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Abstract: With the increasing demand for electricity, the power grid is undergoing significant advance-
ments. Insulators, which serve as protective devices for transmission lines in outdoor high-altitude
power systems, are widely employed. However, the detection of defects in insulators captured
under challenging conditions, such as rain, snow, fog, sunlight, and fast-moving drones during long-
distance photography, remains a major challenge. To address this issue and improve the accuracy of
defect detection, this paper presents a novel approach: the Multi-Scale Insulator Defect Detection
Approach using Detection Transformer (DETR). In this study, we propose a multi-scale backbone
network that effectively captures the features of small objects, enhancing the detection performance.
Additionally, we introduce a self-attention upsampling (SAU) module to replace the conventional
attention module, enhancing contextual information extraction and facilitating the detection of small
objects. Furthermore, we introduce the insulator defect (IDIoU) loss, which mitigates the instability in
the matching process caused by small defects. Extensive experiments were conducted on an insulator
defect dataset to evaluate the performance of our proposed method. The results demonstrate that
our approach achieves outstanding performance, particularly in detecting small defects. Compared
to existing methods, our approach exhibits a remarkable 7.47% increase in the average precision,
emphasizing its efficacy in insulator defect detection. The proposed method not only enhances the
accuracy of defect detection, which is crucial for maintaining the reliability and safety of power trans-
mission systems but also has broader implications for the maintenance and inspection of high-voltage
power infrastructure.

Keywords: insulator defect detection; transformer; self-attention upsampling; small insulator defect
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1. Introduction

Insulators in high-voltage power transmission are components used to support and
secure transmission lines. Their primary function is to support conductors on transmission
lines while preventing the current from flowing through the supporting structures into
the ground or other objects that should not be electrified. Insulators are typically made
from materials such as ceramics, fiberglass-reinforced plastics, or rubber to ensure they can
effectively prevent current leakage. Additionally, insulators can prevent the formation of
electrical arcs caused by high voltages, which could damage transmission equipment and
lead to power transmission interruptions. In high-voltage power transmission, insulators
play a crucial role in ensuring the safe operation of power lines.

Damage to insulators can lead to a series of severe consequences. First, there is the
interruption of power transmission; damaged insulators can cause a short circuit in power
lines, leading to transmission interruptions. Second, there are safety risks; if an insulator
is damaged, the current may flow down the pole to the ground, increasing the risk of
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electrocution. Furthermore, damaged insulators can cause electrical arcs, posing a fire
hazard. Third, there are economic losses; failures in transmission lines can disrupt the
power supply to businesses and households, leading to corresponding economic losses.
Finally, short circuits caused by damaged insulators can damage electrical equipment. Even
if there is no immediate apparent equipment failure, it can lead to wear and tear on power
system equipment over time, reducing equipment life and posing risks to the stability of the
power system. Therefore, maintenance and inspection of insulators are important measures
to ensure the safe and stable operation of high-voltage power transmission systems.

Insulators are key electrical components in overhead transmission systems, bearing the
critical responsibility of preventing current leakage and maintaining line stability. Unfortu-
nately, these devices may suffer from self-explosion, breakage, or flashover issues due to
pollution, as they are constantly exposed to strong electric fields and harsh environmental
conditions. Specifically, surface failures caused by contamination and their damage to
small insulators have become a leading cause of power grid failures. It is estimated that
such defects account for over half of all grid failures. Therefore, developing methods for
the rapid and accurate detection of insulator conditions is essential for ensuring the stable
operation of power grids.

With the development of drone and computer vision technology, optical remote-
sensing images, including drone imagery, have become increasingly important in both
military and civilian applications [1]. The ability to locate and identify objects in these
images is a fundamental challenge in image processing, with wide-ranging implications for
disaster monitoring, urban management, and precision control [2–4]. Currently, traditional
detection methods that rely on helicopter or manual field inspections, as well as the analysis
of drone-captured images, are inefficient and costly in the face of China’s complex power
grid structure. This is particularly true for the identification of small defect targets in
drone images, where the complex background increases the difficulty of recognition. Given
this, the development of a technology suitable for detecting small target faults in complex
backgrounds is urgently needed to enhance the efficiency and accuracy of detection efforts.

In recent years, DEtection TRansformer (DETR) [5] has made significant progress in
the field of object detection, which has revolutionized object detection by treating it as
a set prediction task and leveraging the powerful relational modeling capabilities of the
transformer. The transition from traditional detection methods to advanced solutions such
as DETR is not only expected to solve the problem of low efficiency but also to address the
unique challenges posed by complex environments such as those in drone images. This
study aims to achieve the accuracy and efficiency requirements of insulator defect detection
tasks by enhancing the ability of the DETR model to detect small objects.

Although DETR variants offer numerous advantages, they also face several challenges
when applied to the detection of insulator defects. Firstly, as deep networks progress, the
scale of feature layers diminishes, resulting in the gradual loss of small defect features. This
loss of information limits the model’s ability to accurately detect minor defects. Secondly,
the self-attention operations in DETR tend to overpower the limited information present
in small defects, causing contamination from background features. This issue leads to
decreased detection accuracy. Lastly, the Hungarian matching algorithm, which is com-
monly used in DETR, has inherent shortcomings. Minor shifts in the predicted bounding
boxes can cause significant fluctuations in Intersection over Union (IoU) [6], making the
optimization process difficult.

This study addresses these challenges and provides the following contributions:

1. To tackle the confusion between foreground and background features, we propose a
context-based attention module. This module enables the model to effectively learn
the relationship between defects and their backgrounds, improving detection accuracy.

2. We proposed the insulator defect IoU (IDIoU) loss function, which specifically ad-
dresses the instability issues caused by small defects in the matching process. The
IDIoU loss helps the model optimize the detection of minor defects and accelerates
the training speed.
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By incorporating these improvements into DETR variants, we aim to enhance the
detection performance of insulator defects, particularly minor defects. The experimental
results demonstrate the effectiveness of our proposed methods and highlight the potential
for their application in real-world scenarios. The application of unmanned aerial vehicle
remote sensing images has become the norm, and efficient and accurate image detection
technology is needed in conjunction to form large-scale applications. This study has made
progress in the accuracy and efficiency of small defect detection in complex backgrounds,
laying a solid foundation for insulator defect detection in drone images. The application of
this technology will greatly improve the efficiency of insulator defect detection and provide
guarantees for the stable operation of the power grid.

2. Related Work
2.1. CNN-Based Methods

Deep learning methods, particularly Convolutional Neural Networks (CNN), have
shown great promise in object detection models for remote sensing images [7,8]. These
models can be broadly classified into two categories: anchor-based approaches and anchor-
free approaches.

Anchor-based approaches involve manually setting anchor sizes, which can lead to
redundancy in computation and memory load [9]. While these methods have shown
good performance, the reliance on manually defined anchors can be limiting in certain
scenarios. On the other hand, anchor-free approaches directly provide object location and
class information, eliminating the need for anchor adjustment [10]. By converting the
traditional bounding box prediction problem into a corner prediction problem, anchor-free
approaches avoid unnecessary hyperparameters and streamline the detection process.

The YOLO series models have been widely used in CNN-based object detection
models in recent years. YOLOv5 [11] is renowned for its fast processing speeds, making it
suitable for real-time detection tasks. However, its accuracy is not high in detecting very
small or highly occluded objects. YOLO7 [12] and IYOLO7 [13] provide improvements in
detection accuracy and speed, particularly in handling complex object detection scenarios
with better handling of occlusions and small objects. However, the increased complexity
leads to longer training times, and YOLO7 and IYOLO7 require more computational power
for optimal performance.

2.2. Transformer-Based Object Detection Technology

Most modern detection systems rely on manually designed components such as an-
chors and proposals, along with post-processing steps like Non-Maximum Suppression
(NMS). Carion et al. introduced DETR [5], an end-to-end system simplifying target detec-
tion into a direct set prediction problem. It utilizes the deep relational modeling capabilities
of Transformers for object queries and pairs sample matching and box positioning with
bipartite graph matching the Hungarian algorithm. However, DETR still has shortcomings
in the convergence speed and detection performance of small objects. To address this,
Zhu et al. adopted a deformable self-attention mechanism [14], which enhances the recogni-
tion of small objects by strategically sampling key areas of the image and fusing multi-scale
features. Dai et al. further developed dynamic attention techniques [15], dynamically
adjusting according to the importance of scale, spatial location, and feature dimensions to
optimize performance and accelerate model convergence. However, their methods may
cause feature confusion during self-attention computations by merging features of different
scales into a single input for the encoder. This study proposes an improved multi-scale
DETR design, implementing cross-scale local attention in different paths of the feature
pyramid. This not only maintains feature consistency but also effectively reduces the
confusion between small defects and the background by focusing on foreground features.

In the single-stage models of DETR, object queries are randomly initialized. DINO [16]
enhances position queries by selecting top-K features from the Encoder output, enrich-
ing the prior information of object queries. RT-DETR [17] adopts an IoU-aware query
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selection method, picking high-scoring feature samples to optimize the decoder’s input.
DEYOv3 [18] combines elements of DETR with the YOLO architecture to achieve real-time
object detection capabilities. Conditional DETR [19] introduces a conditioning mechanism
on the decoder’s attention, allowing for more flexible and targeted learning, which helps
the model to better understand complex scenes and detect objects more accurately. DN-
DETR [20] improves upon the deformable DETR by integrating a denoising strategy that
enhances the model’s robustness and accuracy, particularly in cluttered environments.

These models build on the foundation of the DETR by introducing modifications
that target specific weaknesses, such as slow convergence times and difficulty with small
object detection. These advancements reflect ongoing efforts to optimize the efficiency and
applicability of Transformer-based object detection systems.

2.3. Detection of Small Objects

Current technologies for detecting small objects primarily modify and optimize
standard object detection frameworks to accommodate small-sized targets. These tech-
niques can generally be classified into four mainstream directions based on their improve-
ment strategies:

1. Data augmentation methods are crucial for training data-driven deep learning models,
especially in the field of small object detection, where standard sampling techniques
often fail to provide sufficient training samples [21]. One approach is to replicate and
randomly transform small objects within the same image, enlarging the sample size
of small objects and enhancing the model’s detection capability. Another strategy
involves new label assignments to include more small objects in training.

2. Multi-scale fusion methods allow for recognition by high-level features in deep
networks, which are typically small in scale and do not encompass low-level fea-
tures [22]. Considering that small object features are often present in low-level fea-
tures, PANet [23] leverages the concept of inter-layer feature interaction from FPN,
enhancing feature hierarchy via bi-directional paths, thus improving the precision of
deep feature localization. Yang et al. [24] adopted Scale-Dependent Pooling (SDP) to
choose appropriate feature layers for the pooling steps of small objects. MS-CNN [25]
generates object proposals for specific scale ranges, providing optimal receptive fields
for small objects.

3. Attention mechanism methods [26] mimic the human ability to rapidly scan scenes
while ignoring irrelevant parts, with our perceptual system utilizing visual attention
mechanisms crucially during recognition. Attention models assign different weights
to different parts of the feature map, highlighting important areas while suppressing
secondary information.

4. Contextual information methods utilize spatial correlations, providing additional
clues and evidence. Contextual information plays a crucial role in human visual
systems and scene-understanding tasks. Some methods enhance the detection of small
objects by leveraging contextual clues. Chen et al. [27] used context representations
encompassing the proposal region for recognition. Hu et al. [28] explored encoding
areas beyond the object range and modeled local context information in a scale-
invariant manner to detect small objects. Based on this, we combine contextual
information with attention to better distinguish the relationships between foreground
and background.

3. Method
3.1. Overview

The aim of this research is to utilize the DETR architecture for the identification of
defects in insulators, with a special emphasis on enhancing the detection precision of
minute flaws. As demonstrated in Figure 1, the IF-DETR (Insulators Flaws DETR) model is
an end-to-end crater identification model based on Transformer technology.
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Figure 1. Structure of the IF-DETR model. There are two innovations in this model; one is the
fusion of low-level features from the backbone network with high-level features from the transformer
via the SAU module to further capture contextual information. The other is to solve the instability
problem caused by small defects in the matching process via the IDIoU loss function and to speed up
the training.

This model employs a multi-scale feature fusion approach, integrating features from
before and after the encoder at various scales. We use the SAU (Spatial Attention Upsam-
pling) [29] operation for upsampling, allowing the enhanced high-level features from the
encoder to extend to the low-level features through cross-scale fusion, further capturing
contextual information. As shown in Figure 1, the low-level feature F2 from the backbone
network is fused with the high-level feature S3 from Transformer to obtain S2 through the
SAU module, and F2 is fused with S2 in the same way. In the Head section, multi-scale
features processed by cross-scale fusion are fed into the transformer decoder, thus increas-
ing the number of queries involved in training. Ultimately, to simplify the optimization
of small objects, we have designed a specialized stable IoU (Intersection over Union) loss
function [30] for small objects.

Multi-scale Architecture In convolutional neural networks, it has been proven by
Cai [31] that multi-scale feature fusion can effectively improve detection accuracy. However,
the increased length of input sequences still leads to significant computational demands.
To overcome this obstacle, we rethought the encoder structure and designed a series of
variants with different encoders, as shown in Figure 1. Feature fusion at two scales not
only achieves good detection results but also avoids introducing excessive computation.
Applying self-attention to high-level features with richer semantic concepts can capture the
relationships between conceptual entities within images, aiding subsequent modules in the
detection and identification of objects in images. Moreover, the fusion of features across
multiple levels can effectively extract contextual information around defects to prevent
confusion between the foreground and background.

The algorithm steps for IF-DETR are as follows (Algorithm 1):

Algorithm 1. IF-DETR

Input: Images from drones capturing high-altitude power lines

Output: Annotated images with detected insulator defects

Begin
// Step 1: Preprocess the Input Images
for each image in drone-captured images do

Normalize(image)
Resize (image, required_input_size)
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Algorithm 1. Cont.

// Step 2: Feature Extraction with Multi-Scale Backbone
Initialize multi_scale_backbone_network
for each preprocessed_image in preprocessed_images do

features←multi_scale_backbone_network (preprocessed_image)
enhanced_features← apply_context_based_attention (features)
enhanced_features← self_attention_upsampling (enhanced_features)

// Step 3: Defect Detection with Enhanced DETR
Initialize enhanced_DETR_model
for each feature_set in enhanced_features do

detection_results← enhanced_DETR_model (feature_set)

// Step 4: Loss Function Optimization
Initialize IDIoU_loss_function
total_loss← 0
for each result in detection_results do

loss← IDIoU_loss_function (result, ground_truth)
total_loss← total_loss + loss

Optimize enhanced_DETR_model using total_loss

// Step 5: Post-Processing and Matching
Initialize Hungarian_algorithm
matched_results← Hungarian_algorithm (detection_results, ground_truth)

End

3.2. Self-Attention Upsampling

During feature fusion, traditional upsampling methods primarily include interpola-
tion algorithms and deconvolution. Interpolation has limitations in capturing rich semantic
information, and deconvolution is limited due to the use of a uniform kernel. To ad-
dress this, CARAFE (Content-Aware ReAssembly of FEatures) [32] introduced a novel
convolutional upsampling method, which reassembles features in a content-aware manner.
However, this approach only integrates high-level features into low-level features without
addressing cross-scale feature interactions. We propose a self-attention upsampling layer,
as shown in Figure 2. This layer utilizes cross-scale local cross-attention, where each ele-
ment in the low-resolution feature map calculates cross-attention with the corresponding
high-resolution feature region. This ensures semantic consistency and enhances feature
expressiveness by fusing high and low-level features. Moreover, it effectively preserves
the spatial information of small defects and their context in low-level features, preventing
foreground-background confusion.

High-level features S2 ∈ Rc×h/2×w are enhanced by the features F1 ∈ Rc×h/2×w/2

from the transformer encoder, and the high-resolution low-level features F1 ∈ Rc×h×w

are extracted from the backbone network. A “2 × 2” sliding window with a stride of
2 is used. As the sliding window moves across F1 once, a Queryi ∈ Rc×w×w is obtained
via the self-attention mechanism. Meanwhile, the i-th feature pixel in S is considered as
Keyi ∈ Rc×1×1 and Valuei ∈ Rc×1×1. After linearly projecting Queryi and Keyi, Qi and Ki
are obtained. The Key and Value with index i correspond to the Query with index i. The
i-th attention weight unit Ai is defined as the dot product of Qi and Ki. The final weights
are obtained using a Softmax operation and are then used to perform a dot product with
features S2 and fuse with low-level features F to obtain the final result S.
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low-level feature F1 from the backbone network with the high-level feature S2 from the Transformer
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The calculation of the weights is shown in Equation (1):

Ai = QiKT
i , W = so f tmax

(
Ai√

d

)
(1)

where d is the normalization factor.
The computation is defined by Equation (2):

V =
[
V0, V1, . . . , Vhw

4

]T
(2)

In the matrix V, each row is populated with the projection of the i-th high-level feature
pixel, denoted as Vi.

The resulting feature matrix S is obtained as shown in Equation (3):

S = V
⊙

W + F (3)

3.3. Insulator Defect IDIoU Loss Function

The loss function for two-stage DETR variants typically comprises three components:
classification loss, box L1 loss, and IoU-based loss. The loss function of IF-DETR is defined
as follows:

L
(
y, ygt) = λclsLcls

(
c, cgt)+ λl1

∥∥b− bgt∥∥
1 + λIDIoULIDIoU

(
b, bgt)′ (4)

Hyperparameters are utilized to modulate the scaling of the three constituent parts
of the loss. Additionally, y = [1] and ygt = {cgt, bgt}, respectively denote the prediction and
ground truth, where c and b represent the class and bounding box. Lcls() and LIDIoU()
are the classification loss and IDIoU loss that we have designed to optimize the difficulty
associated with defect detection. The classification loss employs Focal loss is defined
as follows:

Lcls
(
c, cgt) = {

−(1− c)γlogc , i f cgt = 1
−cγlog(1− c), i f cgt = 0

(5)

We have observed that optimizing small defect detection during the training pro-
cess presents challenges, primarily due to the defect features being easily conflated with
background features. Furthermore, enhancing stability in one-to-one matching is also
challenging. The original DETR uses IoU loss to measure the overlap between predictions
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and ground truth, but IoU loss does not accurately reflect the distance between prediction
boxes and actual boxes. Consequently, many DETR variants have opted for GIoU (Gener-
alized Intersection over Union) loss [13] in place of IoU loss. However, when two boxes
have a containment relationship, GIoU loss degrades into IoU loss, which does not convey
the boxes’ relative positions, disadvantaging datasets with densely packed small defects.
For example, during the initial stages of training, a single predicted box may encompass
multiple small defects. In such cases, GIoU loss contributes little to one-to-one matching,
whereas classification loss and box L1 loss become more significant. Additionally, we found
that one-to-one matching using only classification scores and L1 scores yields disparate
outcomes, leading to instability in the matching process as the model does not optimize
toward a unified objective.

To address these issues, we propose the IDIoU loss for small defects based on EIoU
(Efficient-IoU) Loss [33]. EIoU Loss consists of three components: IoU loss, center distance
loss, and aspect ratio loss. We found that even if the predicted box is within the actual box,
the EIoU Loss can still effectively discriminate the predicted box’s relative position and
incorporate the supervision of the box L1 loss into the IoU loss. Our specially designed
IDIoU Loss for small defects uses classification scores and optimizes all components in a
unified direction. We introduce the Defect IoU Loss to accommodate this enhancement, as
illustrated by Equation (6):

LIDIoU = 1 + rIoU − IoU +
ρ2(o, ogt)

(wc)2 + (hc)2 +
ρ2(w, wgt)

(wc)2 +
ρ2(h, hgt)
(hc)2 (6)

where o and ogt denote the central prediction box and ground truth box, wc and hc are
the width and height of the smallest enclosing box of the two boxes. ρ2() represents the
Euclidean distance between two points. r represents the classification scores.

Figure 3 illustrates the multiple defects within the prediction box, as well as the
different matching results of individual classification scores and individual L1 scores. The
term “L1” means the L1 scores, and the term “CLS” means the classification cores.
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Figure 3. The graphical explanation of the mathematical model of the loss function.

The prediction Box A in the figure contains multiple small defects. The GIoU between
the GT (ground truth) of these defects and prediction Box A degrades to IoU. The prediction
Box B has a low L1 score and high classification score, and the prediction Box C is the
opposite. This problem can lead to different results when choosing who matches the GT
with A or B at different stages.
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4. Experiment
4.1. Dataset

In the realm of insulator fault detection, data are relatively scarce, and research typi-
cally relies on proprietary datasets. Presently, there are two mainstream publicly available
datasets: The Chinese Power Line Insulator Dataset and the augmented version of the
same dataset. We conducted comparative experiments on these two datasets against state-
of-the-art methods and performed ablation studies on the backbone network structure,
loss function selection, and upsampling mechanism choice. As the primary objective of
this paper is to enhance detection accuracy, our experiments primarily utilize recall and
precision as evaluation metrics.

• IFDD Dataset

The IFDD dataset includes 1600 image samples, which are divided in a 7:2:1 ratio. It
encompasses a sufficient number of defect samples, covering most of the defect scenarios
found in insulators in daily life, with a wide distribution of data. Figure 4 shows some
samples. The dataset contains data of various sizes, predominantly small and medium-
sized targets, which aligns more closely with real-world scenarios.
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• CPLID Dataset

The Chinese Power Line Insulator Dataset (CPLID) comprises images of normal and
defective insulators captured by Unmanned Aerial Vehicles (UAVs) for the State Grid
Corporation of China. Specifically, CPLID contains 600 images of normal insulators and
248 images of defective insulators; Figure 5 shows some samples. Given the limited number
of defective insulator images, some were generated by segmenting defective insulators and
superimposing them onto different backgrounds.
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• AI-TOD Dataset

The AI-TOD (Aerial Images-Tiny Object Detection) is a large-scale horizontal box
dataset released by Wang et al. [34] from Wuhan University in 2020 for small object detection
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in optical remote sensing images. This dataset consists of 28,036 images, all of which
are 800 pixels × 800 pixels in size. The average size of object instances is approximately
12.8 pixels. The proposal of these data fill the gap in the field of small object detection in
optical remote sensing images, providing data support for the development of subsequent
small object detection tasks in optical remote sensing images.

4.2. Training Settings

In our experiments, we utilized a Resnet model [35] pre-trained on ImageNet (IS-
LVRC2012) as the backbone network for extracting multi-scale features. We adopted a
linear warm-up strategy for learning rate optimization, settling on a final learning rate of
0.0002. In addition, the loss function was optimized over 200 epochs using the AdamW
(Adam with Weight Decay Fix) optimizer with a weight decay of 0.0001. The anchors
within the auxiliary head were aligned with those used in YOLOv3 [36]. All experiments
were implemented in PyTorch 1.7.0 and carried out on a Tesla A100 GPU.

4.3. Evaluation Metrics

To assess the detection quality of our model, we used precision and recall as perfor-
mance metrics on the dataset, similar to most detection methods. We categorized predicted
boxes with an IoU greater than 0.5 compared to the ground truth as true positives and the
rest as false positives. The specific formulas are as follows:

Precision =
∥TP∥

∥TP∥+ ∥FP∥ (7)

Recall =
∥TP∥

∥TP∥+ ∥FN∥ (8)

Prediction boxes that do not contain defects are classified as false negatives (FN).
Prediction boxes that contain defects and have an IoU greater than 0.5 with the ground
truth are classified as true positives (TP), while those with an IoU less than or equal to 0.5
are classified as false positives (FP). ∥TP∥, ∥FP∥, and ∥FN∥ represent the counts of true
positives, false positives, and false negatives, respectively. Higher accuracy and recall rates
indicate better detection performance.

4.4. Compared with Other Methods

On the IFDD dataset, we compared the IF-DETR with other advanced DETR variants.
Table 1 displays the results of these comparisons. It is evident from the table that our model
achieved the highest precision and recall with fewer parameters and made progress in
detecting small defects (APs).

Compared to high-performance models, our method averaged a 7.47% improvement
in detection accuracy, as shown in Figure 6. These models struggle to identify defects with
weak features or in complex backgrounds because they unify multi-scale features into a
single input for the encoder, leading to increased computational cost and potential feature
confusion. In contrast, our model integrates a feature fusion step between the encoder and
decoder, effectively ensuring that features of small craters in high-resolution feature maps
are not overlooked during the learning process. Additionally, our training strategy ensures
that the encoder learns higher-quality features.

Compared to the baseline model RT-DETR, IF-DETR showed more than a 2% increase
in precision. This is due to the fact that RT-DETR’s interpolation upsampling and convolu-
tional pooling fail to ensure semantic coherence of features. Moreover, RT-DETR’s sparse
sampling method for object query selection limits the decoder’s decoding capabilities. Our
proposed SAU operator ensures the consistency of upsampled features, which are suitable
for networks based on self-attention computation.
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Table 1. Comparison of different methods in IFDD Dataset.

Model Backbone #Epcohs #Param (M) FLOPS Precision (%) Recall (%) Aps (%)

Faster-RCNN [37] R50 24 - - 80.5 65.2 29.5
ATSS [38] R50 24 - - 80.6 70.3 32.5
YOLOv5 [11] - 275 - - 81.3 67.7 28.5
YOLOv7 [12] - 275 - - 89.5 86.7 30.2
IYOLOv7 [13] - 275 - - 91.1 88.4 34.3
Deformable-DETR [19] R50 50 40.2 170.1 81.2 81.5 26.2
Conditional-DETR [39] R50 50 43.3 63.7 82.1 68.3 25.5
Group-DETR [40] R50 50 44.1 63.2 78.3 78.2 31.6
Focus-DETR [41] R50 36 49.5 113.6 88.1 83.1 33.4
DINO [16] R50 12 47.6 178.4 89.8 83.4 33.7
RT-DETR [28] R50 72 41.4 93.4 90.6 87.5 34.1
IF-DETR (Ours) R50 72 39.3 90.1 92.3 89.6 35.2

Note: The missing part of the data is based on CNN methods, which are not comparable to those based on
DETR methods.
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Figure 6. Comparison of accuracy on the IFDD dataset [16,27,35–43].

In Figure 7, we make a separate comparison for small defects. Compared with the
baseline model, our model’s instability score drops faster in the early stages of training, and
it is more stable in the later stages of training. It could present that our method effectively
mitigates the instability of small defect matching and accelerates the optimization process.
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of Figure 8a, only two defects were found by YOLO5, and three defects were detected
by Deformable-DETR, DINO, and RT-DETR. Four defects were detected by our IF-DETR
model, which has higher reliability. In the case of Figure 8b, the other models detect only
one defect, and the IF-DETR model detects three defects. The results show that YOLO5,
Deformable-DETR, DINO, and RT-DETR perform poorly in identifying small defects and
have missed detections. Our algorithm’s precise design effectively identifies small craters
with less evident edge features, thus demonstrating exceptional detection performance on
such objects.
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In Figure 8c, our model displays an advantage in handling images with complex
backgrounds. The complex texture features in these images pose a challenge to detection as
they resemble defects. Although complex backgrounds challenge all detectors, our method
is least affected and accurately detects defects where other methods fail, benefitting from
our model’s proposed self-attention upsampling module, which effectively differentiates
between foreground and background, resulting in superior feature learning capabilities
and enhanced robustness of the model.

Overall, our algorithm has clear advantages in feature learning and distinguishing
between foreground and background features. It improves the accuracy of defect detection,
especially for small defects, using more effective multi-scale feature fusion techniques and
a more stable matching process.

4.5. Ablation Study

We conducted a series of ablation experiments to assess the specific contributions of
each component to the model’s performance. By incrementally incorporating the three in-
novative points we proposed into the robust baseline model, the detection results improved.
These experimental results are summarized in Table 2. Initially, we utilized a multi-scale
backbone network structure within the classic DETR, which improved the precision of
defect detection by 0.9%, underscoring the benefits of multi-scale feature fusion under
the DETR framework. Subsequently, by integrating the SAU module into the multi-scale
bottom-up path, the model’s detection precision increased by 0.4%, reflecting the efficacy of
the SAU module in emphasizing small defect features. The model’s performance increased
by 0.4%, demonstrating the appropriate upsampling enhancement of the model’s ability to
differentiate foreground from background. Finally, by replacing the original loss function
with the IDIoU loss, the model’s detection precision increased again by 0.4%, indicating the
beneficial impact of IDIoU loss on network training. In summary, our experiments demon-
strate that each component of the proposed algorithm effectively enhances the model’s
performance, and they work in coordination without any conflict.
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Table 2. Influence of each component.

Model Multi-Scale SAU IDIoU Precision (%) Recall (%)

Baseline - - - 90.6 87.5

Baseline + Parts

√
- - 91.5 ↑0.9 88.3 ↑0.8√ √

- 91.9 ↑1.3 88.9 ↑1.4√ √ √
92.3 ↑1.7 89.6 ↑2.1

4.6. Generalization Study

To further validate the robustness and broad applicability of the proposed model in
handling insulator defect detection, we conducted experiments on a subset of the CPLID
dataset. According to the results in Table 3, our model continues to demonstrate exceptional
detection capabilities. From the experimental results, the defects in the CPLIID data are
relatively simple, and existing algorithms have very high detection accuracy. Our model
has an accuracy of 99.2% on the CPLID dataset, which is only lower than the 99.4% of
Hybrid YOLO [42]. Compared with the best algorithm, Hybrid-YOLO, our method is
comparable in precision, but we have improved by 2.6% in recall rate. This indicates that
our method can identify as many defects as possible, thanks to a series of innovative points
we proposed, which are more conducive to actual industrial applications. In addition,
compared with DETR-based methods, our method also has significant improvements,
which shows that our method is strong and robust and can achieve better experimental
results across multiple data distributions.

Table 3. Comparison of different methods in the CPLID dataset.

Model Precision (%) Recall (%)

YOLO-5 [11] 95.2 96.3
Hybrid-YOLO [42] 99.4 93.1
Deformable-DETR [19] 90.2 84.4
Focus-DETR [41] 91.5 85.2
DINO [16] 97.1 92.1
RT-DETR [28] 98.3 93.6
IF-DETR (Ours) 99.2 95.7

To illustrate the robustness and generalization of the proposed model, especially for
tiny objects, we do further experiments on a portion of the AI-TOD dataset.

As shown in Table 4, our model maintains the best detection performance. Most aerial
images of AI-TOD are taken over the sea. Therefore, they do not have as distinctive textural
features as crater images. IF-DETR has powerful feature learning capabilities and can fully
fuse features from different scales. In addition, the proposed method can still use color
information better to distinguish foreground and background.

Table 4. Comparison of different methods in AI-TOD dataset.

Model mAP (%) AP50 (%) APs (%)

Deformable-DETR [19] 10.13 30.50 12.57
DAB-Deformable-DETR [43] 10.86 30.84 11.29
DN-Deformable-DETR [20] 12.75 32.58 13.39
H-Deformable-DETR [44] 13.93 36.62 14.01
Focus-DETR [41] 16.09 41.89 16.21
DINO [16] 12.96 34.65 13.18
RT-DETR [18] 17.97 41.73 18.58
IF-DETR (Ours) 18.13 42.08 19.70
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5. Discussion
5.1. Practical and Social Implications

The improvements made in insulator defect detection via the refinement of the DETR
model have achieved significant advancements, particularly in detecting minor defects.
This progress holds substantial practical importance for the maintenance and management
of power systems, including:

1. Enhanced detection efficiency and accuracy: Optimized detection models employing
deep learning technology can significantly improve the identification efficiency and
accuracy of insulator defects within power systems, aiding in the timely discovery and
management of potential faults and reducing the incidence of electrical grid failures.

2. Reduced maintenance costs and risks: Compared to traditional manual inspection
methods, automated defect detection technology reduces manpower requirements,
lowers inspection costs, and minimizes the safety hazards of personnel working in
high-risk environments.

3. Optimized maintenance strategy: Accurate defect detection results provide a reliable
basis for electrical grid maintenance and repair, enabling more rational resource
allocation and more targeted and efficient maintenance planning.

Furthermore, the study’s advancements in insulator defect detection have had posi-
tive impacts on environmental protection, economic development, and public safety and
welfare. By improving the efficiency and accuracy of grid maintenance, this research
contributes to reducing energy waste and lowering the risk of grid accidents, thereby pro-
tecting the environment from pollution and degradation. Additionally, the development
and application of efficient defect detection technology drive innovation and industry
upgrades, providing momentum for the growth of emerging industries such as smart grids
and automated detection equipment manufacturing while also creating new employment
opportunities. The improved technology also enhances the reliability of the power system,
boosting public confidence in grid safety and thereby promoting public safety and social
welfare. Overall, this research showcases how technological advancements can play a
significant role in environmental protection, economic growth, and the enhancement of
public safety.

5.2. Limitations and Future Research Directions

Despite progress, some limitations exist in the study. For instance, the currently used
dataset may not fully cover all types of insulator defects, especially those internal cracks
that are difficult to detect using external imaging. Moreover, although the model performs
well on the selected dataset, its generalization capability across different electrical grid
structures and environmental conditions remains to be verified. The efficiency of defect
detection against complex backgrounds and the computational efficiency and processing
speed of the model in real-time or near-real-time applications also require further attention
in future research.

Future research should focus on several key areas to refine the defect detection
model further:

Dataset Expansion and Diversification: Enhancing the dataset to include a wider
variety of defect types, especially those that are less obvious or occur internally, will be
vital. Incorporating a broader range of defect scenarios and conditions will help improve
the model’s generalization capabilities.

Cross-Environment Adaptability Studies: Conducting detailed studies on the model’s
performance across various electrical grid structures and environmental conditions will
help determine its adaptability and robustness. This involves testing the model under
different weather conditions and with various insulator types and configurations to validate
its effectiveness universally.

Algorithm Optimization and Architectural Innovation: Optimizing existing algorithms
and exploring new model architectures can significantly enhance computational efficiency.
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This development is crucial for implementing the model in real-time applications, ensuring
it operates both swiftly and accurately.

Advanced Background Processing Techniques: Developing techniques that can effec-
tively segregate defects from complex backgrounds will enhance detection accuracy. This
may involve the use of advanced image segmentation and enhancement technologies that
can isolate and highlight defect features more distinctly.

Integration of Multi-source Data: Utilizing multimodal learning methods to integrate
data from multiple sources could substantially improve the accuracy and reliability of
defect detections.

By addressing these areas, future research can significantly advance the state of insu-
lator defect detection, making it more reliable, efficient, and applicable across a broader
range of conditions and scenarios.

6. Conclusions

In this comprehensive study, an innovative adaptation of the Detection Transformer
(DETR) model, termed IF-DETR, was meticulously developed to specifically target the
intricate task of identifying defects within insulators. The primary aim of this model was
to substantially enhance the accuracy with which small, often elusive, defects are detected,
marking a significant leap forward in the field of defect detection.

The foundation of this advancement lies in the integration of a sophisticated multi-
scale backbone network seamlessly combined with the classical DETR framework. This
strategic integration served to amplify the visibility of smaller defects, thereby facilitating
their detection. Building upon this, the study introduced a novel upsampling module,
dubbed the SAU (Spatial Attention Upsampling), ingeniously designed to leverage cross-
scale local cross-attention computation. This module was ingeniously incorporated into
the bottom-up pathway of the multi-scale backbone network. Its primary function was to
amalgamate features across a myriad of scales, adeptly enhancing the model’s capability to
discriminate between minute defects and their surrounding background. To further refine
the model’s accuracy, particularly in the context of one-to-one matching of small defects—
often likened to small craters—a novel loss function, the IDIoU loss, was conceptualized
and implemented. This loss function plays a pivotal role in the model by calculating the
matching cost and the box regression loss, thereby substantially bolstering the stability of
matching small defects, which is crucial for reliable defect detection.

The proposed IF-DETR model improves the detection accuracy of small target defects
in complex backgrounds, which is crucial for the reliability and safety of insulator equip-
ment and has broader implications for the maintenance and inspection of high-voltage
power infrastructure. Future endeavors will focus on expanding the current dataset. This
expansion is not merely about increasing the quantity of data but is aimed at encompassing
a broader spectrum of defect types, including internal cracks. Such an enriched dataset will
not only enhance the model’s detection capabilities but will also contribute to the broader
applicability and reliability of the IF-DETR model in real-world scenarios.
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