scheme is secure; No: denotes that the specified scheme is insecure.

5.2.2. Storage Cost

In this subsection, we compare our schemes with the ABKS-HD [10] scheme and the
DSF [9] scheme in terms of user key length, ciphertext length, and trapdoor length, as
shown in Table 4. There are two reasons why we chose to conduct performance analysis on
the ABKS-HD [10] scheme and the DSF [9] scheme. First, they are both based on ciphertext-
policy attribute-based encryption (CP-ABE), similar to our proposed SA-CP-SABE scheme.
Second, they both have server-assisted decryption capabilities. These factors make them
appropriate candidates for comparative performance evaluations. It should be noted that
the calculation of ciphertext length for the CP-ABESA scheme does not include the part
Cm = Encck(m), as this component is consistent across all three schemes. Therefore, when
comparing storage and computational costs, this part is not taken into account.

Table 4. Comparison of storage cost.

Schemes Size of User Key Size of Ciphertext Size of Trapdoor

DSF [9] (k + 4)|G1|+
∣∣Zq

∣∣ (3l + 4)|G1|+ l
∣∣zq

∣∣+ 2|G2| 2|G1|
ABKS-HD [10] 2(k + 1)|G1| (2l + 4)|G1|+ l|G2| (2k + 3)|G1|

Ours 2(k + 1)|G1| (2l + 1)|G1|+ 2|G2| (2k + 1)|G1|
Note: k indicates the number of user’s attributes, |X| indicates the length of object X, l Indicates the number of
leaf nodes in the access tree or the number of rows of matrix M in the linear access structure (LSSS).

5.2.3. Computation Cost

For the encryption algorithm, the trapdoor generation algorithm, the search algorithm,
and the decryption algorithm, we first perform a theoretical estimation of the computation
time for the ABKS-HD [10] scheme and the SA-CP-SABE scheme, as shown in Table 5.
Note that Td, Tm, and Te, respectively, denote the inverse, multiplication, and exponential
operations in the group. Tp denotes the pair operation. n1 represents the size of the smallest
subset of attributes in the user attribute set that satisfies the access tree. n2 denotes the
number of internal nodes of the subtree from which the subset forms the access tree. d
represents the average threshold value of the internal nodes.

Evidently, as depicted in Table 5, in our scheme, the exponential operations in the en-
cryption algorithm are linearly related to the number of leaf nodes in the access control tree,
the multiplication operations in the trapdoor generation algorithm are linearly correlated
with the size of user attributes, and the pairing operations in the search and transformation

Mathematics 2024, 12, 1512 14 of 18

algorithm are linearly related to the size of the smallest subset of attributes in the user
attribute set that satisfies the access tree.

Table 5. Comparison of computation cost.

Stage ABKS-HD [10] Ours

Encryption 3Tm + (2l + 7)Te 2Tm + (2l + 4)Te+Tp

Trapdoor Generation Tm + (2k + 4)Te (k + 1)Tm + 3Te

Search and Transform n1Td + n2dTm + n2Te + (2n1 + 3)Tp n1Td + (2n2d+1)Tm + 2n2Te + (2n1 + 1)Tp

User Decryption 2Td + Te + Tp Td + 2Tm + Tp

Subsequently, we compare their computational costs through simulation experi-
ments. The experimental simulation platform is as follows: Intel(R) Core(TM) i3-4130
CPU @3.40GHz processor, 4GB memory, Ubuntu 14.04.3 operating system, and the pro-
gramming language is Python 3.7. To handle group operations, we utilize the PBC library.
Additionally, we conduct testing on the “SS512” super-singular symmetric group. The
time cost of each phase (encryption, trapdoor generation, search and transform and user
decryption) are illustrated in Figures 2–5, respectively.

SA-CP-SABE

Figure 2. Comparison of encryption time.

Mathematics 2024, 12, 1512 15 of 18

SA-CP-SABE

Figure 3. Comparison of trapdoor generation time.

SA-CP-SABE

Figure 4. Comparison of search transform times.

Mathematics 2024, 12, 1512 16 of 18

SA-CP-SABE

Figure 5. Comparison of decryption time.

5.2.4. Discussion

Figure 2 illustrates the encryption time (in seconds) as it varies with the number of
leaf nodes in the access tree. It should be noted that the encryption time is not solely
determined by the number of leaf nodes but also relates to the structural form of the
access tree. However, the computationally intensive operations (such as multiplication,
exponentiation, etc.) mainly occur at the leaf nodes. Therefore, only the number of leaf
nodes is calculated.

Figure 3 depicts the execution time (in seconds) for trapdoor generation corresponding
to keywords as it varies with the number of attributes. Under the condition of disregarding
other non-algorithmic factors, the trapdoor generation time exhibits a linear function of
the number of attributes. Therefore, based on the raw data obtained from the simulation
results, we utilized the least squares method to model the trend of the generation time with
the number of attributes.

Figure 4 illustrates the variation of the search and transform time (in seconds) with
the number of attributes. From the graph, it is evident that the search and transform time
are linearly related to the number of attributes, which confirms the theoretical analysis
discussed in the previous section.

Figure 5 illustrates the variation of decryption time with the number of attributes.
Since the ciphertext decryption performed by the user is independent of the number of
attributes after the computation by the cloud server in the search and transform phase,
Figure 5 also employs the least squares method to model the trend of the decryption time
with the number of attributes.

From the analysis above, it can be concluded that the overall performance of the SA-CP-
SABE scheme is comparable to that of the ABKS-HD scheme, but it offers higher security.

6. Conclusions

In this paper, we propose a new ciphertext policy-based searchable attribute-based
encryption scheme (SA-CP-SABE) to enhance the security for cloud-based smart grids
and efficiency which achieves the control of user data access rights and data search rights.
SA-CP-SABE has both the unforgeability of the ciphertext and the indistinguishability
of the trapdoor, overcoming the security problems of many similar existing schemes. In
addition, the performance analysis shows that the proposed SA-CP-SABE scheme also
offers superior performance benefits. However, the limitation of the current scheme is that,

Mathematics 2024, 12, 1512 17 of 18

to prevent offline keyword guessing attacks, data users need to request authorization from
the KGC for each search trapdoor generation, which increases the operational load on the
KGC. In our future work, we will focus on developing a one-time authorization system
to eliminate the need for repeated permissions with each trapdoor generation and design
more functional, more efficient, and more secure searchable encryption schemes.

Author Contributions: Conceptualization, J.W., H.L. and C.L.; methodology, J.W., H.L. and C.L.;
software, C.L.; validation, H.L., L.L. and C.L.; security analysis, H.L. and C.L.; resources, H.L.;
writing—original draft preparation, J.W. and L.L.; writing—review and editing, C.L. and L.L.; visual-
ization, H.L. and C.L.; supervision, H.L., L.L. and C.L.; funding acquisition, H.L. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported, in part, by “Kunlun Elite” Talent Recruitment Research Project
under Grant No. 2023-QLGKLYCZX-028, and New Faculty (Ph.D.) Extended Research and Cultiva-
tion Program under Grant No. 202302lwys018.

Data Availability Statement: The authors confirm that the data supporting the findings of this study
are available within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ABE Attribute-Based Encryption
KP-ABE Key-Policy Attribute-Based Encryption
CP-ABE Ciphertext-Policy Attribute-Based Encryption
PEKS Public Key Searchable Encryption
SABE Searchable Attribute-Based Encryption
KGC Key Generation Center
DO Data Owner
DU Data User
CSP Cloud Server Provider

References
1. Mell, P.; Grance, T. The NIST Definition of Cloud Computing. Available online: http://nvlpubs.nist.gov/nistpubs/Legacy/SP/

nistspecialpublication800-145.pdf (accessed on 7 May 2024).
2. Tabrizchi, H.; Rafsanjani, M.K. A survey on security challenges in cloud computing: Issues, threats, and solutions. J. Supercomput.

2020, 76, 9493–9532. [CrossRef]
3. Sahai, A.; Waters, B. Fuzzy Identity-Based Encryption. In Advances in Cryptology—EUROCRYPT 2005; Cramer, R., Ed.; Springer :

Berlin/Heidelberg, Germany, 2005; pp. 457–473.
4. Goyal, V.; Pandey, O.; Sahai, A.; Waters, B. Attribute-based encryption for fine-grained access control of encrypted data. In

Proceedings of the 13th ACM Conference on Computer and Communications Security, OCT 2006, Alexandria, VA, USA, 30
October–3 November 2006. [CrossRef]

5. Bethencourt, J.; Sahai, A.; Waters, B. Ciphertext-Policy Attribute-Based Encryption. In Proceedings of the 2007 IEEE Symposium
on Security and Privacy (SP ’07), Oakland, CA, USA, 20–23 May 2007; pp. 321–334. [CrossRef]

6. Wang, S.; Ye, J.; Zhang, Y. A keyword searchable attribute-based encryption scheme with attribute update for cloud storage. PLoS
ONE 2018, 13, e0197318. [CrossRef] [PubMed]

7. Li, H.; Jing, T. A lightweight fine-grained searchable encryption scheme in fog-based healthcare IoT networks. Wirel. Commun.
Mob. Comput. 2019, 2019, 1019767. [CrossRef]

8. Zhang, K.; Long, J.; Wang, X.; Dai, H.N.; Liang, K.; Imran, M. Lightweight Searchable Encryption Protocol for Industrial Internet
of Things. IEEE Trans. Ind. Inform. 2021, 17, 4248–4259. [CrossRef]

9. Miao, Y.; Tong, Q.; Choo, K.K.R.; Liu, X.; Deng, R.H.; Li, H. Secure Online/Offline Data Sharing Framework for Cloud-Assisted
Industrial Internet of Things. IEEE Internet Things J. 2019, 6, 8681–8691. [CrossRef]

10. Miao, Y.; Ma, J.; Liu, X.; Li, X.; Jiang, Q.; Zhang, J. Attribute-Based Keyword Search over Hierarchical Data in Cloud Computing.
IEEE Trans. Serv. Comput. 2020, 13, 985–998. [CrossRef]

11. Chen, D.; Cao, Z.; Dong, X. Online/offline ciphertext-policy attribute-based searchable encryption. J. Comput. Res. Dev. 2016,
53, 2365–2375. [CrossRef]

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://doi.org/10.1007/s11227-020-03213-1
http://dx.doi.org/10.1145/1180405.1180418
http://dx.doi.org/10.1109/SP.2007.11
http://dx.doi.org/10.1371/journal.pone.0197318
http://www.ncbi.nlm.nih.gov/pubmed/29795577
http://dx.doi.org/10.1155/2019/1019767
http://dx.doi.org/10.1109/TII.2020.3014168
http://dx.doi.org/10.1109/JIOT.2019.2923068
http://dx.doi.org/10.1109/TSC.2017.2757467
http://dx.doi.org/10.7544/issn1000-1239.2016.20160416

Mathematics 2024, 12, 1512 18 of 18

12. Niu, S.; Xie, Y.; Yang, P.; Du, X. Cloud-Assisted Attribute-Based Searchable Encryption Scheme on Blockchain. J. Comput. Res.
Dev. 2021, 50, 811–821. [CrossRef]

13. Yin, H.; Zhang, J.; Xiong, Y.; Ou, L.; Li, F.; Liao, S.; Li, K. CP-ABSE: A Ciphertext-Policy Attribute-Based Searchable Encryption
Scheme. IEEE Access 2019, 7, 5682–5694. [CrossRef]

14. Li, J.; Lin, X.; Zhang, Y.; Han, J. KSF-OABE: Outsourced Attribute-Based Encryption with Keyword Search Function for Cloud
Storage. IEEE Trans. Serv. Comput. 2017, 10, 715–725. [CrossRef]

15. Wang, H.; Ning, J.; Huang, X.; Wei, G.; Poh, G.S.; Liu, X. Secure Fine-Grained Encrypted Keyword Search for E-Healthcare Cloud.
IEEE Trans. Dependable Secur. Comput. 2021, 18, 1307–1319. [CrossRef]

16. Bao, Y.; Qiu, W.; Cheng, X. Secure and lightweight fine-grained searchable data sharing for IoT-oriented and cloud-assisted smart
healthcare system. IEEE Internet Things J. 2022, 9, 2513–2526. [CrossRef]

17. Song, D.X.; Wagner, D.; Perrig, A. Practical techniques for searches on encrypted data. In Proceedings of the Proceeding 2000
IEEE Symposium on Security and Privacy, S&P 2000, Berkeley, CA, USA, 14–17 May 2000; pp. 44–55. [CrossRef]

18. Boneh, D.; Di Crescenzo, G.; Ostrovsky, R.; Persiano, G. Public Key Encryption with Keyword Search. In Advances in Cryptology—
EUROCRYPT 2004; Cachin, C., Camenisch, J.L., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 506–522.

19. Rhee, H.S.; Park, J.H.; Susilo, W.; Lee, D.H. Trapdoor security in a searchable public-key encryption scheme with a designated
tester. J. Syst. Softw. 2010, 83, 763–771. [CrossRef]

20. Yang, N.; Zhou, Q.; Xu, S. Public-Key Authenticated Encryption with Keyword Search without Pairings. J. Comput. Res. Dev.
2020, 57, 2125–2135. [CrossRef]

21. Chen, R.; Mu, Y.; Yang, G.; Guo, F.; Huang, X.; Wang, X.; Wang, Y. Server-Aided Public Key Encryption With Keyword Search.
IEEE Trans. Inf. Forensics Secur. 2016, 11, 2833–2842. [CrossRef]

22. Yu, S.; Ren, K.; Lou, W.; Li, J. Defending against Key Abuse Attacks in KP-ABE Enabled Broadcast Systems. In Security
and Privacy in Communication Networks; Chen, Y., Dimitriou, T.D., Zhou, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2009;
pp. 311–329.

23. Wei, J.; Chen, X.; Huang, X.; Hu, X.; Susilo, W. RS-HABE: Revocable-Storage and Hierarchical Attribute-Based Access Scheme for
Secure Sharing of e-Health Records in Public Cloud. IEEE Trans. Dependable Secur. Comput. 2021, 18, 2301–2315. [CrossRef]

24. Liang, K.; Liu, J.K.; Lu, R.; Wong, D.S. Privacy Concerns for Photo Sharing in Online Social Networks. IEEE Internet Comput.
2015, 19, 58–63. [CrossRef]

25. Li, S.; Xu, M. Attribute-based public encryption with keyword search. Chin. J. Comput. 2014, 37, 1017–1024.
26. Zhou, R.; Zhang, X.; Du, X.; Wang, X.; Yang, G.; Guizani, M. File-centric multi-key aggregate keyword searchable encryption for

industrial internet of things. IEEE Trans. Ind. Inform. 2018, 14, 3648–3658. [CrossRef]
27. Lai, J.; Deng, R.H.; Guan, C.; Weng, J. Attribute-Based Encryption With Verifiable Outsourced Decryption. IEEE Trans. Inf.

Forensics Secur. 2013, 8, 1343–1354. [CrossRef]
28. Delerablée, C.; Pointcheval, D. Dynamic Threshold Public-Key Encryption. In Advances in Cryptology—CRYPTO 2008; Wagner, D.,

Ed.; Springer:Berlin/Heidelberg, Germany, 2008; pp. 317–334.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.7544/issn1000-1239.2021.20200041
http://dx.doi.org/10.1109/ACCESS.2018.2889754
http://dx.doi.org/10.1109/TSC.2016.2542813
http://dx.doi.org/10.1109/TDSC.2019.2916569
http://dx.doi.org/10.1109/JIOT.2021.3063846
http://dx.doi.org/10.1109/SECPRI.2000.848445
http://dx.doi.org/10.1016/j.jss.2009.11.726
http://dx.doi.org/10.7544/issn1000-1239.2020.20200318
http://dx.doi.org/10.1109/TIFS.2016.2599293
http://dx.doi.org/10.1109/TDSC.2019.2947920
http://dx.doi.org/10.1109/MIC.2014.107
http://dx.doi.org/10.1109/TII.2018.2794442
http://dx.doi.org/10.1109/TIFS.2013.2271848

	Introduction
	Motivation
	Contributions
	Related Work
	Organization

	Preliminaries
	Notations
	Bilinear Pairs
	Difficult Assumptions
	Access Tree

	System Model and Security Model
	System Model
	Security Model

	Construction of the SA-CP-SABE Scheme
	Analysis of the SA-CP-SABE Scheme
	Security Analysis
	Performance Analysis
	Functionality Comparison
	Storage Cost
	Computation Cost
	Discussion

	Conclusions
	References

