
Citation: Wang, L.; Deng, J.; Tan, H.;

Xu, Y.; Zhu, J.; Zhang, Z.; Li, Z.; Zhan,

R.; Gu, Z. AARF: Autonomous Attack

Response Framework for Honeypots

to Enhance Interaction Based on

Multi-Agent Dynamic Game.

Mathematics 2024, 12, 1508. https://

doi.org/10.3390/math12101508

Academic Editor: Cheng-Chi Lee

Received: 22 March 2024

Revised: 8 May 2024

Accepted: 8 May 2024

Published: 11 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

AARF: Autonomous Attack Response Framework for Honeypots
to Enhance Interaction Based on Multi-Agent Dynamic Game
Le Wang 1,2 , Jianyu Deng 1, Haonan Tan 1, Yinghui Xu 1, Junyi Zhu 1, Zhiqiang Zhang 3, Zhaohua Li 4,
Rufeng Zhan 1 and Zhaoquan Gu 2,3,*

1 Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou 510006, China;
wangle@gzhu.edu.cn (L.W.); dengjianyu@e.gzhu.edu.cn (J.D.); 2112106206@e.gzhu.edu.cn (H.T.);
2112233150@e.gzhu.edu.cn (Y.X.); 2112233067@e.gzhu.edu.cn (J.Z.); 2006400027@e.gzhu.edu.cn (R.Z.)

2 Department of New Networks, Peng Cheng Laboratory, Shenzhen 518055, China
3 School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen),

Shenzhen 518055, China; 23b951049@stu.hit.edu.cn
4 Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China,

Shenzhen 518000, China; 202312281023@std.uestc.edu.cn
* Correspondence: guzhaoquan@hit.edu.cn

Abstract: Highly interactive honeypots can form reliable connections by responding to attackers to
delay and capture intranet attacks. However, current research focuses on modeling the attacker as
part of the environment and defining single-step attack actions by simulation to study the interaction
of honeypots. It ignores the iterative nature of the attack and defense game, which is inconsistent with
the correlative and sequential nature of actions in real attacks. These limitations lead to insufficient
interaction of the honeypot response strategies generated by the study, making it difficult to support
effective and continuous games with attack behaviors. In this paper, we propose an autonomous
attack response framework (named AARF) to enhance interaction based on multi-agent dynamic
games. AARF consists of three parts: a virtual honeynet environment, attack agents, and defense
agents. Attack agents are modeled to generate multi-step attack chains based on a Hidden Markov
Model (HMM) combined with the generic threat framework ATT&CK (Adversarial Tactics, Tech-
niques, and Common Knowledge). The defense agents iteratively interact with the attack behavior
chain based on reinforcement learning (RL) to learn to generate honeypot optimal response strategies.
Aiming at the sample utilization inefficiency problem of random uniform sampling widely used
in RL, we propose the dynamic value label sampling (DVLS) method in the dynamic environment.
DVLS can effectively improve the sample utilization during the experience replay phase and thus
improve the learning efficiency of honeypot agents under the RL framework. We further couple it
with a classic DQN to replace the traditional random uniform sampling method. Based on AARF, we
instantiate different functional honeypot models for deception in intranet scenarios. In the simulation
environment, honeypots collaboratively respond to multi-step intranet attack chains to defend against
these attacks, which demonstrates the effectiveness of AARF. The average cumulative reward of the
DQN with DVLS is beyond eight percent, and the convergence speed is improved by five percent
compared to a classic DQN.

Keywords: honeypot; interaction; multi-agent; attack chain; value label sampling; reinforcement
learning

MSC: 37M05

1. Introduction

Traditional defense strategies include firewalls [1], intrusion detection [2], anti-virus [3],
etc. Their main purpose is to alert and prevent network attacks, but they lack initiative.
As a deception defense strategy, honeypots can actively attract attackers and collect and

Mathematics 2024, 12, 1508. https://doi.org/10.3390/math12101508 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12101508
https://doi.org/10.3390/math12101508
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-3610-9185
https://doi.org/10.3390/math12101508
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12101508?type=check_update&version=2

Mathematics 2024, 12, 1508 2 of 20

analyze specific attack behaviors. Honeypots interact with attackers attempting to pene-
trate the corporate intranet for lateral movement to delay and capture attacks. Honeypots
and attackers with different goals have a competitive relationship. It can be seen that
the interaction between the honeypot and attacker is actually a game process, and the
high interaction with the honeypot is built on each effective response action. The more
the honeypot interacts with the attacker, and the more the pattern of interaction matches
the attack behavior, the more effective the deception defense. Honeypots with a high
interaction strategy are valuable for deception defense in network security.

There is much research on honeypots focused on emulation improvement. For ex-
ample, this is often accomplished by enhancing the authenticity of honeypot operating
systems, applications, and their vulnerabilities [4–6] to match existing business systems.
However, simply enhancing the simulation of honeypots is limited when considering the
persistence of attack interactions, which lacks any modeling of attack response actions.
More attention is useful in the generation of rational response strategies for honeypots.
During attack and defense games, a honeypot is able to generate and adjust its response
strategy through learning, which directly affects the maintenance of the interaction rela-
tionship. Thus, modeling attackers is an effective way to enhance the honeypot interaction.
Recent research has typically modeled the attacker as part of the environment and defined
single-step attack actions by simulation, which can simplify the complexity of real attacks
and does not adequately express the variety of attack strategies and behaviors. This makes
it difficult to realistically describe the mechanisms associated with an attack. For instance,
in [7], attackers are modeled into custom network environments, and the generated attack
strategies are not sufficiently reflective of real attack characteristics and are difficult to apply
to other network scenarios. Meanwhile, most of the current attack action modeling used to
train honeypot agents is mostly independent and cannot constitute a complete attack chain.
In [8], the authors focus on honeypot techniques for SQL injection and XSS attacks and do
not consider response strategies under the correlation of actions in a complete attack chain.
These limitations result in an insufficient interaction of the response strategy generated by
the honeypot, making it difficult to establish a continuously interactive connection with
attackers in a dynamic environment.

To tackle these challenges, we propose an autonomous attack response framework,
AARF, based on a multi-agent dynamic game to model each agent. The AARF framework
consists of three parts, where the environment part is provided by a customized virtual
honeynet, HoneypotSim, the attack agent can automatically generate a valid attack chain
based on an HMM, and the honeypot agent is constructed based on RL with a response
strategy. The core idea is to model the dynamic attack and defense game process based on
RL, through the dynamic interaction between the honeypot agents and the environment
to generate an interactive response strategy when facing a multi-step attack chain. Based
on the results of attack and defense interactions, honeypot response strategies and attack
chain generation strategies are automatically updated. We divide the whole process of
deception defense into three phases and modeled three types of honeypots responsible
for different phases of targeting collaborative response attacks. The attack agents aim
at generating effective attack chains, and the process is divided into three stages: seed
attack chain generation, dynamic attack chain evolution, and valid attack chain validation.
The honeypot agents accomplish the task of interacting with the attacker by sensing state
changes and choosing the optimal response action. Considering the highly dynamic
nature of real network environments, we introduce a dynamic reward mechanism and a
dynamic honeypot anti-identification capability. In the training of RL agents, the experience
replay technique based on random uniform sampling tends to ignore high-value sample
experiences in a dynamic multi-honeypot environment. In order to address the data
sampling problem and to improve the efficiency of learning by agents, we propose the
DVLS algorithm. The goal is achieved by calculating the probability value of information
provided to the memory experiences of the learning process. We further couple the DVLS
with the DQN method to replace the traditional random uniform sampling method and

Mathematics 2024, 12, 1508 3 of 20

improve the overall training effect of the DQN algorithm. We test AARF and a DQN
with DVLS on our customized environment where the multi-honeypot is gamed with an
attacker. AARF is able to effectively interact with attack actions and trap the complete attack
chain with a reasonable response strategy. The DQN with DVLS consistently outperforms
baseline RL algorithms. Based on the above analysis, the contributions of our paper can be
summarized as follows:

• We develop an RL-based framework, named AARF, which successfully correlates
honeynet environments, attack agents, and honeypot agents based on dynamic game
modeling. AARF can autonomously make response decisions to interact with the
attack chain to achieve deception defense in a multi-agent environment.

• We model the attack agent based on an HMM by combining the ATT&CK techniques.
Attack agent rapidly generates valid attack chains according to seed chain generation,
dynamic chain evolution, and valid chain verification in three stages, which support
training honeypot agents.

• We design a customized multi-honeypot environment for RL training, HoneypotSim,
including three functional types of honeypots.

• We propose a dynamic value label sampling (DVLS) algorithm that probabilizes the
importance of experience samples to improve sample utilization, and we successfully
replace the sampling method of the DQN to improve training efficiency.

The remainder of this paper is organized as follows. In Section 2, we give a brief
overview of the related research on modeling attack agents and honeypot agents. Section 3
illustrates the relevant preliminaries of our framework. Section 4 introduces the model-
ing process using AARF and its various modules. Section 5 presents the experimental
configuration and results. Finally, the conclusion and future work are summarized in
Section 6.

2. Related Work

In the dynamic game of cybersecurity, attack agents and defense agents are two
core elements. In recent years, more and more research works have modeled automated
attackers based on machine learning methods. For defense agents, honeypot technology,
which is initiative and capable of achieving deceptive defense goals, has attracted more
researchers’ attention.

2.1. Attack Agent Modeling

In terms of SQL injection attacks, refs. [9,10] explore how to adopt optimal strategies
based on environment changes to efficiently exploit vulnerabilities based on RL by simulat-
ing this specific scenario. They modeled the attack behavior as a Markov decision process
with the task goal of executing an effective SQL injection action. Concerning research on
modeling XSS attacks, ref. [11] model XSS payload generation as a hierarchical RL prob-
lem, so that agents can learn to fuzz new source–sink combinations, generating different
payloads and bypassing the associated sanitization. The above studies are all aimed at
modeling single-step attacks in specific attack scenarios and cannot provide a complete
attack chain strategy with temporal relationships.

CybORG [12] is a work-in-progress gym for autonomous cyberoperations. They
modeled red team agents based on a DDQN to complete penetration testing in simulated
CTF scenarios that feature a network of vulnerable hosts connected to different subnets.
CyberBattleSim [7], an AI attack and defense simulation tool open-sourced by Microsoft
in 2021, utilizes a reinforcement learning approach for automated intranet penetration
and is used to study the interaction process of automated agents in a simulated abstract
enterprise network environment. Ref. [13] proposes a generalized solution for modeling
framework-based attacks based on the blackboard architecture. It combines rules and
facts that implement attack type determination and attack decisions that go beyond the
deployment of a single exploit against a single identified target. The attack agents or threat
models constructed in the above studies do not take into account the data sources in actual

Mathematics 2024, 12, 1508 4 of 20

attack scenarios. Therefore, the generated attack strategy lacks authenticity and is difficult
to use in actual attack applications.

2.2. Honeypot Agent Modeling

HoneyMustard [4] is an application-level real-time user behavior simulation frame-
work for improving the fidelity of honeypot systems. It collects logical user action sequences
of various applications to build datasets and utilizes computer vision techniques to simulate
user activities. Ref. [5] proposed HoneyPLC, a highly interactive, scalable, and malware-
collecting honeypot in a Programmable Logic Controllers (PLCs) scenario. It is based on
honeyd, the snap7 framework combined with nmap, snmpsim, and other programs to
implement simulation modules for different protocols, and all code injected by the attacker
is captured within the repository module. FirmPot [6] is a framework for generating in-
telligent interactive honeypots by simulating different firmware, which can respond to
firmware requests from attackers. Refs. [4–6] all focus on improving the function to get
a high-fidelity honeypot. By making the simulated user activity interface more realistic,
ref. [4] attracts attacks from attackers but does not establish any actual interaction with
the attacker. In [5,6], the authors improve the honeypot’s interactions by simulating the re-
sponse of a real system. However, they are all simulations under specific protocols and are
static responses.

NeuralPot [14] leveraged pcap files to train a Deep Neural Network (DNN) to generate
modbus network traffic and combined the DNN with the databus system of Conpot to
generate more realistic response traffic in order to improve the interactions of honeypot.
Ref. [15] trained a bidirectional encoder representation from transformers (BERT) using
HTTP protocol datasets. The results of the BERT model output were used as action
candidates in the Markov decision process (MDP), so that the honeypot could effectively
respond to the client based on received requests, rather than responding to fixed requests.
Based on the semi-Markov decision process (SMDP) method, ref. [16] modeled the random
transfer and sojourn time of the attacker in a honeynet to generate an adaptive response
strategy, improving the interaction time with the attacker. Ref. [17], based on [18], proposed
an SSH self-adaptive honeypot, which modeled the honeypot’s response actions and used
a Deep Q-Network algorithm training to determine how to interact with external attackers.
Ref. [19] followed the same model and algorithm as [17] and evaluated the interaction
duration. It was concluded that adaptive honeypots could obtain more information than
ordinary honeypots, resulting in the interaction time between the attacker and the honeypot
being longer. This provides strong experimental support for our use of reinforcement
learning to improve the interaction time between the honeypot and the attacker. In [14–17],
the authors employ advanced techniques such as DNNs and RL to address the limited
interactions in traditional honeypots. Refs. [14,15,17] are more focused on the honeypot’s
own response research, without additional analysis of the attacker’s attack information.
This results in an inability to capture the attacker’s behavioral patterns. In [16], the transfer
probability derived from theory may be different from the real data distribution, so it may
not obtain a better corresponding strategy.

In this paper, we model the attacker and the defender separately in a multiple-
honeypot scenario. For attackers, we complete the generation of the valid attack chain
based on an HMM using the real attack probability as input. This solves the problem of
attackers being modeled into the environment and simulating single-step attacks. For de-
fenders, we focus on the optimization problem of honeypot response strategies in dynamic
game scenarios based on RL and finally generate response strategies for adaptive scenarios.
This solves the problem of the static simulation and response of honeypots in the above
studies. Our work overall enhances the effective interaction of honeypots against attacks.

3. Preliminaries

In this section, we introduce the background knowledge and underlying concepts of
the techniques used in this paper.

Mathematics 2024, 12, 1508 5 of 20

3.1. Lateral Movement and ATT&CK

Lateral movement often occurs in the later stages of network penetration in an enter-
prise intranet environment. It refers to a series of threatening measures taken by an attacker
in search of higher-value assets after the attacker has already gained initial access, and
common actions include implanting malware, elevating privileges, and so on. Lateral move-
ment has the characteristics of a large threat surface and strong threat. Therefore, attack
detection against intranets [20–22] is a key research priority in the field of network security.

MITRE ATT&CK [23] is a technology framework encompassing over 200 techniques
that attackers may employ during an attack based on real-world observation. The ATT&CK
model describes more comprehensively the various attack behaviors adopted by the at-
tacker during the whole process of network attack. Thus, it is useful for threat intelligence
analysis, security tool evaluation, and defense strategy development. The framework
provides a common standardized language based on tactics, techniques, and procedures
(TTP), where techniques denote specific actions of an attacker to achieve a tactical goal.
Therefore, in this paper, we think of an ordered logical combination of multi-step attack
techniques as an attack chain. Similarly, the combination of attack techniques in the lateral
movement phase of the intranet is the intranet attack chain. The attacker realizes the attack
goal by executing the multi-step attack chain.

3.2. Honeypot and Honeynet

A honeypot is a proactive, aggressive network spoofing defense technology. It is able
to simulate real services to attract attackers to attack and collect attack data, analyze attack
behavior, and protect real systems from attacks [24–26]. A network environment where
multiple honeypots are intricately deployed is known as a honeynet. As shown in Figure 1,
when the attacker accesses a normal intranet environment, malicious attacks are introduced
into the honeynet environment through techniques such as IP redirection. Honeypots guide
attackers to roam within the honeynet by responding reasonably to attack requests. This
enables effective capture of attack information and defense operations such as tracking.

Figure 1. Application scenarios: Honeynet mapping for intranet environment. After the attackers
enter the intranet scenario, they are guided into the honeynet environment. The honeynet is a service
mapping of the actual intranet, in which a large number of honeypots containing false information
are deployed.

3.3. Hidden Markov Model

A Hidden Markov Model (HMM) is a probabilistic model of temporal sequences to
describe sequences of observations randomly generated by hidden Markov chains. In the
HMM, the state of the system is not visible, but the state-generated observations are visible.
HMM is determined by three main elements, the initial state probability vector π, the state
transfer probability matrix A, and the observation probability matrix B. Typically, a Hidden
Markov Model can be succinctly represented by the triad λ = (A, B, π). A is the state

Mathematics 2024, 12, 1508 6 of 20

transfer probability matrix
[
aij

]
N×N , where aij denotes the probability of transferring from

the condition of being in the state qi at moment t to the state qj at moment t + 1, which is
the transition probability.

aij = P(it+1 = qj|it = qi), i = 1, 2, . . . , N; j = 1, 2, . . . , N (1)

B is the observation probability matrix B = [bj(k)]N×M, where bj(k) denotes the
probability of generating an observation vk under the condition of being in state qj at
moment t, which is the emission probability.

bj(k) = P(ot = vk|it = qj), k = 1, 2, . . . , M; j = 1, 2, . . . , N (2)

π is the initial state probability vector, where πi is the probability of being in state qi
at moment t = 1, which is the initial state probability.

πi = P(i1 = qi), i = 1, 2, . . . , N (3)

4. Method

Our work focuses on the lateral movement stage within an enterprise intranet by
simulating the deployment of honeypots within a virtual honeynet environment. As shown
in Figure 1, attackers accessing the intranet services from the external Internet are directed
to our customized honeynet environment HoneypotSim. In HoneypotSim, numerous
deceptive false targets and misleading information are deployed. Attackers may deviate
from their attack path and be guided to access pre-configured honeypot nodes one by one.

AARF is a robust, highly interactive collaborative response framework for a dynamic
attack–defense game that fights in a multi-honeypot scenario. There is an adversarial rela-
tionship between the attack and defense agents and a functional collaborative relationship
between the honeypots. The honeypotSim module, defense agents module, and attack
agents module are the main components of AARF. The specifics of this AARF framework
are detailed for each module in Figure 2.

In our custom-designed multi-honeypot environment, HoneypotSim supports gaming
by simulating protocols, ports, and other services. For example, the SSH protocol service
corresponds to port 22, the Telnet protocol to port 23, and so on. To enhance the realism of
the attacker’s modeling, threat intelligence and attack logs are used as attack data input
to calculate the frequency of attack techniques. ATT&CK provides attack action support
for attack agent modeling. The attack agent orchestrates and combines the tactical attack
techniques in ATT&CK based on the HMM method to generate valid attack chains. The
objective of attack agents is to execute each step of the attack actions smoothly according
to the generated reliable attack chain, aiming to gain more permissions on hosts. The
honeypots, acting as defense agents guided by the RL control engine, engage in a game
with attack agents. Each honeypot agent is capable of awareness and anti-identification.
Based on the establishment of interactive responses, honeypot agents can capture more
information about the attackers, achieving effective deception and isolation. Figure 3
demonstrates the specific process of modeling attack–defense interactions based on RL
and the generation of honeypot optimal response strategies. RL is an automatic learning
framework that follows the behavior, feedback, and motivation model. It can effectively
model automated decision-making problems in dynamic network environments by con-
structing agents that iteratively interact with the environment and continuously optimize
their behavioral strategies. In the AARF framework, the honeypot faces a multi-step attack
behavior chain based on RL to explore more response actions in the action space in the
pre-training period. Meanwhile, it iteratively optimizes the response action strategy based
on state observations and reward feedback from the environment. In the late stage of train-
ing, the honeypot agents continuously adapt to the dynamic honeynet environment and
multi-step attack chain changes, more rationally utilize the response actions, and ultimately
generate the optimal honeypot response strategy. Based on the reasonable response to

Mathematics 2024, 12, 1508 7 of 20

attract attack agents, the framework thus improves the efficiency of a successful response
and enhances the interaction between the honeypot and the attack agents.

Figure 2. Detailed framework of AARF. With the support of the virtual honeynet environment
HoneypotSim, the attack agent and the defense agent complete the game interaction and automatically
generate the optimal attack response strategy for the honeypot.

Figure 3. Attack and defense interaction modeling. Honeypot agents interact with multi-step attack
chains in the honeynet environment. The honeypot agents iteratively generate optimal response
strategies based on state observations and feedback rewards. The red and blue arrows indicate attack
and defense actions respectively.

Mathematics 2024, 12, 1508 8 of 20

4.1. Honeypot Models

The general deception defense process can be divided into three phases: threat warn-
ing, information collection, and traceability countermeasures. In this paper, we design three
different types of honeypots according to these three phases, respectively, each serving a dis-
tinct purpose, yet working together in a coordinated manner to achieve deception defense.
Through the collaborative response of functional honeypots, we ensure the maximum
utilization of each honeypot’s capabilities, resulting in more efficient defense.

Warning honeypots are deployed at the network edge, when attacked, they immediately
communicate to neighboring nodes to alert attack-related information. Trapping honeypots
are deployed inside the network; they record the attack behavior to help analyze the purpose
of the attacks. Countering honeypots are deployed at the core of the network; after obtaining
sufficient attack information, they complete source traceability countermeasures. The deploy-
ment of each honeypot is shown in Figure 4. Each honeypot has the same response actions,
with different functional actions reflecting their characteristics. Based on the different deploy-
ment locations, they each respond to different stages of the attack chain. All the defensive
functional actions are completed based on the response success.

(a)

(b)

(c)

Figure 4. Honeypot classification: (a) warning honeypot deployment; (b) trapping honeypot deploy-
ment; (c) countering honeypot deployment.

Mathematics 2024, 12, 1508 9 of 20

4.2. Automatic Attack Chain Generation

Attack agents can automatically and quickly generate valid attack chains. This process
can be divided into three main phases, seed attack chain generation, dynamic attack chain
evolution, and valid attack chain verification. In this paper, we generated a seed attack
chain based on an HMM accomplished by orchestrating attack techniques, dynamically
evolved the attack chain based on the seed chain, and stored it in the candidate attack chain
collection. Finally, valid attack chains were quickly verified under the honeynet scenario
interaction. The specific steps for generating valid attack chains are illustrated in Figure 5.

Figure 5. Valid attack chain generation. The first step is to generate a seed attack chain based on
an HMM. The second step is to evolve the attack chains based on the seed chain and store them in
the candidate attack chain collection. The third step is to screen valid attack chains in the simulated
network environment. The capital letters A to E in the figure represent the attack techniques in
ATT&CK, and they are combined to form an attack chain. The * in the attack chain indicates the
pending attack action, which will be filled according to the actual situation.

4.2.1. Seed Attack Chain Generation

An HMM is a sequence model that effectively captures dependencies and sequen-
tial relationships between events. The natural inclusion of tactics and technology in the
ATT&CK matrix makes it possible to rationally represent transitions between technology
and tactics using an HMM. In this case, techniques can be viewed as the observed state and
tactics as the hidden state, where a series of techniques are implemented to achieve tactical
goals. To generate valid attack chains, we arranged ATT&CK techniques to describe attack
events logically based on a first-order HMM probabilistic model, as shown in Figure 6. The
following probabilities were used as the input to the HMM.

• Initial state probability (πi): the probability of starting with each tactic.
• Transition probability (aij): the probability of transitioning between each pair

of tactics.
• Emission probability (bj(k)): the probability of each tactic containing specific techniques.

Mathematics 2024, 12, 1508 10 of 20

Figure 6. The first order HMM. Elements in the model include ATT&CK tactics and techniques. The
attack probability set includes the initial state probability of tactics, the transition probability between
tactics, and the emission probability of techniques included in the tactics.

To align with the model construction, nine techniques in the ATT&CK lateral move-
ment stage were classified into three tactics based on their performance in real threat
intelligence as shown in the Table 1. Based on statistical methods for threat intelligence,
we can calculate the frequency of transition between the three tactics and the frequency
of selection of each technique to use. The first attack chain generated based on the in-
put attack probability set is the one with the highest success rate considered by the
model at that time and is called a seed attack chain. By adjusting the three probabili-
ties of the HMM parameters, we can also automate the generation of attack chains that
reflected different attack goals. (This paper refers to some open source threat intelligence:
https://github.com/mitre-attack/attack-stix-data, accessed on 21 March 2024).

Table 1. Attack techniques’ classification.

Classification ID Describe

Tactics1

Technique2-T1534 Internal spear phishing
Technique3-T1570 Lateral tool transfer
Technique7-T1072 Software deployment tools
Technique9-T1550 Use alternate authentication material

Tactics2

Technique1-T1210 Exploitation of remote services
Technique4-T1563 Remote service session hijacking
Technique5-T1021 Remote services
Technique9-T1550 Use alternate authentication material

Tactics3

Technique2-T1534 Internal spear phishing
Technique6-T1091 Replication through removable media
Technique8-T1080 Taint shared content
Technique9-T1550 Use alternate authentication material

4.2.2. Dynamic Attack Chain Evolution

A single attack chain generated based on the HMM is not necessarily available, and
this paper argues that it is a time-consuming process to call the HMM again to regenerate
the attack chain if the current one is not available. Therefore, in order to save time and
improve the efficiency of screening valid attack chains, we constructed a collection of
candidate attack chains based on the dynamic evolution of the seed attack chain.

As shown in the Figure 6, the collection of candidate attack chains consists of three
types: four-segment matching, three-segment matching, and two-segment matching, which

https://github.com/mitre-attack/attack-stix-data

Mathematics 2024, 12, 1508 11 of 20

means the same length of attack chains from left to right. The core idea of the evolution
process is to reconstruct some attack actions based on the seed attack chain and store them
in the candidate attack chain collection. This provides the attacking agent with a diverse
search space to improve the success rate of valid attack chains. In this process, it is not
necessary to regenerate the multi-step attack chain based on the HMM for storage each
time. Instead, certain attack steps are adjusted according to the first stored attack chain
(seed attack chain), thus ensuring the success rate and availability of a valid attack chain.

4.2.3. Valid Attack Chain Verification

The verification of the valid attack chain is performed based on the interaction with
host nodes configured with vulnerability information in a honeynet environment. The
attack chains are chosen according to their storage order based on the collection of candidate
attack chains. When an attack step is unusable, its probability is reduced by a fixed
proportion and allocated to other probabilities. The probability set P is continually adjusted
to P

′
{

p, t, α
′
}

based on attack execution feedback. During the verification process, the
maximum length Li available for each candidate attack chain is recorded. If a complete
and valid attack chain exists, it is chosen to participate in the training of the attack–defense
game. On the contrary, there may be no valid attack chain in the set of candidate attack
sequences. In this case, we select the attack chain with the maximum usable length
Lmax among them as the target attack chain and adjust it locally according to the new
probability. This process continues until a valid attack chain is obtained to complete the
attack–defense interaction.

Our proposed valid attack chain generation method can obtain usable attack chains
more efficiently and quickly. This can increase the efficiency of automated attacks, thus
accelerating the training process of honeypot agents in attack and defense games.

4.3. Dynamic Attack–Defense Game in a Multi-Honeypot Environment
4.3.1. Dynamic Honeypot Agent

The attack agent executes an attack action based on its own partially observed state,
triggers a honeypot response, and decides on the execution of subsequent actions according
to the response result. The honeypot agents respond to the attack action and adjust
their response strategy based on the next observed state and reward values. The cyclic
interaction between the attack agent and the honeypot is modeled as a multi-agent Markov
game process based on AARF. Finally, the attack agent and the defense agent obtain their
respective optimization strategies.

In real production scenarios, the value of assets is gradually increasing on the path
from the network edge to the network core. Therefore, the attacker intrudes further, it
gets closer to sensitive data, and a defense response matters more. To obtain a more
effective strategy output, in the game modeling, we adjust the reward distribution based
on the dynamic reward mechanism. The reward values are set not only based on the
cost of configuring different honeypot types Ctype but are also related to the progress of
the attacker’s intrusion T. This encourages the defender to make more rational response
actions. Equation (4) illustrates the formation of honeypot’s reward Rt, where T represents
the process of attack, Na represents the number of attacks, µ represents the reward factor,
and ω is a constant. (The * in all equations in this paper represents the multiplication sign).

Rt = Ctype + µ ∗ (T + Na) + ω (4)

At the same time, attackers have the opportunity to identify honeypot nodes during
the attack attempt, and honeypots also use anti-identification configurations to better
hide themselves. We quantify the anti-identification configuration of the honeypot into a
probabilistic representation of the anti-identification capability. The worse the honeypot’s
response action is, the higher the probability of an attacker seeing through it, which means
the lower the honeypot’s anti-identification ability. Similarly, the more reasonable the

Mathematics 2024, 12, 1508 12 of 20

response action of the honeypot agent is, the higher the feedback reward value it receives,
and the higher the anti-identification ability is. V(ei) = max(min(rt, c),−c) represents the
reward value interval mapping for the range [−c, c], where ei represents the i-th experience.
Then, based on the sigmoid function, the anti-identification probability is normalized to be
in the range (a, b), (0 < a < b < 1).

Pt
h = (b− a) ∗ sigmoid

(
rt −min(V(ei))

max(V(ei))−min(V(ei))

)
+ a (5)

4.3.2. Dynamic Value Label Sampling in a Multi-Honeypot Environment

The honeynet environment is characterized by non-static features such as dynamic
reward mechanisms, dynamic anti-identification configurations, etc. The honeypot agent
stored training data based on RL during the training process are large and varied. The
experience replay mechanism in RL can mix and store different experiences during the
training process. The agent remembers and reuses past experience samples, breaking
the correlation of continuous sample sequences, and making the learning process more
stable and efficient. However, the general uniform sampling method faces the problem
of being unable to instantly sample important information for learning. This method
randomly samples a certain batch of experience data based on the experience samples
stored in the experience buffer during each sampling process to learn. This neglects
the learning of high-value samples, which reduces the sampling efficiency and learning
efficiency of the agent. Therefore, we propose a dynamic value sampling method in a
multi-honeypot environment. In each sampling process, the agent can sample samples
with higher importance and value for learning, so it can effectively improve the sampling
efficiency and accelerate the convergence of RL.

The anti-identification ability is calculated based on the feedback reward. The larger
its value, the more effective the interaction at that time, and the higher the value of the
experience sample at that moment. Therefore, we characterize the relative size of the value
of stored experience samples based on the anti-identification probability value Pt

h at time t
of the honeypot. Based on this, each piece of experience data is marked with a value label.

Lk = Pt
h + ε (6)

Here, ε is a small constant used to prevent samples from being neglected at the edge
case where the reward value is zero, ensuring that all samples are labeled.

However, if we just sample the data according to the value label, it leads to some
sample data with low label values to never be selected. The lack of diversity in experiences
leads to an insufficient generalization of learning strategies. To alleviate this problem,
we use probabilities to represent the values of different sample data. It ensures that the
empirical data of the smallest label are also non-zero and has a chance to be selected,
effectively ensuring sampling diversity. Specifically, we define the sampling probability
as follows:

Pi =
Lk

i
∑m

0 Lj
(7)

When performing value-based data sampling, different samples are assigned different
selection probabilities based on the honeypot’s anti-identification capabilities. The original
expected distribution is also changed, and the final expected value estimate of the random
sample becomes a biased estimate. The resulting bias problem can be mitigated by using
importance sampling (IS) weights.

ωj = (
1

(N · P(j))
)β (8)

The details of the value sampling method based on dynamic rewards and anti-
identification capabilities in multiple honeypot scenarios are shown in Algorithm 1.

Mathematics 2024, 12, 1508 13 of 20

Algorithm 1 Dynamic value label sampling (DVLS)

Input: experience replay memory D, i-th experience (s, a, rt, s′), Lj, batch, expoments β,
constants a, b, c, ε. Initialize h ∈ {1, 2, 3}

1: Update the sampling probability of experience Pi−1 =
Lk

i−1
Σm

0 Lj

2: Sample experience transition B(φj, aj, rj, φj+1)
Pi← SampleBatch (D, batch)

3: Compute IS weight ωj = (1
(N·P(j)))

β

4: Zoom experience information reward value V(ei) = max(min(rt, c),−c)
5: Calculate anti-identification probability:

Pt
h = (b− a) ∗ s igmoid

(
rt−min(V(ei))

max(V(ei))−min(V(ei))

)
+ a

6: Label experience transition Li based on Pt
h Li = Pt

h + ε

4.3.3. DQN with Dynamic Value Label Sampling

Deep Q-Network (DQN) [27] is an RL algorithm based on deep learning (DL). The
classic DQN algorithm uses random uniform sampling, but traditional random sampling
methods can lead to a failure to consider the potential value of experiences and ignore the
learning of important experiences. Especially in attack and defense scenarios, it is difficult
to accurately learn high-value experience information in the face of high-dimensional and
complex attack state features. As a result, it reduces the effective utilization of samples,
which can impact the training quality and convergence speed of the model.

Due to the problems of random uniform sampling, it may require a larger number of
samples to achieve the same effect as importance sampling. This can enhance training time
and computational costs. We coupled the dynamic value label sampling method with the
DQN method to replace the traditional random uniform sampling method and improve
the overall training effect of the DQN algorithm. Targeted sampling was performed
according to the value of experience during the training process, and the value labels
were updated regularly during training. Utilizing this sampling method can improve the
effective utilization of samples. This is particularly useful in some RL problems where
the estimation of certain state–action pairs may be more accurate and can provide better
prior information. Algorithm 2 provides a detailed implementation of DQN with the
DVLS algorithm.

Algorithm 2 DQN with dynamic value label sampling

Input: Lj, exponents β, constant a, b, c, ε ; Initialize replay memory D to capacity N, h = 1;
Initialize action-value function Q with random weights

1: for episode = 1→ M do
2: Initialize sequence s1 = {x1}
3: for t = 1→ T do
4: With probability select a random action at
5: otherwise select at = maxaQ∗(φ(st), a; θ)
6: Execute action at in emulator and observe reward rt and image xt+1
7: Set st+1 = st, at, xt+1 and preprocess φt+1 = φ(st+1)
8: Store transition i (φt, at, rt, φt+1) in D
9: Pi, ωj, V(ei) = DVLS(i, Li−1, β, a, b, c)

10: Compute TD-error δj = rj + γmaxa′Q(sj, aj)−Q(sj−1, aj−1)

11: Set yj =

{
rj f or terminal φj+1

rj + γmaxa′Q(φj+1, a
′
; θ) f or non-terminal φj+1

12: Perform a gradient descent step on Pi, ωj, V(ei) = DVLS(i, Li−1, β, a, b, c)
13: Accumulate weight change ∆← ∆ + ωj · δj · ∇θQ(sj−1, aj−1)
14: end for
15: end for

Mathematics 2024, 12, 1508 14 of 20

5. Experiment

The abstract HoneypotSim environment includes the core services of hosts, open ports,
communication connections between hosts, and configuration vulnerability information.
In the topology, communication is allowed between neighboring nodes. Each honeypot
node is randomly assigned vulnerabilities, along with open ports such as SSH, FTP, RDP,
and others to better simulate remote connections and similar services. The environment
has independent training termination constraints:

• When a honeypot is exposed, that is, the deception is detected by the attack agent.
• When the cumulative reward for a honeypot agent reaches the threshold α.
• When the last honeypot node is occupied (the value of rewards is not certain).

We designed three experiments as follows based on the AARF framework and with
the support of HoneypotSim:

• By comparing with the single attack chain generation method, we verified the ef-
fectiveness of the proposed method in generating valid attack chains based on the
collection of attack chains. The stability of our method was further verified based on
generating attack chains of different lengths.

• Leveraging the classic DQN algorithm, we modeled the interaction between a defense
agent and an automated attacker to engage in the game. We analyzed the experiment
results to validate the usability and effectiveness of the AARF framework.

• We compared two baseline agent models (both DQN-agent and PPO-agent, respec-
tively) and the DQN with DVLS agent model. We analyzed the comparison results to
prove that the dynamic value label sampling method was efficient and reliable.

5.1. Experimental Configuration

The configuration parameters of HoneypotSim can be customized. In the setup of the
basic experimental environment, we configured a honeynet environment that included
five honeypot nodes. Among them, client1 and client2 belonged to the warning honey-
pots, GitHubProject and GiteeProject belonged to the trapping honeypots, and Server
belonged to the countering honeypot. When an attacker performed malicious actions,
AARF-based honeypots enabled rapid and efficient interactive responses. We quantified
the anti-identification ability of the honeypot to the probability set (0.1,0.2) according to
Equation (2). For the defender reward mechanism, positive feedback rewards non-linearly
increased within the range of (5,15) based on Equation (3). We also provided a fixed
negative feedback reward of −5 for the failure responses to honeypot nodes.

The simulation environment also contained information related to the attack agents.
The attack chain generated by the attack agents was used to represent the attacks in the
intranet lateral movement scenario. Specifically, based on the HMM model for the ATT&CK
lateral movement phase, it contained a combination of techniques which were executed
sequentially to complete the response interaction with the honeypot. The length of the base
valid attack chain was five. The core idea of RL-based honeypots is to maximize the cumu-
lative reward through iterative optimization of strategies to achieve the defense response
objectives. The tree types of functional honeypots designed were all built on RL algorithms.
For honeypots, the purpose of response actions is to establish a highly interactive connec-
tion with attackers. The size of the action space was 20, including reasonable response
actions designed based on specific attack requests. Partial action classification details are
shown in Table 2. The same response action could match multiple attack actions, so it was a
many-to-many mapping to the attack action. The state space primarily consisted of discrete
state features such as current_defender_state, open_port, file_status, process_status, and so
on, representing the observations of the current node regarding the external environment.
After a series of iterative training, the agent was allowed to choose response actions at each
step based on the current strategy, thereby maximizing the reward within its field of view.
Both the attack chain length and the honeynet environment could be dynamically adjusted

Mathematics 2024, 12, 1508 15 of 20

for testing and analyzing the performance of the AARF framework and RL in different
attack scenarios and honeynet environments.

Table 2. Honeypot response actions classification.

Defender Agent Action Id Response Actions

Honeypot

action1 Successfully called service
action2 Authentication passed
action3 Login successful
action4 Content copied successfully
action5 Obtaining content data
action6 Accept and click on the phishing link
action7 Service utilization successful
action8 The required software already exists
action9 Software deployment/transfer succeeded

action10 Obtain remote service permissions

5.2. Experimental Results and Analysis
5.2.1. Validation of Valid Attack Chain Generation

Attack agents have the goal of generating a complete attack chain that is effectively
usable. Our proposed method of generating a valid attack chain based on a collection
of candidate attack chains can quickly obtain a valid attack chain and thus improve the
efficiency of attacks. By simulating honeynet environments with different configurations,
we conducted experiments under the scenarios of generating attack chains of 3–8-step
actions, respectively. The experimental results are shown in Figure 7. By analyzing the
experimental results, we found that in attack chain generation with fewer attack steps, the
single attack chain generation method did not differ much from our generation method in
terms of generation time. However, as the number of attack steps included in the attack
chain increased, the advantage of our method gradually expanded. This is because as the
complexity of generating attack chains increased, the number of calls to the HMM for a
single attack chain generation method increased significantly, increasing the generation
time. Our method selected valid attack chains from the candidate attack chain collection
and made partial adjustments, so it could improve the generation efficiency. Overall, our
method could output a valid complete attack chain much faster than the single attack chain
generation method.

Figure 7. Comparison of valid attack chain generation time.

5.2.2. AARF Framework Feasibility Verification

The AARF framework consists of three parts: the custom honeynet environment, the
HMM-based attack agent, and the reinforcement learning-based defense agent. The frame-
work implements an intelligent deception defense response against automated multi-step
attacks in a multi-honeypot environment and demonstrates the whole process of interaction

Mathematics 2024, 12, 1508 16 of 20

response through visualization. Using the DQN and PPO algorithms, we conducted a
feasibility validation of the AARF framework. We built defense agents capable of effec-
tively interacting with the environment. They collaboratively made response decisions
against intrusion attacks. Figure 8 shows the attack and defense process from client1 to
Server in a visual way. It can be seen that the attacker is guided by the honeypot to ac-
cess different nodes in turn. Different honeypots complete different defense actions and
restore the attack path. This provides an intuitive understanding of interaction games
and demonstrates the ability of the AARF framework to automatically respond to the
attack chain.

Figure 8. The interaction process of honeypots and attacker. (a) Communication alarm; (b) threat
records-1; (c) threat records-2; (d) traceability and countermeasures.

Figure 9 quantifies the experimental results of the AARF framework, which shows
the cumulative reward figure and episode steps’ trend figure of the trained DQN. We
focused on the ϵ-greedy strategy, adjusting the action strategy at different stages. In the
early stage of training, honeypot agents spent more time to explore the environment using
DQN according to AARF with the probability ϵ. As the learning process progressed, the
agent gained a more complete understanding of its action space and observation state
by learning. It selected the optimal action with the highest possible reward to be fully
exploited based on the action distribution within its action space to achieve convergence
and stabilization. This demonstrated that the environment configuration supported the
reasonable training of agents and has good learning feasibility. It can be seen that both the
cumulative reward and the number of iterations converged effectively after a period of
training. This means that the agents were able to autonomously learn effective response
strategies and apply them in a randomly configured HoneypotSim environment.

Mathematics 2024, 12, 1508 17 of 20

(a) (b)

Figure 9. DQN algorithm operating effect based on AARF framework (a) DQN cumulative reward;
(b) DQN iteration round.

5.3. Algorithm Comparative Verification

For the RL algorithm, the initialization settings for relevant parameters were as follows:
the discount factor was set to 0.90; the size of the replay buffer was set to 500; the learning
rate was set to 0.01; the honeypot’s training was based on the TensorFlow platform. The
RMSProp optimizer was used to minimize the defined loss during training.

We compared and analyzed three different algorithms in a honeynet scenario contain-
ing five honeypots, six honeypots, and seven honeypots of different complexities. This also
corresponded to the modeling of attack agents generating attack chains of different lengths.
The results are shown in Figure 10. From Figure 10a, we can see that the DQN with DVLS
in the early stages had comparable utility to the DQN, which continuously improved and
eventually remained stable as the training proceeded. After 1000 episodes, the convergence
of all methods tended to stabilize. Compared to the other methods, the DQN with DVLS
achieved faster convergence and the highest cumulative reward. From Figure 10a–c, as
the complexity of the honeynet environment increased, the convergence of the DQN with
DVLS was always the best. This shows the efficiency and stability of the DVLS sampling
method, which is attributed to the efficiency of its sampling method. Since the DQN with
DVLS labels the value weight of stored data, it allows a more efficient selection of samples
for learning. Overall, the PPO algorithm learned more efficiently at the start of training, but
it was more volatile as training continued. This may be related to our discrete state-action
space environment.

A comparison of the DQN and the DQN with DVLS methods in terms of average
cumulative reward and convergence efficiency is shown in Figure 11. Figure 11a,b show
the average cumulative rewards of the agents per 300-episode interval and the convergence
efficiency of the strategies, respectively. The average cumulative rewards of honeypot
agents based on the DQN with DVLS exceeded the DQN by more than eight percent
through the calculation, and the convergence efficiency by approximately five percent. The
average cumulative reward and convergence efficiency are important metrics for evaluating
reinforcement learning models. This indicated that the DQN with DVLS method based on
the AARF framework was more efficient in sampling during the training process and could
generate the optimal honeypot response strategy with better results faster. Meanwhile, the
multi-stage interaction with the attack chain was accomplished based on the generated
response strategy, which effectively enhanced the interaction between the honeypot and the
attack agent. Thus, it improved the concealment and confusion of the honeypot, extended
the behavioral chain of the attack in the honeypot, effectively delayed the attack, captured
more of its behavioral characteristics, and further improved the efficiency of deception
defense. Therefore, it is of great significance for the research on automated attack response
strategies of honeypots.

Mathematics 2024, 12, 1508 18 of 20

(a) (b) (c)

Figure 10. Comparisonof algorithm performance in different honeynet environments (a) Comparative
results in a HoneypotSim environment with 5 honeypots; (b) comparative results in a Honeypot-
Sim environment with 6 honeypots; (c) comparative results in a HoneypotSim environment with
7 honeypots.

(a) (b)

Figure 11. Comparison of average reward and convergence efficiency: (a) average cumulative reward
values; (b) average convergence efficiency.

6. Conclusions

In this paper, we focused on effectively enhancing the interaction of honeypots when
faced with multi-step sequential attack chains in dynamic games. We made progress in
implementing the AARF framework, which consisted of three parts, a honeynet environ-
ment, an attack agent, and a defense agent, and could autonomously generate honeypot
response strategies for interacting with attack agents. In the HoneypotSim environment, we
designed three functional types of honeypot agents to respond collaboratively to an attack
chain. For the attack agents, we proposed an automated attack chain generation method
based on an HMM combined with the generic threat framework ATT&CK. It was divided
into seed attack chain generation, dynamic attack chain evolution, and valid attack chain
verification. This effectively improved the efficiency of valid attack chain generation and
completed the groundwork for the effective training of honeypots in attack and defense
games. Honeypot agents interacted with attack agents in a dynamic honeynet environment
based on RL. Considering the problems posed by the random uniform sampling method of
RL, we proposed the sampling method of DVLS. The DVLS method labeled the experience
samples stored in the experience replay with value labels based on feedback rewards and
anti-identification capabilities and guided the agents to learn high-value sample experi-
ences. Through experimental validation, our method could effectively learn high-value
sample data, thus accelerating the convergence of the training process and effectively
enhancing the interactions of the honeypot.

In future research work, we have the following research plans. Aiming at the attack
agents in the AARF framework, we will further consider introducing the vulnerability
exploitation methods from the CVE and CNVD vulnerability databases to enrich the

Mathematics 2024, 12, 1508 19 of 20

attack method library and generate more diversified attack chains. For the defense agents,
based on the reasonable response, we will design and introduce a collaborative defense
mechanism to the AARF framework. According to the functional characteristics of different
honeypots, we will achieve functional synergy and complete real defense actions such
as threat alert, threat alert, traceability countermeasure, etc., to realize active defense.
Intelligent honeynet deployment strategies will also be further considered, based on a
multi-agent reinforcement learning approach to collaborate on deployment and response
tasks. For the virtual honeynet environment, a larger-scale honeynet scenario will be
designed to verify the effectiveness of the framework in complex network environments.
Finally, future research will involve implementing our proposed AARF framework in
real-world multi-honeypot scenarios. This will allow us to better demonstrate the practical
value of our research in real-world applications.

Author Contributions: Conceptualization, L.W. and J.D.; methodology, L.W. and J.D.; validation,
L.W., H.T. and J.Z.; formal analysis, L.W., J.D. and Y.X.; investigation, L.W., J.D. and Z.Z.; writing—
original draft preparation L.W., J.D. and Z.L.; writing—review and editing, L.W., J.D., Z.G. and R.Z.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Guangdong Basic and Applied Basic Research Foundation
(2023A1515011698), Guangdong High-level University Foundation Program (SL2022A03J00918),
Major Key Project of PCL (PCL2022A03), and National Natural Science Foundation of China (grant
no. 62372137).

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Togay, C.; Kasif, A.; Catal, C.; Tekinerdogan, B. A firewall policy anomaly detection framework for reliable network security.

IEEE Trans. Reliab. 2021, 71, 339–347. [CrossRef]
2. Zhang, Z.; Wang, L.; Chen, G.; Gu, Z.; Tian, Z.; Du, X.; Guizani, M. STG2P: A two-stage pipeline model for intrusion detection

based on improved LightGBM and K-means. Simul. Model. Pract. Theory 2022, 120, 102614. [CrossRef]
3. Rohith, C.; Kaur, G. A comprehensive study on malware detection and prevention techniques used by anti-virus. In Proceedings

of the 2021 2nd International Conference on Intelligent Engineering and Management (Iciem), London, UK, 28–30 April 2021;
IEEE: Piscataway, NJ, USA, 2021; pp. 429–434.

4. Liu, S.; Wang, S.; Sun, K. Enhancing Honeypot Fidelity with Real-Time User Behavior Emulation. In Proceedings of the 2023
53rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks-Supplemental Volume (DSN-S), Porto,
Portugal, 27–30 June 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 146–150.

5. López-Morales, E.; Rubio-Medrano, C.; Doupé, A.; Shoshitaishvili, Y.; Wang, R.; Bao, T.; Ahn, G.J. Honeyplc: A next-generation
honeypot for industrial control systems. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security, Virtual Event, 9–13 November 2020; pp. 279–291.

6. Yamamoto, M.; Kakei, S.; Saito, S. Firmpot: A framework for intelligent-interaction honeypots using firmware of iot devices. In
Proceedings of the 2021 Ninth International Symposium on Computing and Networking Workshops (CANDARW), Matsue,
Japan, 23–26 November 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 405–411.

7. Team., Microsoft Defender Research CyberBattleSim. 2021. Available online: https://github.com/microsoft/cyberbattlesim
(accessed on 10 September 2021).

8. Rahul, S.; Vajrala, C.; Thangaraju, B. A novel method of honeypot inclusive WAF to protect from SQL injection and XSS. In
Proceedings of the 2021 International Conference on Disruptive Technologies for Multi-Disciplinary Research and Applications
(CENTCON), Bengaluru, India, 19–21 November 2021; IEEE: Piscataway, NJ, USA, 2021; Volume 1, pp. 135–140.

9. Erdődi, L.; Sommervoll, Å.Å.; Zennaro, F.M. Simulating SQL injection vulnerability exploitation using Q-learning reinforcement
learning agents. J. Inf. Secur. Appl. 2021, 61, 102903. [CrossRef]

10. Del Verme, M.; Sommervoll, Å.Å.; Erdődi, L.; Totaro, S.; Zennaro, F.M. Sql injections and reinforcement learning: An empirical
evaluation of the role of action structure. In Proceedings of the Secure IT Systems: 26th Nordic Conference, NordSec 2021, Virtual
Event, 29–30 November 2021; Proceedings 26; Springer: Berlin/Heidelberg, Germany, 2021; pp. 95–113.

11. Foley, M.; Maffeis, S. HAXSS: Hierarchical reinforcement learning for XSS payload generation. In Proceedings of the 2022 IEEE
International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), Wuhan, China, 9–11
December 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 147–158.

12. Baillie, C.; Standen, M.; Schwartz, J.; Docking, M.; Bowman, D.; Kim, J. Cyborg: An autonomous cyber operations research gym.
arXiv 2020, arXiv:2002.10667.

http://doi.org/10.1109/TR.2021.3089511
http://dx.doi.org/10.1016/j.simpat.2022.102614
https://github.com/microsoft/cyberbattlesim
http://dx.doi.org/10.1016/j.jisa.2021.102903

Mathematics 2024, 12, 1508 20 of 20

13. Straub, J. Modeling attack, defense and threat trees and the cyber kill chain, att&ck and stride frameworks as blackboard
architecture networks. In Proceedings of the 2020 IEEE International Conference on Smart Cloud (SmartCloud), Washington, DC,
USA, 6–8 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 148–153.

14. Siniosoglou, I.; Efstathopoulos, G.; Pliatsios, D.; Moscholios, I.D.; Sarigiannidis, A.; Sakellari, G.; Loukas, G.; Sarigiannidis, P.
NeuralPot: An industrial honeypot implementation based on deep neural networks. In Proceedings of the 2020 IEEE Symposium
on Computers and Communications (ISCC), Rennes, France, 7–10 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–7.

15. Mfogo, V.S.; Zemkoho, A.; Njilla, L.; Nkenlifack, M.; Kamhoua, C. AIIPot: Adaptive intelligent-interaction honeypot for
IoT devices. In Proceedings of the 2023 IEEE 34th Annual International Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC), Toronto, ON, Canada, 5–8 September 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6.

16. Huang, L.; Zhu, Q. Adaptive honeypot engagement through reinforcement learning of semi-markov decision processes. In
Proceedings of the Decision and Game Theory for Security: 10th International Conference, GameSec 2019, Stockholm, Sweden, 30
October–1 November 2019; Proceedings 10; Springer: Berlin/Heidelberg, Germany, 2019; pp. 196–216.

17. Pauna, A.; Iacob, A.C.; Bica, I. Qrassh-a self-adaptive ssh honeypot driven by q-learning. In Proceedings of the 2018 International
Conference on Communications (COMM), Bucharest, Romania, 14–16 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 441–446.

18. Cabral, W.; Valli, C.; Sikos, L.; Wakeling, S. Review and analysis of cowrie artefacts and their potential to be used deceptively. In
Proceedings of the 2019 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas,
NV, USA, 5–7 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 166–171.

19. Kristyanto, M.A.; Studiawan, H.; Pratomo, B.A. Evaluation of Reinforcement Learning Algorithm on SSH Honeypot. In
Proceedings of the 2022 6th International Conference on Information Technology, Information Systems and Electrical Engineering
(ICITISEE), Yogyakarta, Indonesia, 13–14 December 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 346–350.

20. Liu, Q.; Stokes, J.W.; Mead, R.; Burrell, T.; Hellen, I.; Lambert, J.; Marochko, A.; Cui, W. Latte: Large-scale lateral movement
detection. In Proceedings of the MILCOM 2018-2018 IEEE Military Communications Conference (MILCOM), Los Angeles, CA,
USA, 29–31 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6.

21. Bowman, B.; Laprade, C.; Ji, Y.; Huang, H.H. Detecting lateral movement in enterprise computer networks with unsupervised
graph {AI}. In Proceedings of the 23rd International Symposium on Research in Attacks, Intrusions and Defenses (RAID 2020),
San Sebastian, Spain, 14–15 October 2020; pp. 257–268.

22. Ho, G.; Dhiman, M.; Akhawe, D.; Paxson, V.; Savage, S.; Voelker, G.M.; Wagner, D. Hopper: Modeling and detecting lateral
movement. In Proceedings of the 30th USENIX Security Symposium (USENIX Security 21), Vancouver, BC, Canada, 11–13
August 2021; pp. 3093–3110.

23. Strom, B.E.; Applebaum, A.; Miller, D.P.; Nickels, K.C.; Pennington, A.G.; Thomas, C.B. Mitre att&ck: Design and philosophy. In
Technical Report; The MITRE Corporation: McLean, VA, USA, 2018.

24. Amal, M.; Venkadesh, P. Review of cyber attack detection: Honeypot system. Webology 2022, 19, 5497–5514.
25. Pandire, P.A.; Gaikwad, V.B. Attack detection in cloud virtual environment and prevention using honeypot. In Proceedings of

the 2018 International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 11–12 July
2018; IEEE: Piscataway, NJ, USA, 2018; pp. 515–520.

26. Shrivastava, R.K.; Bashir, B.; Hota, C. Attack detection and forensics using honeypot in IoT environment. In Proceedings of
the Distributed Computing and Internet Technology: 15th International Conference, ICDCIT 2019, Bhubaneswar, India, 10–13
January 2019; Proceedings 15; Springer: Berlin/Heidelberg, Germany, 2019; pp. 402–409.

27. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing atari with deep
reinforcement learning. arXiv 2013, arXiv:1312.5602.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Related Work
	Attack Agent Modeling
	Honeypot Agent Modeling

	Preliminaries
	Lateral Movement and ATT&CK
	Honeypot and Honeynet
	Hidden Markov Model

	Method
	Honeypot Models
	Automatic Attack Chain Generation
	Seed Attack Chain Generation
	Dynamic Attack Chain Evolution
	Valid Attack Chain Verification

	Dynamic Attack–Defense Game in a Multi-Honeypot Environment
	Dynamic Honeypot Agent
	Dynamic Value Label Sampling in a Multi-Honeypot Environment
	DQN with Dynamic Value Label Sampling

	Experiment
	Experimental Configuration
	Experimental Results and Analysis
	Validation of Valid Attack Chain Generation
	AARF Framework Feasibility Verification

	Algorithm Comparative Verification

	Conclusions
	References

