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Abstract: In an effort to overcome the problems with typical optimization algorithms’ slow conver-
gence and tendency to settle on a local optimal solution, an improved golden jackal optimization
technique is proposed. Initially, the development mechanism is enhanced to update the prey’s loca-
tion, addressing the limitation of just relying on local search in the later stages of the algorithm. This
ensures a more balanced approach to both algorithmic development and exploration. Furthermore,
incorporating the instinct of evading natural predators enhances both the effectiveness and precision
of the optimization process. Then, cross-mutation enhances population variety and facilitates escap-
ing from local optima. Finally, the crossbar strategy is implemented to change both the individual
and global optimal solutions of the population. This technique aims to decrease blind spots, enhance
population variety, improve solution accuracy, and accelerate convergence speed. A total of 20 bench-
mark functions are employed for the purpose of comparing different techniques. The enhanced
algorithm’s performance is evaluated using the CEC2017 test function, and the results are assessed
using the rank-sum test. Ultimately, three conventional practical engineering simulation experiments
are conducted to evaluate the suitability of IWKGJO for engineering issues. The results obtained
demonstrate the beneficial effects of the altered methodology and illustrate that the expanded golden
jackal optimization algorithm has superior convergence accuracy and a faster convergence rate.

Keywords: golden jackal optimization algorithm; use development mechanism; predator avoidance
behavior; cross mutation; crossbar strategy

MSC: 49K35

1. Introduction

The optimization problem often involves determining the ideal amount, which can be
either the maximum or least value, given a set of interconnected constraints. Optimization
challenges are prevalent throughout various engineering fields, and there is a continu-
ous rise in the need for answers. The approach to handling optimization problems has
undergone multiple updates as a means to effectively address the growing complexity of en-
gineering challenges in contemporary times. From the previous mathematical optimization
to the current heuristic optimization and meta-heuristic algorithm, it has evolved from the
traditional mathematical model to be capable of solving complicated problems with multi-
ple dimensions. In the context of problem-solving, a heuristic algorithm is employed to
acquire a viable solution within a specified number of iterations. The methodology remains
constant, and the distinction between a viable option and an optimal solution remains
indeterminate. The meta-heuristic algorithm integrates a stochastic algorithm with a local
search algorithm. In other words, when a fixed value is provided, the output value obtained
is not fixed due to the influence of “random factors”. The drawback of the meta-heuristic
algorithm is in its susceptibility to local optima due to its inherent randomness, resulting
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in an inability to identify the global optimal advantage. The inherent unpredictability of
the method renders its optimization process inapplicable to a wide range of engineering
problems. Consequently, an increasing number of meta-heuristic algorithms have been
proposed to address the growing complexity of engineering problems.

Meta-heuristic algorithms can be broadly classified into four categories depending
on various sources of inspiration: group-based algorithms, evolution-based algorithms,
physics-based algorithms, and human-based algorithms. The initial approach involves
simulating the foraging and social behavior exhibited by the wild creature. The beluga
whale optimization algorithm (BWO) [1] draws inspiration from the locomotion patterns
exhibited by beluga whales, including swimming, hunting, and falling. The gazelle opti-
mization algorithm (GOA) [2] is designed to replicate the behavioral patterns of gazelle
as they attempt to evade predators. The snake optimization algorithm (SO) [3] depends
on the habits and trends of snakes while foraging and breeding. The crawfish optimiza-
tion algorithm (COA) [4] draws inspiration from the observed foraging, chilling, and
competing behavior exhibited by crawfish. Another objective is to replicate the process
of Darwinian evolution; the liver cancer optimization algorithm (LCA) [5] emulates the
biological mechanisms underlying the proliferation and invasion of liver malignancies.
The human evolutionary optimization algorithm (HEOA) [6] is an algorithm that draws
inspiration from the process of human evolution. The lung function optimization algo-
rithm (LPO) [7] draws inspiration from the physiological regularity and cognitive abilities
observed in the human lung. The third is the process of simulating physical phenomena;
the frost optimization algorithm (RIME) [8] is derived from the growth mechanism of haze
ice and is based on the motion of soft frost ice particles. The geometric mean optimizer
(GMO) [9] is a software tool that emulates the distinctive characteristics of geometric mean
operators in the field of mathematics. The exponential distribution optimizer (EDO) [10]
draws inspiration from mathematical models that are grounded in exponential probability
distributions. Finally, there are algorithms that are based on human behavior. For instance,
the war strategy optimization algorithm (AOW) [11] draws inspiration from the renowned
ancient military theory known as The Art of War. The gold rush optimization algorithm
(GRO) [12] draws inspiration from the experience of the gold rush and aims to replicate
the actions and strategies employed by gold prospectors. The chef-based optimization
algorithm (CBOA) [13] emulates the cooking behavior of a cooked individual in order to
identify the optimal solution. The deep sleep optimizer (DSO) [14] algorithm emulates
the sleep habits of humans with the objective of addressing optimization challenges. The
football team training algorithm (FTTA) [15] is an optimization algorithm that is derived
from the training methodology employed in football teams.

Multiple researchers have put forward various improvement techniques for multiple
algorithms due to the traditional golden jackal optimization algorithm’s inadequate conver-
gence timetable and its propensity to fall into local optimality. An upgraded version (OGJO)
of the golden jackal optimization algorithm utilizing reverse learning (OBL) technology
has been put forward by Sarada Mohapatra et al. [16]. The updated strategy is contrasted
with alternative algorithms. Conclusions indicate that, in comparison to GJO and other
comparison algorithms, the OGJO suggested in this study is far more efficient. A golden
jackal optimization approach is also described by Lin et al. [17] and utilized in conjunc-
tion with a cloud computing resources allocation strategy. The optimization objective for
this study was to speed up the overall task completion time by utilizing CloudSim as
the simulation experiment platform. The golden jackal optimization algorithm’s iteration
counter was modified, experiments were conducted, and the results were compared with
other algorithms. Based on the results, the golden jackal optimization algorithm executes
more effectively compared to other algorithms when there are more than 1000 tasks. With
the goal of enhancing the golden jackal procedure’s exploration and exploration ability,
Xu et al. [18] established an optimization technique that makes use of an adaptive strategy.
We verified the new algorithm using a numerical example without obstacles. The aug-
mented golden jackal algorithm demonstrates remarkable convergence, as demonstrated
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by our results. A golden jackal optimization position was originated by Xie et al. [19] in an
effort to address the difficulty of minimizing PID conditions. The algorithm grows accus-
tomed to the relative positions of male and female jackals in accordance with the golden
jackal hunting rules by applying the three PID parameters to put together the position
coordinates. The system’s short readjustment time, quick rise in speed, and least overshoot
constitute some of its benefits, as evidenced by its results, which likewise illustrate that the
golden jackal optimization procedure governs the PID parameters of the system.

Hence, this work presents a novel golden jackal optimization technique that utilizes
reflection substitution and crossbar strategy. The initial section provides a description
of the development approach applied to the meta-heuristic algorithm and the golden
jackal optimization algorithm. The subsequent section provides an introduction to the
methods and processes involved in the fundamental golden jackal optimization algorithm.
The third chapter describes the improved algorithm. The enhanced method involves
(A) revising the placements of male and female golden jackals based on changes in their
developmental stage in order to enhance the correctness of the answer; (B) incorporating
the strategy of evading natural predators to enhance the overall optimization capacity of
the population; (C) utilizing cross mutation to enhance population diversity and enhance
the capacity to escape local optima; and (D) the inclusion of a crossbar strategy that
serves to rectify the global optimal solution, mitigate blind areas, and enhance the pace
of optimization. Section 4 of the study examines the disparity between the enhanced
algorithm and the original method through a comparative analysis of each approach using
a set of 20 benchmark test functions. Section 5 of the study compares the performance
of several algorithms on CEC2017 test functions of different dimensions. The Wilcoxon
rank-sum test is employed to identify any significant differences in the optimization results.
Section 6 of the study involves the execution of simulation experiments, wherein three
conventional engineering design optimization problems are employed. The experimental
findings demonstrate that the IWKGJO algorithm exhibits a noticeable enhancement in
both convergence speed and accuracy, rendering it well-suited for addressing practical
engineering challenges.

2. Golden Jackal Optimization Algorithm

The golden jackal optimization algorithm is an artificial intelligence algorithm that was
initially proposed by Nitish Chopra et al. in 2022 [20]. The algorithm took its inspiration
from the scavenging tactics utilized by golden jackals. Golden jackals are solitary creatures
that live in pairs. By virtue of their abilities to roam, hunt, and forage simultaneously,
they could potentially obtain more formidable game in the region. These synchronized
investigations are more productive than solo investigations. When jackals capture in
tandem, they predominantly employ less to win more siege tactics. They adhere to their
prey right away using the relay mode; once the prey is surrounded, they will employ less
to win more wheel warfare and relentlessly attack the target. Eventually, the prey will fade
out of energy and evolve into being physically worn out, at which point the jackals will
launch a group attack to end the dispute.

By transforming the vantage point of the prey, the golden jackal optimization process
rolls off the optimization process while mimicking the cooperative foraging conduct of
golden jackals. On the global search space, the prey’s starting location is picked at random.
Upon the update pertaining to the prey population’s place of residence, the male golden
jackal was in the optimal position, the female golden jackal was in the unsatisfactory
position, and the victim population’s location was rewritten based on the precise spot of
the golden jackal couple.
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Contingent on energy, the algorithm divides the prey across three distinct stages:
seeking, encompassing, and shooting. The golden jackal couple searches for a quarry
when the prey vitality is high; when the prey energy falls below some specific threshold
measurement, each of them occupies and attacks the prey.

2.1. Search Space Model

The initialization phase of the golden jackal can be formally outlined as follows:

X0 = Xmin + rand × (Xmax − Xmin) (1)

The formula combines X0 to symbolize the initial collection of golden jackals, rand
to symbolize a random number in the space [0, 1], and Xmax and Xmin to advocate for the
highest and lowest boundaries of the answer to the issue, appropriately.

2.2. Search for Prey (Exploration Phase)

Like customary canine jackals, golden jackals are competent in recognizing and moni-
toring their prey, and yet, on occasion, the prey will be challenged to seize and discharge.
The jackal waits and seeks out other prey as its outcome. Male jackals dominate the hunting.
Male and female jackals follow their companions.

Y1(t) = YM(t)− E × |YM(t)− r1 × Prey(t)| (2)

Y2(t) = YFM(t)− E × |YFM(t)− r1 × Prey(t)| (3)

where the current repetition count, t, is given. In the t iteration, the prey’s position is
labeled via Prey(t); the positions of the male and female jackals are marked by YM(t) and
YFM(t), respectively. The male and female jackals’ updated positions that correspond to
the prey in the t iteration is designated by Y1(t) and Y2(t), and so forth.

E is the prey’s getaway energy, and it can perhaps be arrived at as such:

E = E1 × E0 (4)

E0 symbolizes the prey’s initial degree of energy, whereas E1 indicates the prey’s
energy declining.

E0 = 2 × r − 1 (5)

where r is a randomized value spanning 0 and 1.

E1 = C1 ×
(

1 −
(

t
T

))
(6)

where T is the largest number of repetitions; t is the number of iterations that occur during
that moment; and C1 is a continuous value with an estimate of 1.5. As the cycle evolves, E1
drops uniformly between 1.5 to 0. A random number evolved from a Levy distribution is
represented by r1. The flight Levy operates, or LF(y), is arrived at in this manner:

r1 = 0.05 × LF(y) (7)

LF(y) = 0.01 × (µ × σ)

|v|
1
β

(8)

σ =

Γ(1 + β)× sin
(

π × β
2

)
Γ
(

1+β
2

)
× β × 2

β−1
2


1
β

(9)
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The quantity of arbitrary numbers in the µ and v formats is the equivalent of (0, 1). β
possesses a default value of 1.5, like an integer.

Primarily, the formula for releasing updates on the Wolf’s position operates using the
equation below:

YEP
t+1 =

Y1(t) + Y2(t)
2

(10)

where the jackal’s position following t + 1 repetitions is denoted by Y(t + 1).

2.3. Surround and Attack Prey (Development Phase)

Prey that has been infected by jackals has less energy to flee, and a jackal pair will then
encircle the prey that was initially identified. The jackals assault and consume their victim
once they have surrounded it. The following is the mathematical model of an assortment
of male and female jackals hunting together:

Y1(t) = YM(t)− E × |r1 × YM(t)− Prey(t)| (11)

Y2(t) = YFM(t)− E × |r1 × YFM(t)− Prey(t)| (12)

where t is the number of current iterations; Prey(t) is the position of the prey in the t
iteration; YM(t) and YFM(t) were the positions of male and female jackals in the t iteration,
respectively; and Y1(t) and Y2(t) are the updated positions of male and female jackals
corresponding to prey in the t iteration, respectively.

For Equation (12), where the current iteration count, t, is displayed, in the t iteration,
the prey’s position is symbolized with Prey(t); the positions of the male and female jackals
are denoted by YM(t) and YFM(t), respectively; and the male and female jackals’ updated
regions that correspond to the prey in the t iteration are designated by Y1(t) and Y2(t).

And subsequently, a whereabouts update on the jackal can be defined using

YDP
t+1 =

Y1(t) + Y2(t)
2

(13)

3. Improved Golden Jackal Optimization Algorithm
3.1. Improved Ways to Update Locations during Development

In this paper, a new development mechanism is proposed because when the escape
energy E < 1, the prey cannot escape due to the jackal infestation, but, as a result, it will
fall into the local optimal and cannot escape the global search for better prey. Moreover,
even if the escape energy is reduced, the prey still has a chance to escape.

During the first stage of the iteration, the prey exhibits a heightened inclination to flee,
resulting in a rapid emission of speed. Consequently, the elite matrix YE(t) was constructed
based on the optimal fitness values of golden jackal individuals. Subsequently, all elite
individuals commenced their exploration for global search. The prey’s location is updated
using the Brown random walk algorithm. Here is the mathematical model:

Y1(t) = YM(t)− E × D1 (14)

Y2(t) = YFM(t)− E × D1 (15)

D1 = RB × |YE(t)− RB × Prey(t)| (16)

The vector RB comprises random numbers that are generated by the process of Brow-
nian random walk.
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As the prey is confined for an extended period, its strength diminishes and its speed
also declines. During the intermediate phase of the iteration, when the velocity of the golden
jackal individual and the prey individual were equivalent, the golden jackal individual
implemented a division of action. Specifically, half of the golden jackal individuals engaged
in development activities following Levi’s flight strategy, while the remaining half pursued
exploration activities based on Brownian Walk. The implementation of a division of labor
not only facilitates the identification of the local ideal value, but also serves as a safeguard
against the convergence of the local optimal value towards the global optimal value. Below
are the mathematical models.

Development guidelines derived on Levy’s flight strategy:

Y1(t) = YM(t)− E × D2 (17)

Y2(t) = YFM(t)− E × D2 (18)

D2 = RL × |YE(t)− RL × Prey(t)| (19)

Exploration guidelines derived from the Brownian walk:

Y1(t) = Y2(t) = YE(t)− E × D3 (20)

D3 = RB × |RB × YE(t)− Prey(t)| (21)

Upon completion of the iteration, the golden jackal’s physical strength diminished and
its velocity decelerated. Currently, the golden jackal employed Levi’s itinerant approach to
evolve. Golden jackals, due to diminished escape energy, encircle and assault their prey.
Here is the mathematical model:

Y1(t) = Y2(t) = YE(t)− E × D4 (22)

D4 = RL × |RL × YE(t)− Prey(t)| (23)

3.2. Strategies for Avoiding Natural Enemies

While striving for dominance, the golden jackal pair may inevitably come across
their natural adversaries or rivals for food, be it due to global or local factors. Hence,
it is imperative to integrate avoidance behaviors against natural predators in order to
safeguard themselves when foraging. This study introduces an escape factor, denoted
as EE, specifically designed for golden jackals. When the escape value exceeds 0.25, it
indicates that the golden jackal couple has encountered a natural opponent or predator
and successfully evaded it by moving closer to the elites. Conversely, if the escape factor is
below 0.25, it signifies that they are in a secure situation. The mathematical formulas are
as follows:

If EE < 0.25:
Y1(t) = YM(t)− b1 × b2 × |YM(t)− Prey(t)| (24)

Y2(t) = YFM(t)− b1 × b2 × |YFM(t)− Prey(t)| (25)

If EE ≥ 0.25:

Y1(t) = YE(t)− b1 × b2 × |YM(t)− Prey(t)| (26)

Y2(t) = YE(t)− b1 × b2 × |YFM(t)− Prey(t)| (27)

b1 = tan(2 × π × r) (28)

b2 = 1 − 1

1 + e(
t

T2 −
1

2T )×10
(29)
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where YM(t) is the current position of the male golden jackal; YFM(t) is the current position
of the female golden jackal; and YE(t) is the elite matrix of optimal fitness values of the
golden jackal.

3.3. Cross Mutations

A crossover mutation mechanism, akin to differential evolution, is incorporated here
to achieve a local optimum after evading natural enemies. This procedure will be applied to
the present location of the golden jackal and their respective new locations. Four individuals
are randomly selected from the population, except the present one. A crossover operation
is then undertaken utilizing crossover mutation to generate the mutation vectors. Finally,
greedy selection is performed. The mathematical representation of the crossover operation
is as follows:

Ynew
i,j =

{
Ymu

i,j , i f r ≤ f
Yold

i,j , i f r > f
, j = 1, 2, . . . , dim (30)

where i is the number of populations; j is a random number of [1, dim]; Ynew
i,j is the position

of the golden jackal after the crossover mutation; Ymu
i,j is the mutation vector generated using

four random positional mutations; and Yold
i,j is the original position of the golden jackal.

3.4. Crossbar Strategy

For supplying the portion of the golden jackal population that fits into the local
perfect an opening of fleeing the iteration, the algorithm performs two sorts of crossovers,
horizontal and vertical, throughout each generation of the iteration. The article will present
the crossbar procedure [21] to increase the global optimization accuracy and the capacity to
jump out of the local optimum, thus preventing the golden jackal individual from stepping
into a state of “prematurity”.

The cross protocol generates the offspring generation Mhc
i,d and Mhc

j,d after each crossing.
These two crossing methodologies are organically merged by adding the competition
operator. Adhering to each crossing operation, the competition operator enters and engages
in a rivalry with the parent generation, retaining only the particles that outperform the
parent generation for the next iteration of the process.

3.4.1. Horizontal Crossing

Horizontal crossover, like the GA crossover operation, is an arithmetic crossover
between two distinct individual particles of the same dimension in the population. It
encourages individual learning from other individuals to improve the ability of global
optimization to prevent premature convergence. The formula for the formation of children
of parent individual particles X(i) and X(j), presuming that they cross horizontally in the
D-th dimension, is as follows:

Mhc
i,d = r2 × X(i, d) + (1 − r2)× X(j, d) + c1 × (X(i, d)− X(j, d)) (31)

Mhc
j,d = r3 × X(j, d) + (1 − r3 )× X(i, d) + c2 × (X(j, d)− X(i, d)) (32)

Horizontal crossover is an arithmetic crossover between the two distinct points where
r2 and r3 are random numbers of [0, 1]; both c1 and c2 are arbitrary values of [−1, 1];
and X(i, d) and X(j, d) are the parents of d dimension X(i) and X(j), respectively. This
is analogous to the GA crossover operation. By horizontal crossing, the D-dimensional
progeny of X(i, d) and X(i, d) are represented by Mhc

i,d and Mhc
j,d, respectively. Following the

completion of the horizontal crossing operation, the produced progeny has to be compared
to the parent particle’s fitness value in that proportion. The individual with the best fitness
is always adopted.
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3.4.2. Vertical Crossing

An arithmetic crossing between two separate dimensions of a particle inside a popula-
tion is termed a horizontal crossing. Each longitudinal crossing operation only generates
one child particle and updates one dimension because the elements of different dimensions
have different value ranges, so the two dimensions must be normalized before crossing.
Meanwhile, each longitudinal crossing operation must jump out of the regional optimal
without destroying the information of the other dimension if one dimension has stalled and
fallen into the local optimal. The subgeneration Mvc

i,d1
occurs using formula (3), assuming

that the d1 and d2 dimensions of particle X(i) participate in longitudinal crossing.

Mvc
i,d1

= r4 × X(i, d1) + (1 − r4)× X(j, d2) (33)

where the random number r4 resides on [0, 1] and the child of parent X(i) created by hori-
zontal crossing in d1 and d2 dimensions is Mvc

i,d1
. Longitudinal crossing produces offspring

individuals that compete with parent individuals for the custody of more fit individuals.

3.5. IWKGJO Algorithm Flow Chart

The Figure 1 algorithm flow chart is as follows:
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3.6. Upgraded Golden Jackal Optimization Algorithm Pseudo-Code

The above is a complete description of the improved Golden Jackal optimization
algorithm, and its pseudo-code is explained in Algorithm 1.
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Algorithm 1 Improved the pseudocode of sand cat swarm optimization algorithm

input: Initialize the population structure
→
x =

{→
x1,

→
x2, . . . ,

→
xn

}
, t, n

output: Global optimal solution
→
xk =

{ →
x1k,

→
x2k, . . . ,

→
xnk

}
1: Initializes prey location, population, and number of iterations
2: The fitness of N individuals was calculated
3: The optimal solution is taken as the position of male golden jackal, and the sub-optimal solution is taken as the position of

female golden jackal
4: Calculate the random number of Levy’s flight motion and the energy of prey escape
5: While t < T
6: For each xi, i = 1, 2, . . . , N
7: i f (|E| < 1)
8: i f (t < T/3)
9: Update the position according to Formulas (14) and (15)

10: else i f (t < 2T/3)
12: Update the position according to Formulas (17) and (18)
13: else
14: Update the position according to Formula (20)
15: end
16: else
17: Update the position according to Formula (22)
18: end i f
19: i f (|E| ≥ 1)
20: Update the position according to Formulas (2) and (3)
21: end i f
22: i f (EE < 0.25)
23: Update the position according to Equations (24) and (25)
24: else
25: Update the position according to Equations (26) and (27)
26: end i f
27: Random locations were selected to generate mutation vectors for cross mutation
28: According to Formulas (31)–(33), the crossbar strategy is carried out
29: end f or
30: t = t + 1
31: end while

3.7. Time Complexity

The temporal complexity of an algorithm is typically denoted as O. The IWKGJO
algorithm primarily consists of an enhanced development phase position update, reflection
instead of development, and crossbar. When the population size is N, the search space
dimension is D, and the largest number of iterations is T, the time complexity analysis of
this algorithm is shown in Table 1 below.

Table 1. Time complexity.

Algorithm Phase Time Frequency T Time Complexity O

Initial population T(n) = D O(n) = D
Fitness value calculation and ranking T(n) = N + N log N O(n) = T × (N + N log N)

Change development behavior update golden
jackal location T(n) = N × D O(n) = T × (N × D)

Incorporation of predator avoidance behavior T(n) = N × D O(n) = T × (N × D)
Crossover mutation T(n) = 1.5 × D O(n) = T × (1.5 × D)

Crossbar strategy T(n) = 0.5 × N × D + 0.5 × D O(n) = T × (N × D + D)
Total T(n) = 3D + T × N × (1 + log N + 2.5D) O(n) = D + T × N × (1 + log N + D)

3.8. Terms and Abbreviations

Table 2 shows the parameters used in this paper, and Table 3 shows the abbreviations
of each strategy and comparison algorithm used in this paper.
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Table 2. Parameter abbreviation table.

Basic
algorithm

t Current iterations

Improved
algorithm

YE Elite matrix

T Maximum iterations RB A random number vector generated by
a Brownian random walk

E The escape energy of prey RL A random number vector that
simulates Levi’s motion

r1
Random numbers based on
Levy distribution Ynew

i,j
Location of the golden jackal after
crossover mutation

r A random number from 0 to 1 Ymu
i,j

Mutation vectors generated using four
random positional mutations

LF(y) Levy’s flight function Yold
i,j

The original location of the
golden jackal

Prey Prey location EE The escape factor of the golden jackal
YM Location of the male jackal Mhc Horizontal cross generation

YFM Location of the female jackal Mvc Longitudinal crossing produces
a progeny

Y1
The position of the male jackal
corresponding to the prey r2, r3, r4 A random number from 0 to 1

Y2
The position of the female jackal
corresponding to the prey c1, c2 A random number from −1 to 1

Table 3. Algorithm abbreviation table.

Algorithm Shorthand Algorithm Policy or Algorithm Name

KGJO Change the development phase location update policy
QGJO Predator avoidance behavior
CGJO Cross mutation
ZGJO Crossbar strategy

IWKGJO An improved golden jackal optimization algorithm based on mixed strategies
GTO Artificial gorilla troops optimizer
WO Walrus optimizer
MPA Marine predators algorithm

HMSWHO Hybrid multi-strategy improved wild horse optimizer
IGWO Grey wolf optimization algorithm based on elite learning for nonlinear parameters

LSHADE Improving the search performance of SHADE using linear population size reduction
ECWOA Whale optimization algorithm based on elite opposition-based and crisscross optimization

4. Analysis and Outcomes of the Simulation
4.1. The Impact of Multiple Approaches of Improvement on Algorithmic Performance

The simulation experiment in this paper is based on 12th Gen Intel(R) Core (TM)
i7-12700H CPU @ 2.30 GHz memory 16.0 GB, Windows 11 operating system, and MATLAB
R2023a simulation software.

This paper employs several improvement tactics, including the modification of the
developmental stage position update strategy for selection (KGJO), incorporating natural
enemy avoidance behavior (QGJO), crossover mutation (CGJO), and longitudinal and
horizontal crossover strategy (ZGJO).

Twenty benchmark functions were utilized to evaluate the IWKGJO algorithm’s per-
formance. Six multi-peak test functions, ten multi-peak functions with fixed dimensions,
and seven single-peak test functions make up the benchmark test functions. Since there
is only one global ideal value for F1 through F7, this value is frequently used to assess
the algorithm’s development potential. The algorithm’s capacity for both local optimal
avoidance and exploration can be assessed by F8–F13. N = 50, D = 50, T = 1000, maxi-
mum number of iterations, repeat 30 times, and determine the ideal, average, and standard
deviation values for comparison. In Table 4, the benchmark functions are displayed.
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Table 4. Twelve benchmark functions.

Function Function Name Dimension Radius Optimal Value

f1(x) =
n
∑

i=1
x2

i Sphere Mode 50 [−100, 100] 0

f2(x) =
n
∑

i=1
|xi |+

n
∏
i=1

|xi | Schwefel’s Problem 2.22 50 [−10, 10] 0

f3(x) =
n
∑

i=1

(
i

∑
j=1

xj

)2

Schwefel’s Problem 1.2 50 [−100, 100] 0

f4(x) = maxi{|xi |, 1 ≤ i ≤ n} Schwefel’s Problem 2.21 50 [−100, 100] 0

f5(x) =
n−1
∑

i=1

[
100
(
xi+1 − x2

i

)2
+ (xi − 1)2

] Generalized Rosenbrock’s
Function 50 [−30, 30] 0

f6(x) =
n
∑

i=1
([xi + 0.5])2

Step Function 50 [−100, 100] 0

f7(x) =
n
∑

i=1
ix4

i + random[0, 1) Quartic Function 50 [−1.28, 1.28] 0

F8(x) =
n
∑

i=1
−xi sin

(√
|xi |
) Generalized Schwefel’s

Problem 2.26 50 [−500, 500] −418.98 × dim

F9(x) =
n
∑

i=1

[
x2

i − 10 cos(2πxi) + 10
] Generalized Rastrigin’s

Function 50 [−5.12, 5.12] 0

F10(x) = −20exp

(
−0.2

√
1
n

n
∑

i=1
x2

i

)
− exp

(
1
n

n
∑

i=1
cos(2πxi)

)
+ 20 + e Ackley’s Function 50 [−32, 32] 0

F11(x) = 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

xi√
i

)
+ 1 Generalized Griewank

Function 50 [−600, 600] 0

F12(x) =
π
n

{
10 sin(πy1) +

n−1
∑

i=1
(yi − 1)2[1 + 10 sin2(πyi+1)

]
+ (yn − 1)2

}
+

n
∑

i=1
u(xi , 10, 100, 4)

yi = 1 + xi+1
4

u(xi , a, k, m) =

 k(xi − a)m , xi > a
0,−a < xi < a

k(−xi − a)m , xi < −a

Generalized Penalized
Function 50 [−50, 50] 0

F13(x) = 0.1

{
sin2(3πxi) +

n
∑

i=1
(xi − 1)2[1 + sin2(3πx1 + 1)

]
+(xn − 1)2[1 + sin2(2πxn)

]}
+

n
∑

i=1
u(xi , 5, 100, 4)

Generalized Penalized
Function 50 [−50, 50] 0

F14(x) =

 1
500 +

25
∑

j=1

1

j+∑2
j=1

(
xi−aij

)6

−1

Shekel’s Foxholes Function 2 [−65, 65] 0

F15(x) =
11
∑

i=1

[
ai −

x1(b2
i +b1 x2)

b2
i +b1 x3+x4

]2

Kowalik’s Function 4 [−5, 5] 0.1484

F16(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2
Six-Hump Camel-Back

Function 2 [−5,5] −1

F17(x) =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)2
+ 10

(
1 − 1

8π

)
cos x1 + 10 Branin Function 2 [−5, 5] 0.3

F18(x) =[
1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2

)]
×[

30 + (2x1 − 3x2)
2 ×

(
18 − 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2

)] Goldstein-Price Function 2 [−2, 2] 3

F19(x) = −
4
∑

i=1
ciexp

(
−

3
∑

j=1
aij
(
xj − pij

)2

)
Hartman’s Function 3 [1, 3] −3

F20(x) = −
4
∑

i=1
ciexp

(
−

6
∑

j=1
aij
(
xj − pij

)2

)
Hartman’s Function 6 [0, 1] −3

4.2. Comparison and Analysis of Experimental Results

Table 5 demonstrates that the single-peak function produces results for benchmark
functions F1–F4 that achieve the theoretical optimal value. Additionally, the results of CGJO
also reach the theoretical optimal value, indicating that differential crossover significantly
enhances the algorithm’s accuracy. In function F5, the enhancement of IWKGJO’s outcomes
compared to the original algorithm could be more evident. However, with numerous
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iterations and testing, IWKGJO consistently yields superior results in comparison to the
original method. In function F6, the IWKGJO algorithm falls short of achieving the theoret-
ical optimal value, but it exhibits significantly higher accuracy compared to the original
algorithm. In function F7, the optimal fitness value, average fitness value, and standard
deviation all outperform the original algorithm and various strategies.

Table 5. Results of benchmark functions for different strategies.

Function Best Mean Std Function Best Mean Std

F1

GJO 4.2525 × 10−98 2.1424 × 10−95 3.7145 × 10−95

F11

GJO 0 0 0
KGJO 1.4442 × 10−50 1.4725 × 10−46 6.9333 × 10−46 KGJO 0 0 0
QGJO 1.9293 × 10−31 6.6045 × 10−29 1.4737 × 10−28 QGJO 0 5.1969 × 10−3 9.4074 × 10−3

CGJO 0 0 0 CGJO 0 0 0
ZGJO 3.0416 × 10−108 4.1617 × 10−103 1.4710 × 10−102 ZGJO 0 0 0

IWKGJO 0 0 0 IWKGJO 0 0 0

F2

GJO 3.6518 × 10−58 1.2592 × 10−56 1.9164 × 10−56

F12

GJO 1.8493 × 10−1 3.4231 × 10−1 9.5692 × 10−2

KGJO 4.0686 × 10−35 2.2044 × 10−33 4.0865 × 10−33 KGJO 3.9270 × 10−3 2.1827 × 10−2 1.4613 × 10−2

QGJO 7.1171 × 10−23 3.6323 × 10−21 4.7920 × 10−21 QGJO 9.1780 × 10−4 9.0705 × 10−3 5.9016 × 10−3

CGJO 0 0 0 CGJO 2.0848 × 10−1 3.5093 × 10−1 8.7961 × 10−2

ZGJO 7.9179 × 10−65 2.8115 × 10−63 8.3398 × 10−63 ZGJO 2.9042 × 10−5 6.5019 × 10−5 3.8049 × 10−5

IWKGJO 0 0 0 IWKGJO 4.5846 × 10−7 8.8785 × 10−7 2.0808 × 10−7

F3

GJO 3.9230 × 10−38 4.3940 × 10−26 2.4053 × 10−25

F13

GJO 2.7586 3.3703 2.9969 × 10−1

KGJO 5.0512 × 10−4 2.9223 5.5313 KGJO 8.4821 × 10−1 1.4645 3.8423 × 10−1

QGJO 8.7224 7.0054 × 102 8.3814 × 102 QGJO 2.0702 × 10−1 5.0356 × 10−1 2.3235 × 10−1

CGJO 0 0 0 CGJO 3.2285 4.1204 3.2214 × 10−1

ZGJO 2.7449 × 10−40 1.0937 × 10−30 5.6667 × 10−30 ZGJO 5.7459 × 10−1 1.3600 7.4677 × 10−1

IWKGJO 0 0 0 IWKGJO 1.1995 × 10−5 2.3321 × 10−5 6.3099 × 10−6

F4

GJO 2.5799 × 10−28 7.6844 × 10−23 2.8050 × 10−22

F14

GJO 0.998 3.6786 3.7051
KGJO 3.5351 × 10−6 5.0790 × 10−1 1.5581 KGJO 0.998 6.4072 4.6211
QGJO 6.2669 × 10−4 5.7202 × 10−3 4.9917 × 10−3 QGJO 0.998 3.4141 3.8184
CGJO 0 0 0 CGJO 0.998 3.0224 3.6078
ZGJO 1.4350 × 10−28 5.3344 × 10−21 2.9155 × 10−20 ZGJO 0.998 1.3871 2.1311

IWKGJO 0 0 0 IWKGJO 0.998 9.9800 × 10−1 4.1438 × 10−16

F5

GJO 4.6189 × 101 4.7618 × 101 8.6933 × 10−1

F15

GJO 3.0749 × 10−4 4.0393 × 10−4 2.7900 × 10−4

KGJO 4.3236 × 101 4.6090 × 101 1.4070 KGJO 3.0749 × 10−4 3.6888 × 10−4 2.3223 × 10−4

QGJO 4.4327 × 101 5.4286 × 101 2.8295 × 101 QGJO 3.0749 × 10−4 4.1534 × 10−4 3.2148 × 10−4

CGJO 4.6234 × 101 4.8228 × 101 6.1710 × 10−1 CGJO 3.0749 × 10−4 3.0803 × 10−4 2.5595 × 10−6

ZGJO 4.5782 × 101 4.6488 × 101 4.0979 × 10−1 ZGJO 3.0749 × 10−4 3.0751 × 10−4 2.2818 × 10−8

IWKGJO 4.1840 × 101 4.2198 × 101 1.6745 × 10−1 IWKGJO 3.0749 × 10−4 3.7188 × 10−4 2.4540 × 10−4

F6

GJO 3.2495 5.5966 8.0268 × 10−1

F16

GJO −1.0316 −1.0316 2.1027 × 10−8

KGJO 3.1265 × 10−1 1.0136 4.9168 × 10−1 KGJO −1.0316 −1.0316 6.7751 × 10−12

QGJO 2.0457 × 10−2 2.0360 × 10−1 1.7412 × 10−1 QGJO −1.0316 −1.0316 8.5481 × 10−10

CGJO 4.3640 5.9803 6.5417 × 10−1 CGJO −1.0316 −1.0316 2.8447 × 10−8

ZGJO 5.2983 × 10−4 8.1070 × 10−4 2.0504 × 10−4 ZGJO −1.0316 −1.0316 5.1632 × 10−9

IWKGJO 2.4548 × 10−5 4.4110 × 10−5 1.3988 × 10−5 IWKGJO −1.0316 −1.0316 9.7486 × 10−14

F7

GJO 2.6397 × 10−6 2.2152 × 10−4 2.2152 × 10−4

F17

GJO 0.39789 0.39789 2.2780 × 10−6

KGJO 9.0254 × 10−5 1.6917 × 10−3 1.5958 × 10−3 KGJO 0.39789 0.39789 9.1299 × 10−10

QGJO 5.4060 × 10−3 1.3561 × 10−2 5.4480 × 10−3 QGJO 0.39789 0.39789 9.2359 × 10−8

CGJO 7.0067 × 10−7 9.2560 × 10−6 6.9026 × 10−6 CGJO 0.39789 0.39789 3.7091 × 10−5

ZGJO 1.1514 × 10−5 9.6760 × 10−5 8.9253 × 10−5 ZGJO 0.39789 0.39789 8.4509 × 10−7

IWKGJO 2.2378 × 10−7 6.6218 × 10−6 5.5602 × 10−6 IWKGJO 0.39789 0.39789 1.4291 × 10−11

F8

GJO −1.0220 × 104 −6.2153 × 103 1.9849 × 103

F18

GJO 3 3 4.8005 × 10−7

KGJO −1.5270 × 104 −1.3242 × 104 1.0151 × 103 KGJO 3 3 4.5544 × 10−8

QGJO −1.2357 × 104 −1.0717 × 104 1.0224 × 103 QGJO 3 3 1.4914 × 10−8

CGJO −7.7355 × 103 −5.1263 × 103 1.4636 × 103 CGJO 3 3 4.0012 × 10−7

ZGJO −1.1021 × 104 −6.9912 × 103 2.0483 × 103 ZGJO 3 3 2.3088 × 10−7

IWKGJO −2.0179 × 104 −1.9552 × 104 4.5937 × 102 IWKGJO 3 3 8.0821 × 10−10

F9

GJO 0 0 0

F19

GJO −3.8628 −3.8588 3.9963 × 10−3

KGJO 0 3.7896 × 10−15 2.0756 × 10−14 KGJO −3.8628 −3.8605 3.5558 × 10−3

QGJO 6.5179 2.8870 × 101 1.3348 × 101 QGJO −3.8628 −3.8612 3.2064 × 10−3

CGJO 0 0 0 CGJO −3.8628 −3.8599 3.8518 × 10−3

ZGJO 0 0 0 ZGJO −3.8628 −3.8628 2.4559 × 10−5

IWKGJO 0 0 0 IWKGJO −3.8628 −3.8628 4.9232 × 10−11

F10

GJO 3.9968 × 10−15 5.8916 × 10−15 1.8027 × 10−15

F20

GJO −3.3220 −3.1125 1.7082 × 10−1

KGJO 7.5495 × 10−15 1.3471 × 10−14 4.6959 × 10−15 KGJO −3.3220 −3.1867 1.0916 × 10−1

QGJO 2.5313 × 10−14 3.4313 × 10−14 6.2401 × 10−15 QGJO −3.3220 −3.2571 6.7994 × 10−2

CGJO 4.4409 × 10−16 4.4409 × 10−16 0 CGJO −3.3220 −3.1027 2.3208 × 10−1

ZGJO 3.9968 × 10−15 5.7732 × 10−15 1.8067 × 10−15 ZGJO −3.3220 −3.2426 5.9086 × 10−2

IWKGJO 4.4409 × 10−16 4.4409 × 10−16 0 IWKGJO −3.3220 −3.2467 5.8273 × 10−2

Significant values are in bold.
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However, the multi-peak function demonstrates superior improvement with the im-
plementation of the vertical and horizontal crossover strategy (KGJO). Thus, the integration
of the three improvement methodologies has resulted in IWKGJO achieving enhanced
optimization accuracy and faster convergence speed. Within the F8–F13 functions, IWKGJO
demonstrates superior performance in terms of optimal value, mean, and standard devia-
tion compared to both of the other strategy enhancements and the original method. In the
F9–F11 functions, all methods except KGJO and QGJO, including the original algorithm,
achieve the theoretical optimum. This suggests that the additional strategies proposed in
this study maintain the algorithm’s capacity to explore and escape from local optima.

The IWKGJO algorithm demonstrates proximity between its optimal and average
adaptation values in the fixed dimensional function. Additionally, the convergence accura-
cies of the standard deviation surpass those of the improved and original algorithms for
each strategy. This strongly suggests that the improved algorithm possesses the capability to
escape local optima. To summarize, the enhanced algorithm exhibits superior optimization
accuracy, enhanced development capability, and the capacity to escape local optima.

Figure 2 demonstrates that the IQWKGJO algorithm produces a linear image in
functions F1–F7, F9–F13, and F17–F18. This suggests that the proposed approach efficiently
identifies the global optimum with great precision. In the F8 function, the IWKGJO picture
exhibits several points of inflection, suggesting that the suggested algorithm has a superior
ability to escape local optima compared to the original approach. In the F14–F16 and
F19–F20 function images, it is evident that the IWKGJO algorithm achieves the global
optimum with the highest speed. Among all the function images, the IWKGJO method
demonstrates the highest level of accuracy.
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Figure 2. Convergence curves of benchmark functions for different strategies.

To summarize, differential crossover is crucial for enhancing the algorithm’s accuracy,
whereas vertical crossover allows the system to escape local optimal validity. Hence, the
amalgamation of the four methodologies can be productive in enhancing accuracy, thereby
increasing the likelihood of discovering the global optimum.
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5. Comparison of IWKGJO with Other Intelligent Algorithms
5.1. CEC2017 Test Function Basic Information

This study utilizes the CEC2017 test function to evaluate the optimization capabili-
ties of the enhanced IWKGJO. It compares IWKGJO with three newly proposed original
algorithms and four excellent improved algorithms. The comparison algorithms are re-
spectively Gorilla Force Optimization Algorithm (GTO) [22], Walrus Optimizer (WO) [23]
and Marine Predator Algorithm (MPA) [24], Hybrid Multi-Strategy Improved Wild Horse
Optimizer (HMSWHO) [25], Grey Wolf Optimization Algorithm Based on Elite Learning of
Nonlinear Parameters (IGWO) [26], Improving the search performance of SHADE using
linear population size reduction (LSHADE) [27] and Whale Optimization Algorithm based
on Elite Opposition-based and Crisscross Optimization (ECWOA) [28]. The remaining
parameters remain unchanged from the aforementioned. Assign a population size of
N = 50, and divide the dimensions into 50 and 100. The maximum number of iterations
is T = 1000, and the process is repeated 30 times. The optimal value, average value, and
standard deviation are then used for comparison. The bold represents the optimal outcome
of the function. Table 6 presents the fundamental details of CEC2017.

Table 6. Basic information of CEC2017 test function.

No. Functions F*
i

Unimodal Function
1 Shifted and Rotated Zakharov Function 100
3 Shifted and Rotated Rosenbrock’s Function 300

Simple Multimodal Functions

4 Shifted and Rotated Rosenbrock’s Function 400
5 Shifted and Rotated Rastrigin’s Function 500
6 Shifted and Rotated Expanded Schaffer’s f6 Function 600
7 Shifted and Rotated Lunacek Bi-Rastrigin’s Function 700
8 Shifted and Rotated Non-Continuous Rastrigin’s Function 800
9 Shifted and Rotated Levy Function 900

10 Shifted and Rotated Schwefel’s Function 1000

Hybrid Functions

11 Hybrid Function l (N = 3) 1100
12 Hybrid Function 2 (N = 3) 1200
13 Hybrid Function 3 (N = 3) 1300
14 Hybrid Function 4 (N = 4) 1400
15 Hybrid Function 5 (N = 4) 1500
16 Hybrid Function 6 (N = 4) 1600
17 Hybrid Function 6 (N = 5) 1700
18 Hybrid Function 6 (N = 5) 1800
19 Hybrid Function 6 (N = 5) 1900
20 Hybrid Function 6 (N = 6) 2000

Composition Functions

21 Composition Function 1 (N = 3) 2100
22 Composition Function 2 (N = 3) 2200
23 Composition Function 3 (N = 4) 2300
24 Composition Function 4 (N = 4) 2400
25 Composition Function 5 (N = 5) 2500
26 Composition Function 6 (N = 5) 2600
27 Composition Function 7 (N = 6) 2700
28 Composition Function 8 (N = 6) 2800
29 Composition Function 9 (N = 3) 2900
30 Composition Function 10 (N = 3) 3000

5.2. Simulation Results and Analysis

The CEC2017 test functions are divided into 29 groups. The functions in groups
F1–F3 have a single peak and no local minima. These functions are suitable for evaluating
the performance of optimization algorithms. On the other hand, the functions in groups
F4–F10 are basic multi-peak functions. They are commonly used to challenge optimization
algorithms. F11–F20 represents hybrid functions that are well-suited for complicated issues
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characterized by a significant number of local minima. On the other hand, F21–F30 are
combinatorial functions that are appropriate for situations exhibiting a high degree of
oscillatory characteristics.

Based on the data in Table 7, it is evident that the IWKGJO algorithm is generally more
suitable for simple multi-peak and combined functions. However, for mixed functions
F12–F15 and F18–F19, the IWKGJO algorithm performs slightly worse than the GTO, HM-
SWHO, and MPA algorithms, although it still has an advantage over the other algorithms.
Regarding single-peak functions, the IWKGJO algorithm offers minimal benefits compared
to top-performing algorithms like MPA and HMSWHO. In terms of F1, IWKGJO is inferior
to GTO, HMSWHO, and MPA, ranking 4th. Similarly, in F2, IWKGJO is likewise inferior
to HMSWHO and MPA, ranking 3rd. In functions F4–F6 and F10, the IWKGJO algorithm
outperforms other algorithms, such as MPA, in terms of optimal and average fitness, as
well as the standard deviation. However, in functions F9, F7, and F8, the average fitness
values of IWKGJO are slightly inferior to the second-place MPA algorithm. Only function
F16 exhibits a higher standard deviation among the hybrid functions F11, F16, F17, and
F20. However, the remaining values for the other functions are superior to both the other
algorithms and the original algorithm. The combined functions F21, F23–F25, F28, and F30
exhibit advantages in both fitness value and standard deviation. However, in function F22,
the IWKGJO algorithm is expected to perform somewhat worse compared to the MPA,
HMSWHO, and IGWO algorithms. In functions F26, F27, and F29, the ideal fitness value
exhibits an advantage, while the average fitness value and the standard deviation show
a modest decline. However, the difference is not statistically significant. To summarize,
the suggested approach maintains an edge in 50 dimensional functions. Although its
performance may be slightly inferior to that of MPA, it excels in terms of search capability
and has an advantage in highly oscillatory issues.

Table 7. Comparison of test function results of different CEC2017 algorithms (d = 50).

IWKGJO GJO GTO WO MPA HMSWHO IGWO LSHADE ECWOA

F1

Best 9.0463 × 105 1.6669 × 1010 1.0795 × 103 1.0393 × 108 1.7141 × 105 1.5621 × 103 9.3991 × 1010 1.1041 × 1010 7.0455 × 104

Mean 3.0792 × 106 3.2808 × 1010 2.0759 × 104 2.0102 × 108 1.4278 × 106 1.9283 × 104 1.0879 × 1011 2.1737 × 1010 9.2820 × 106

Std 1.8456 × 106 9.5556 × 109 2.0067 × 104 7.4164 × 107 1.2571 × 106 2.1870 × 104 6.7432 × 109 5.9608 × 109 1.1285 × 107

t/s 1.3191 0.5499 0.6981 1.4735 0.4227 1.0043 0.7457 0.3162 0.9686

F3

Best 1.0758 × 104 1.0115 × 105 1.5685 × 104 8.2172 × 104 4.1250 × 103 5.9036 × 104 1.7009 × 105 1.8569 × 105 4.2823 × 104

Mean 1.6821 × 104 1.2081 × 105 2.5581 × 104 1.2506 × 105 7.8386 × 103 9.6063 × 104 4.0739 × 105 3.0116 × 105 7.0209 × 104

Std 4.1656 × 103 1.2735 × 104 5.4517 × 103 1.6097 × 104 3.0419 × 103 1.8156 × 104 4.7125 × 105 7.8054 × 104 1.2413 × 104

t/s 1.2789 0.5421 0.6841 1.4476 0.4117 1.0031 0.7484 0.3153 0.9506

F4

Best 4.2519 × 102 2.4904 × 103 4.5610 × 102 6.2646 × 102 4.3514 × 102 4.6919 × 102 2.7554 × 104 1.9394 × 103 4.9424 × 102

Mean 5.3706 × 102 4.8272 × 103 5.7271 × 102 7.1164 × 102 5.4328 × 102 5.4176 × 102 3.4065 × 104 3.3659 × 103 6.0163 × 102

Std 5.0131 × 101 1.6926 × 103 6.3866 × 101 5.4987 × 101 5.8681 × 101 5.4081 × 101 3.0100 × 103 1.0201 × 103 6.4254 × 101

t/s 1.3102 0.5484 0.6986 1.4721 0.4144 1.0050 0.7174 0.3167 0.9721

F5

Best 6.3470 × 102 8.1728 × 102 7.8157 × 102 6.9640 × 102 6.6152 × 102 6.7200 × 102 1.1420 × 103 9.5044 × 102 7.4991 × 102

Mean 7.0420 × 102 8.8962 × 102 8.3928 × 102 7.7338 × 102 7.2060 × 102 7.4679 × 102 1.2196 × 103 1.0318 × 103 8.0570 × 102

Std 2.4617 × 101 6.2626 × 101 2.5906 × 101 7.3438 × 101 3.0675 × 101 3.9268 × 101 2.6447 × 101 3.6682 × 101 4.1471 × 101

t/s 1.6195 0.6422 0.9172 1.8415 0.5044 1.2235 0.8332 0.4145 1.2695

F6

Best 6.0001 × 102 6.4045 × 102 6.4294 × 102 6.2989 × 102 6.0516 × 102 6.0292 × 102 7.0873 × 102 6.3419 × 102 6.0014 × 102

Mean 6.0007 × 102 6.5069 × 102 6.5210 × 102 6.6517 × 102 6.0941 × 102 6.3001 × 102 7.1215 × 102 6.5527 × 102 6.0024 × 102

Std 1.0173 × 10−1 6.1580 6.5428 1.7948 × 101 2.5177 1.2609 × 101 3.2831 9.6697 1.0243 × 10−1

t/s 2.4045 0.9125 1.5844 2.8976 0.7799 1.7327 1.1044 0.6792 2.1200

F7

Best 4.7088 1.2409 × 103 1.2282 × 103 1.0506 × 103 9.0785 × 102 1.0520 × 103 1.9982 × 103 1.3965 × 103 1.0778 × 103

Mean 1.0208 × 103 1.3925 × 103 1.4041 × 103 1.1450 × 103 9.7393 × 102 1.1542 × 103 2.0317 × 103 1.5786 × 103 1.2063 × 103

Std 2.1693 × 101 9.5878 × 101 1.1905 × 102 5.7074 × 101 4.1350 × 101 8.2664 × 101 2.8029 × 101 9.7949 × 101 1.0471 × 102

t/s 1.6413 0.6592 0.9722 1.9045 0.5224 1.2242 0.8429 0.4279 1.3043

F8

Best 9.4102 × 102 1.1263 × 103 9.9004 × 102 9.9615 × 102 9.5731 × 102 9.6844 × 102 1.4963 × 103 1.2370 × 103 1.0432 × 103

Mean 1.0037 × 103 1.2186 × 103 1.1517 × 103 1.0597 × 103 9.9854 × 102 1.0306 × 103 1.5498 × 103 1.3396 × 103 1.1041 × 103

Std 2.4672 × 101 6.7345 × 101 6.1649 × 101 7.2599 × 101 2.5994 × 101 4.8850 × 101 3.3376 × 101 5.0773 × 101 4.7526 × 101

t/s 1.6389 0.6638 0.9669 1.9055 0.5313 1.2234 0.8334 0.4262 1.2965

F9

Best 3.9955 × 103 1.1299 × 104 6.4469 × 103 7.0336 × 103 1.6926 × 103 6.1440 × 103 3.7591 × 104 1.2764 × 104 6.0161 × 103

Mean 5.9393 × 103 1.9390 × 104 1.0309 × 104 1.9781 × 104 2.7057 × 103 9.0932 × 103 4.2501 × 104 1.9099 × 104 9.5591 × 103

Std 1.3458 × 103 4.7790 × 103 2.2490 × 103 9.8544 × 103 9.5081 × 102 2.1662 × 103 2.7480 × 103 4.9928 × 103 2.2255 × 103

t/s 1.6325 0.6541 0.9749 2.0241 0.5948 1.3723 0.8833 0.4248 1.2922

F10

Best 5.3968 × 103 8.0744 × 103 6.4431 × 103 6.5572 × 103 5.7175 × 103 6.3415 × 103 1.5617 × 104 1.3458 × 104 6.0888 × 103

Mean 6.2244 × 103 1.0705 × 104 9.1619 × 103 1.3237 × 104 6.5286 × 103 7.2987 × 103 1.6333 × 104 1.5465 × 104 6.8626 × 103

Std 5.0021 × 102 2.4121 × 103 1.7483 × 103 3.2419 × 103 6.2035 × 102 6.0926 × 102 5.0176 × 102 6.7141 × 102 5.2770 × 102

t/s 1.8293 0.7182 1.1184 2.1437 0.5961 1.3444 0.9210 0.4836 1.4803
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Table 7. Cont.

IWKGJO GJO GTO WO MPA HMSWHO IGWO LSHADE ECWOA

F11

Best 1.2038 × 103 3.6411 × 103 1.2650 × 103 1.5105 × 103 1.2166 × 103 1.1924 × 103 2.0094 × 104 7.9961 × 103 1.2681 × 103

Mean 1.2614 × 103 7.2743 × 103 1.3206 × 103 1.8462 × 103 1.2624 × 103 1.3328 × 103 2.5647 × 104 1.6619 × 104 1.8272 × 103

Std 3.4663 × 101 2.5070 × 103 4.2685 × 101 3.4050 × 102 3.6797 × 101 1.1186 × 102 2.0784 × 103 6.1089 × 103 7.0021 × 102

t/s 1.4526 0.5900 0.8093 1.6572 0.4661 1.0954 0.7693 0.3607 1.1087

F12

Best 8.3072 × 106 2.0214 × 109 8.9842 × 105 2.6431 × 107 1.5012 × 106 6.7615 × 105 6.6204 × 1010 1.1082 × 109 3.3575 × 106

Mean 1.6988 × 107 8.5739 × 109 4.7225 × 106 9.5030 × 107 4.7154 × 106 2.4882 × 106 7.9638 × 1010 2.3986 × 109 1.0487 × 107

Std 7.7613 × 106 6.1587 × 109 4.1011 × 106 4.9503 × 107 2.4428 × 106 1.9673 × 106 7.8141 × 109 7.6171 × 108 5.2621 × 106

t/s 1.6569 0.6538 0.9556 1.8999 0.5276 1.2125 0.8323 0.4209 1.2753

F13

Best 1.1970 × 104 2.7781 × 108 5.4944 × 103 4.5000 × 104 4.6831 × 103 2.8218 × 103 2.5425 × 1010 7.3164 × 107 3.8136 × 104

Mean 3.5157 × 104 1.0414 × 109 1.5838 × 104 3.8995 × 105 9.7993 × 103 1.0179 × 104 4.9029 × 1010 3.5606 × 108 2.8642 × 105

Std 1.7324 × 104 1.3020 × 109 1.1401 × 104 3.8474 × 105 2.7257 × 103 5.7046 × 103 1.2246 × 1010 1.9336 × 108 4.7699 × 105

t/s 1.4720 0.6004 0.8357 1.6986 0.4778 1.1158 0.8100 0.3713 1.1366

F14

Best 7.0917 × 104 3.8689 × 105 2.4182 × 103 1.8100 × 105 1.5229 × 103 9.9157 × 103 6.8478 × 107 1.0460 × 105 4.8750 × 105

Mean 3.1436 × 105 1.5186 × 106 3.9588 × 104 1.2607 × 106 1.5533 × 103 1.4264 × 105 1.5211 × 108 2.6507 × 106 2.4403 × 106

Std 1.9094 × 105 1.3568 × 106 3.6145 × 104 9.0787 × 105 1.6202 × 101 1.3549 × 105 6.3052 × 107 2.9453 × 106 1.5618 × 106

t/s 1.7982 0.7087 1.0958 2.1291 0.5845 1.3400 0.9144 0.4773 1.4648

F15

Best 3.6090 × 103 3.8639 × 105 2.0134 × 103 3.2248 × 104 1.8178 × 103 1.8164 × 103 4.6091 × 109 6.8050 × 106 1.2698 × 104

Mean 1.9176 × 104 1.9539 × 108 1.2382 × 104 7.8327 × 104 2.0072 × 103 1.4458 × 104 7.7455 × 109 4.1004 × 107 3.3390 × 104

Std 5.4513 × 103 2.7259 × 108 8.8410 × 103 4.7077 × 104 1.1753 × 102 6.7220 × 103 2.6981 × 109 2.1198 × 107 3.2839 × 104

t/s 1.4191 0.5802 0.7846 1.6259 0.4630 1.0890 0.7905 0.3567 1.0866

F16

Best 2.2118 × 103 2.9800 × 103 3.0829 × 103 2.8314 × 103 2.3110 × 103 2.4807 × 103 9.4060 × 103 5.2187 × 103 3.1477 × 103

Mean 2.1209 × 103 3.7967 × 103 3.7032 × 103 4.0699 × 103 2.7595 × 103 3.0673 × 103 1.0534 × 104 5.8882 × 103 3.8333 × 103

Std 4.7649 × 102 5.1805 × 102 4.5914 × 102 1.0762 × 103 2.1864 × 102 3.0671 × 102 8.3614 × 102 3.6185 × 102 5.7287 × 102

t/s 1.5601 0.6319 0.8916 1.8001 0.5004 1.1692 0.8316 0.3942 1.2165

F17

Best 2.2317 × 103 2.8741 × 103 2.5077 × 103 2.8736 × 103 2.2389 × 103 2.2472 × 103 6.6602 × 103 3.5869 × 103 2.6908 × 103

Mean 2.5841 × 103 3.5782 × 103 3.4295 × 103 3.3409 × 103 2.6537 × 103 2.9058 × 103 1.0704 × 104 4.6799 × 103 3.3250 × 103

Std 2.2904 × 102 4.0659 × 102 4.2668 × 102 6.1293 × 102 2.3105 × 102 2.3846 × 102 3.5178 × 103 3.6121 × 102 2.6595 × 102

t/s 2.1308 0.8227 1.3607 2.5477 0.6961 1.5470 0.9957 0.5857 1.7761

F18

Best 2.1326 × 105 1.7472 × 106 4.2110 × 104 9.1501 × 105 2.1704 × 103 1.0993 × 105 7.1931 × 107 2.6043 × 106 5.5952 × 105

Mean 1.9983 × 106 1.3278 × 107 1.8078 × 105 3.7695 × 106 2.4129 × 103 5.6632 × 105 1.9728 × 108 1.6135 × 107 3.2605 × 106

Std 1.2979 × 106 1.7160 × 107 1.9156 × 105 3.4051 × 106 1.9042 × 102 3.3810 × 105 6.8037 × 107 1.1268 × 107 2.5309 × 106

t/s 1.5598 0.6313 0.8957 1.7794 0.5013 1.1830 0.8311 0.3926 1.2245

F19

Best 2.4754 × 103 1.0859 × 105 2.8628 × 103 1.0638 × 104 1.9943 × 103 1.6971 × 104 2.3915 × 109 4.8705 × 106 5.6209 × 103

Mean 2.1151 × 104 1.9724 × 108 1.3460 × 104 8.4600 × 104 2.0223 × 103 2.7769 × 104 4.8743 × 109 2.3098 × 107 2.2200 × 104

Std 1.4263 × 104 4.4687 × 108 1.1134 × 104 6.2239 × 104 1.7029 × 101 8.1173 × 103 1.4672 × 109 1.5489 × 107 1.1345 × 104

t/s 5.4085 1.8981 4.1073 6.9242 1.7828 3.7253 2.1136 1.7146 5.0861

F20

Best 2.3296 × 103 2.9282 × 103 2.6224 × 103 2.6361 × 103 2.3362 × 103 2.5543 × 103 3.9464 × 103 3.9828 × 103 2.7599 × 103

Mean 2.6351 × 103 3.3335 × 103 3.2302 × 103 3.6829 × 103 2.6519 × 103 2.9942 × 103 4.5547 × 103 4.5267 × 103 3.2948 × 103

Std 1.4464 × 102 3.9500 × 102 3.3315 × 102 6.5022 × 102 1.5138 × 102 2.4232 × 102 2.2185 × 102 2.4719 × 102 2.6653 × 102

t/s 2.2304 0.8564 1.4519 2.6785 0.7297 1.6130 1.0571 0.6237 1.8776

F21

Best 2.4047 × 103 2.6020 × 103 2.5386 × 103 2.4595 × 103 2.4093 × 103 2.4165 × 103 3.1658 × 103 2.7671 × 103 2.5250 × 103

Mean 2.4499 × 103 2.6932 × 103 2.6121 × 103 2.5331 × 103 2.4525 × 103 2.4822 × 103 3.2630 × 103 2.8366 × 103 2.6182 × 103

Std 2.0624 × 101 7.8858 × 101 4.2862 × 101 8.8153 × 101 2.0797 × 101 4.8060 × 101 4.7107 × 101 3.6335 × 101 6.1677 × 101

t/s 3.5360 1.2913 2.5302 4.3931 1.1468 2.4650 1.4890 1.0959 3.1554

F22

Best 7.1281 × 103 8.7209 × 103 7.9191 × 103 2.3980 × 103 2.3104 × 103 2.3032 × 103 1.7567 × 104 1.4765 × 104 7.6571 × 103

Mean 8.1193 × 103 1.2708 × 104 1.1057 × 104 1.3932 × 104 3.1585 × 103 9.0227 × 103 1.8221 × 104 1.7161 × 104 8.9307 × 103

Std 7.2834 × 102 2.6874 × 103 1.8606 × 103 4.5156 × 103 2.2289 × 103 1.9243 × 103 3.7787 × 102 9.1306 × 102 6.1042 × 102

t/s 3.8623 1.4046 2.8037 4.8571 1.2706 2.6990 1.5912 1.1719 3.4953

F23

Best 2.8053 × 103 3.1501 × 103 2.9703 × 103 2.9116 × 103 2.8145 × 103 2.8977 × 103 4.7036 × 103 3.2784 × 103 3.0192 × 103

Mean 2.8475 × 103 3.2380 × 103 3.2200 × 103 3.0226 × 103 2.8682 × 103 2.9815 × 103 5.0746 × 103 3.3691 × 103 3.1096 × 103

Std 3.2418 × 101 6.9694 × 101 1.3845 × 102 1.0913 × 102 3.4815 × 101 6.1647 × 101 2.1403 × 102 4.8520 × 101 5.3600 × 101

t/s 4.5318 1.6227 3.3197 5.7083 1.4784 3.1076 1.7968 1.3782 4.1751

F24

Best 2.9549 × 103 3.3245 × 103 3.1932 × 103 3.0474 × 103 2.9760 × 103 3.0535 × 103 4.9138 × 103 3.4048 × 103 3.4027 × 103

Mean 3.0304 × 103 3.4988 × 103 3.4016 × 103 3.1150 × 103 3.0322 × 103 3.1420 × 103 5.6254 × 103 3.4770 × 103 3.5678 × 103

Std 3.8042 × 101 1.2888 × 102 1.6726 × 102 4.0287 × 101 4.4358 × 101 6.1225 × 101 3.4403 × 102 5.0475 × 101 1.0344 × 102

t/s 6.7833 2.4603 5.0180 8.9431 2.3428 4.8707 2.6915 2.2053 6.4955

F25

Best 3.0002 × 103 4.2210 × 103 3.0013 × 103 3.1254 × 103 3.0313 × 103 3.0550 × 103 1.4066 × 104 3.9803 × 103 3.0131 × 103

Mean 3.0613 × 103 5.5218 × 103 3.0887 × 103 3.1922 × 103 3.0689 × 103 3.1096 × 103 1.5224 × 104 5.2904 × 103 3.0935 × 103

Std 2.2342 × 101 8.4142 × 102 3.5406 × 101 4.7673 × 101 2.2598 × 101 2.3423 × 101 6.2047 × 102 6.1220 × 102 3.6805 × 101

t/s 4.6631 1.6733 3.4719 5.9625 1.5371 3.2315 1.8659 1.4409 4.2996

F26

Best 2.9041 × 103 8.1794 × 103 3.3578 × 103 3.7144 × 103 2.9086 × 103 2.9131 × 103 1.6325 × 104 8.7666 × 103 6.1683 × 103

Mean 5.4481 × 103 9.3253 × 103 8.8962 × 103 4.6517 × 103 3.7680 × 103 3.4607 × 103 1.6964 × 104 1.0120 × 104 7.5403 × 103

Std 1.4052 × 103 9.0897 × 102 2.4725 × 103 1.6146 × 103 9.8881 × 102 1.4826 × 103 4.8056 × 102 6.5504 × 102 8.8361 × 102

t/s 5.5530 1.9554 4.1585 7.0937 1.8277 3.8485 2.1451 1.7258 5.1514

F27

Best 3.2738 × 103 3.7709 × 103 3.4017 × 103 3.4045 × 103 3.2809 × 103 3.3448 × 103 7.3864 × 103 3.8236 × 103 3.3767 × 103

Mean 3.3078 × 103 4.0655 × 103 3.8134 × 103 3.5217 × 103 3.3544 × 103 3.4974 × 103 8.3542 × 103 4.0512 × 103 3.5453 × 103

Std 7.1269 × 101 2.2359 × 102 2.6643 × 102 7.1674 × 101 4.5205 × 101 1.1223 × 102 5.4250 × 102 1.8233 × 102 1.0115 × 102

t/s 6.3660 2.2542 4.9064 8.2383 2.1249 4.3831 2.3978 2.0268 5.9839

F28

Best 3.2651 × 103 4.8408 × 103 3.3118 × 103 3.3721 × 103 3.3053 × 103 3.2902 × 103 1.0960 × 104 4.0359 × 103 3.2664 × 103

Mean 3.3143 × 103 5.5634 × 103 3.3618 × 103 3.5223 × 103 3.3383 × 103 3.3752 × 103 1.3068 × 104 6.1123 × 103 3.3440 × 103

Std 3.0613 × 101 4.6943 × 102 4.2438 × 101 8.3138 × 101 3.9390 × 101 5.3383 × 101 7.7813 × 102 8.4144 × 102 3.5218 × 101

t/s 5.7216 2.0239 4.3393 7.4185 1.8814 3.9100 2.2084 1.7891 5.3396

F29

Best 3.5441 × 103 4.9229 × 103 4.5204 × 103 3.8887 × 103 3.6547 × 103 3.7875 × 103 3.7405 × 104 5.9299 × 103 3.8408 × 103

Mean 4.2481 × 103 5.6041 × 103 5.4070 × 103 4.4201 × 103 4.0061 × 103 4.2100 × 103 1.0594 × 105 7.0568 × 103 4.5777 × 103

Std 2.7583 × 102 5.0197 × 102 7.1710 × 102 3.6797 × 102 3.0397 × 102 2.8625 × 102 1.0381 × 105 6.4330 × 102 3.8026 × 102

t/s 3.9074 1.4061 2.7650 4.8320 1.2665 2.7087 1.5773 1.1764 3.4684

F30

Best 6.2539 × 105 1.5538 × 108 6.3196 × 105 6.3756 × 106 1.1326 × 106 8.3592 × 105 6.5318 × 109 8.6310 × 107 7.5339 × 105

Mean 1.0934 × 106 4.3627 × 108 1.3104 × 106 1.0424 × 107 2.5348 × 106 1.2284 × 106 8.5402 × 109 2.4075 × 108 1.1211 × 106

Std 2.4110 × 105 2.7906 × 108 3.7166 × 105 2.6825 × 106 1.1377 × 106 3.4177 × 105 1.2812 × 109 8.4172 × 107 2.9649 × 105

t/s 7.2524 2.5370 5.5857 9.4007 2.4286 4.9251 2.6782 2.3090 6.8350

Significant values are in bold.
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Table 8 demonstrates that the results in 100 dimensions are nearly identical to those in
50 dimensions. Specifically, in the single-peak function, the optimal fitness value of the F1
function is slightly inferior to that of the ECWOA algorithm. However, the average fitness
value and standard deviation of the F1 function are superior to those of the other algorithms.
The F3 function demonstrates superior performance of the teasel MPA, HMSWHO, and
WO algorithms compared to other algorithms, respectively. The values of the F4, F5, F8,
and F10 functions in the basic multi-peak function are higher compared to other algorithms.
In function F6, the standard deviation is marginally inferior to ECWOA, respectively. In
function F7, the IWKGJO algorithm has a lower average fitness value compared to the WO
algorithm. Additionally, the standard deviation of the IWKGJO algorithm is slightly worse
than that of the original strategy. However, the standard deviation of the original algorithm
is better than that of all the comparative algorithms in this function. In the F9 function, the
optimal fitness value is marginally inferior to that of the MPA, while the standard deviation
is marginally inferior to that of GTO. The situation in the hybrid function is approximately
identical to that achieved for the 50 dimensions. In function F12, the obtained results are
inferior to those of HMSWHO and ECWOA, which rank third. The results achieved in
functions F13 and F19 are inferior only to HMSWHO, which holds the second position.
The results obtained in functions F14, F15, and F18 are ranked third, behind only MPA and
HMSWHO. The results achieved in functions F13 and F19 are inferior only to HMSWHO,
which holds the second position. The results obtained in functions F14, F15, and F18 are
ranked third, behind only MPA and HMSWHO. Within function F11, the ideal fitness value
surpasses all other algorithms, but the mean fitness value and standard deviation are only
inferior to MPA, which ranks second. The standard deviation of F20 is marginally higher
than MPA, while F16 exhibits no significant difference. In the context of the combined
functions, the IWKGJO algorithm retains its superiority. Specifically, in functions F23, F25,
F27, and F28, the algorithm consistently outperforms other algorithms, as seen by the
superior results displayed in the table. In functions F21, F24, and F29, the only parameter
that is inferior to MPA is the average fitness value, while the other parameters remain
outstanding. Within the context of function F22, the optimal fitness value is marginally
inferior to that of MPA. In function F26, the standard deviation is marginally inferior to
MPA. In function F30, both the ideal value and the average value are somewhat worse than
MPA, but still exhibit a significant advantage over other methods.

Table 8. Comparison of test function results of different CEC2017 algorithms (d = 100).

IWKGJO GJO GTO WO MPA HMSWHO IGWO LSHADE ECWOA

F1

Best 1.0328 × 106 1.1464 × 1011 4.0952 × 107 3.2592 × 109 1.1256 × 108 1.0836 × 108 9.0146 × 1010 2.4457 × 1011 9.7509 × 105

Mean 2.9702 × 106 1.3000 × 1011 1.1025 × 108 4.5338 × 109 2.0897 × 108 1.6468 × 109 1.1625 × 1011 2.6093 × 1011 7.7342 × 106

Std 1.3663 × 106 8.8126 × 109 5.7354 × 107 6.7577 × 108 6.4094 × 107 2.0068 × 109 1.6145 × 1010 7.5513 × 109 9.4625 × 106

t/s 3.8411 1.4116 2.3915 4.4278 1.1964 2.6394 1.7949 1.0218 3.0836

F3

Best 1.5378 × 105 2.7706 × 105 1.2209 × 105 3.0076 × 105 8.8854 × 104 2.6820 × 105 3.3888 × 105 3.8477 × 105 3.3565 × 105

Mean 2.0885 × 105 3.0246 × 105 1.4597 × 105 3.1961 × 105 1.1367 × 105 3.5367 × 104 3.6683 × 105 6.6406 × 105 4.7161 × 105

Std 2.7372 × 104 1.6198 × 104 1.3167 × 104 1.0559 × 104 1.6173 × 104 3.1176 × 105 3.8815 × 104 1.7248 × 105 1.0493 × 105

t/s 3.8386 1.4082 2.3795 4.4343 1.1968 2.6272 1.8006 1.0213 3.0976

F4

Best 7.0252 × 102 1.4473 × 104 9.5627 × 102 1.2104 × 103 7.3846 × 102 8.6656 × 102 9.0243 × 104 1.1703 × 104 7.3951 × 102

Mean 8.0525 × 102 1.8553 × 104 1.0696 × 103 1.5557 × 103 9.1730 × 102 1.0195 × 103 1.0185 × 105 1.9306 × 104 8.0627 × 102

Std 5.0282 × 101 3.9393 × 103 8.1954 × 101 1.6506 × 102 1.0977 × 102 9.3848 × 101 6.5493 × 103 3.8953 × 103 7.2703 × 101

t/s 3.9384 1.4373 2.4573 4.5721 1.2225 2.6644 1.8167 1.0571 3.2160

F5

Best 9.2271 × 102 1.3492 × 103 1.2680 × 103 1.1783 × 103 9.6927 × 102 1.2054 × 103 2.0756 × 103 1.6535 × 103 1.1339 × 103

Mean 1.0597 × 103 1.5300 × 103 1.3326 × 103 1.3366 × 103 1.1214 × 103 1.2766 × 103 2.1501 × 103 1.8107 × 103 1.2606 × 103

Std 4.2870 × 101 1.1938 × 102 4.3059 × 101 1.5660 × 102 1.0502 × 102 7.8213 × 101 8.6274 × 101 7.1994 × 101 5.7453 × 101

t/s 4.3417 1.6010 2.8543 5.1930 1.3911 3.0161 1.9879 1.2110 3.6721

F6

Best 6.0006 × 102 6.6105 × 102 6.5162 × 102 6.5025 × 102 6.1991 × 102 6.3592 × 102 7.1389 × 102 6.6255 × 102 6.1746 × 102

Mean 6.0119 × 102 6.7034 × 102 6.6218 × 102 6.8432 × 102 6.2868 × 102 6.5334 × 102 7.1688 × 102 6.8207 × 102 6.2411 × 102

Std 2.0490 9.0445 5.3307 2.3487 × 101 7.1319 8.6763 2.2880 7.2967 5.6138 × 10−1

t/s 5.9036 2.1113 4.1146 7.2466 1.8989 4.0827 2.5171 1.7076 5.2724

F7

Best 1.5049 × 103 2.6876 × 103 2.5909 × 103 2.2894 × 103 1.5904 × 103 1.8947 × 103 3.7427 × 103 3.0842 × 103 2.0339 × 103

Mean 1.8614 × 103 2.8219 × 103 2.9025 × 103 2.4685 × 103 1.7286 × 103 2.1872 × 103 4.0057 × 103 3.5504 × 103 2.5420 × 103

Std 1.2228 × 102 7.9665 × 101 1.8681 × 102 1.6785 × 102 1.0821 × 102 1.5073 × 102 9.6234 × 101 2.9631 × 102 3.3233 × 102

t/s 4.3658 1.6206 2.8907 5.3062 1.4159 3.0623 2.0211 1.2263 3.6874

F8

Best 1.2508 × 103 1.6211 × 103 1.5819 × 103 1.3873 × 103 1.2540 × 103 1.4012 × 103 2.5291 × 103 2.0320 × 103 1.5212 × 103

Mean 1.3573 × 103 1.8377 × 103 1.7497 × 103 1.6072 × 103 1.3875 × 103 1.5582 × 103 2.6178 × 103 2.1238 × 103 1.6782 × 103

Std 5.2782 × 101 1.0394 × 102 8.5322 × 101 8.1083 × 101 9.3035 × 101 7.9106 × 101 7.5434 × 101 6.2390 × 101 7.7992 × 101

t/s 4.4726 1.6580 2.9489 5.4159 1.4650 3.1256 2.0913 1.2723 3.8021
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F9

Best 1.5204 × 104 3.4759 × 104 1.9280 × 104 3.9495 × 104 1.3323 × 104 2.2834 × 104 7.9472 × 104 4.9151 × 104 1.9114 × 104

Mean 2.1076 × 104 5.8248 × 104 2.3298 × 104 7.2546 × 104 2.1683 × 104 3.1270 × 104 8.5873 × 104 6.8740 × 104 2.7667 × 104

Std 3.2460 × 103 1.2258 × 104 2.2447 × 103 1.4050 × 104 3.0181 × 103 3.6499 × 103 3.8457 × 103 9.9367 × 103 4.8167 × 103

t/s 5.9221 2.2908 3.8096 7.0280 1.8861 4.2501 2.6134 1.6684 5.3159

F10

Best 1.1836 × 104 1.8562 × 104 1.3098 × 104 1.7295 × 104 1.3390 × 104 1.6220 × 104 3.1812 × 104 2.9871 × 104 1.2592 × 104

Mean 1.3618 × 104 2.2968 × 104 1.6894 × 104 2.8792 × 104 1.5297 × 104 1.7901 × 104 3.3201 × 104 3.2692 × 104 1.5055 × 104

Std 9.3870 × 102 4.5977 × 103 3.9365 × 103 6.3876 × 103 1.0574 × 103 7.4009 × 102 7.2101 × 102 1.5308 × 103 1.4631 × 103

t/s 4.7258 1.7292 3.2137 5.6442 1.5165 3.2160 2.1005 1.3306 4.0181

F11

Best 3.0076 × 103 6.1280 × 104 4.2121 × 103 2.7487 × 104 3.6908 × 103 9.0535 × 103 1.7748 × 105 1.1418 × 105 1.3288 × 104

Mean 1.2794 × 104 8.8071 × 104 6.3398 × 103 3.8824 × 104 3.5790 × 103 2.0653 × 104 2.3805 × 105 2.4576 × 105 3.0247 × 104

Std 5.6085 × 103 1.8418 × 104 2.3601 × 103 7.8797 × 103 6.6160 × 102 1.1513 × 104 9.0793 × 104 7.9726 × 104 1.3023 × 104

t/s 4.0130 1.5121 2.6438 4.8892 1.3667 2.8956 2.0016 1.3474 4.0135

F12

Best 3.4317 × 107 1.7612 × 1010 2.7006 × 107 5.2690 × 108 4.4858 × 107 1.7856 × 107 1.6954 × 1011 1.6815 × 1010 2.0479 × 107

Mean 6.9921 × 107 4.8776 × 1010 8.0140 × 107 8.9722 × 108 1.8564 × 108 4.0634 × 107 1.9633 × 1011 2.6425 × 1010 4.9468 × 107

Std 2.4252 × 107 1.4116 × 1010 5.4916 × 107 2.1604 × 108 9.3404 × 107 1.5745 × 107 1.6429 × 1010 6.7589 × 109 1.6486 × 107

t/s 7.7358 2.6328 4.8208 9.1564 2.5862 5.5239 3.2911 2.3038 7.3141

F13

Best 1.4747 × 104 2.4097 × 109 1.0798 × 104 1.6671 × 105 3.2893 × 104 5.4984 × 103 3.4760 × 1010 1.0984 × 109 3.6621 × 104

Mean 2.3414 × 105 7.4919 × 109 3.2453 × 105 2.5089 × 107 5.1549 × 104 1.2039 × 104 4.6132 × 1010 2.5579 × 109 3.2325 × 105

Std 3.9318 × 105 3.2699 × 109 1.1746 × 106 6.2331 × 107 1.2435 × 104 4.5773 × 103 4.5208 × 109 8.8357 × 108 6.5978 × 105

t/s 4.1088 1.5549 2.7092 5.0133 1.3599 2.9496 2.0093 1.1770 3.5294

F14

Best 5.8481 × 105 3.0752 × 106 2.5355 × 105 2.1643 × 106 1.9806 × 103 2.4004 × 105 5.3114 × 107 3.0004 × 106 2.7850 × 106

Mean 2.6788 × 106 1.3635 × 107 4.3485 × 105 5.8203 × 106 2.1809 × 103 5.5254 × 105 1.4546 × 108 1.7232 × 107 5.4379 × 106

Std 1.5504 × 106 7.2555 × 106 1.9560 × 105 2.6091 × 106 1.6221 × 102 2.0562 × 105 5.7215 × 107 7.5498 × 106 1.9429 × 106

t/s 4.7755 1.7930 3.2624 5.9066 1.5747 3.3481 2.1989 1.3822 4.1669

F15

Best 7.0137 × 103 1.3942 × 108 4.1503 × 103 4.8203 × 104 1.2051 × 104 2.2918 × 103 1.7596 × 1010 2.3759 × 108 1.6052 × 104

Mean 1.3879 × 104 2.6814 × 109 7.7371 × 103 1.2856 × 105 2.0503 × 104 5.0075 × 103 2.4415 × 1010 4.7543 × 108 1.6357 × 105

Std 6.7577 × 103 2.6280 × 109 3.4509 × 103 1.5519 × 105 5.3763 × 103 4.6169 × 103 2.8800 × 109 2.1309 × 108 2.2057 × 105

t/s 4.1153 1.5539 2.7209 5.0310 1.3563 2.9270 2.0072 1.1546 3.5028

F16

Best 4.1718 × 103 6.9747 × 103 4.5891 × 103 5.0556 × 103 4.3310 × 103 4.5722 × 103 2.2012 × 104 9.8551 × 103 4.9488 × 103

Mean 5.4367 × 103 8.5797 × 103 5.9379 × 103 6.7837 × 103 5.8131 × 103 5.8502 × 103 2.4580 × 104 1.2240 × 104 6.3571 × 103

Std 5.3046 × 102 1.1075 × 103 7.6812 × 102 8.7144 × 102 5.7407 × 102 5.7968 × 102 1.4083 × 103 7.3481 × 102 7.2669 × 102

t/s 4.4036 1.6304 2.9272 5.3581 1.4481 3.1120 2.0991 1.2403 3.7715

F17

Best 3.8141 × 103 5.5048 × 103 4.8686 × 103 4.6060 × 103 3.8107 × 103 4.2266 × 103 2.6362 × 106 7.9828 × 103 4.7752 × 103

Mean 4.9269 × 103 1.1224 × 104 6.2389 × 103 5.5932 × 103 5.2872 × 103 5.3458 × 103 6.4367 × 106 9.4597 × 103 5.7344 × 103

Std 6.1868 × 102 7.5474 × 103 8.1725 × 102 5.1641 × 102 2.5891 × 102 4.3748 × 102 3.3589 × 106 1.1237 × 103 4.7807 × 102

t/s 5.4787 1.9677 3.8705 6.8168 1.7897 3.8106 2.4384 1.6001 4.8553

F18

Best 9.4962 × 105 3.1495 × 106 3.2852 × 105 2.9300 × 106 3.9328 × 104 7.1780 × 105 1.7819 × 108 5.6353 × 106 1.0328 × 106

Mean 3.5746 × 106 1.2378 × 107 7.2572 × 105 7.4111 × 106 7.8123 × 104 2.0247 × 106 3.2710 × 108 2.8956 × 107 4.4086 × 106

Std 1.6770 × 106 8.7547 × 106 3.3913 × 105 4.6649 × 106 2.8959 × 104 1.3166 × 106 1.0756 × 108 1.1669 × 107 2.3185 × 106

t/s 4.4907 1.6230 2.9608 5.4157 1.4489 3.0970 2.1069 1.2561 3.7853

F19

Best 5.8803 × 103 2.3574 × 108 2.7418 × 103 2.7621 × 105 8.4493 × 103 2.2282 × 103 1.8892 × 1010 1.7025 × 108 2.0123 × 104

Mean 2.5352 × 104 1.4158 × 109 9.9226 × 103 1.5670 × 106 4.7417 × 104 5.3697 × 103 2.3573 × 1010 5.1937 × 108 1.0729 × 105

Std 3.6883 × 104 1.4350 × 109 9.2389 × 103 1.3013 × 106 2.7199 × 104 2.9430 × 103 2.6930 × 109 2.7194 × 108 8.5920 × 104

t/s 12.3916 4.2793 9.4724 16.1395 4.0812 8.3335 4.7699 3.9768 11.8527

F20

Best 3.5102 × 103 5.0013 × 103 4.4622 × 103 4.4568 × 103 3.9825 × 103 4.2830 × 103 7.7923 × 103 7.5181 × 103 4.4813 × 103

Mean 4.7368 × 103 6.0160 × 103 5.2254 × 103 6.4504 × 103 4.7715 × 103 4.8884 × 103 8.4867 × 103 8.4636 × 103 5.5276 × 103

Std 4.7171 × 102 9.3157 × 102 6.4863 × 102 1.3789 × 103 2.7196 × 102 4.4065 × 102 3.0754 × 102 3.4312 × 102 6.3391 × 102

t/s 5.7108 2.0702 3.9915 7.0913 1.8721 4.0231 2.5549 1.7143 5.1034

F21

Best 2.7491 × 103 3.2831 × 103 3.0626 × 103 2.9508 × 103 2.8407 × 103 2.8380 × 103 4.7044 × 103 3.5064 × 103 2.9787 × 103

Mean 2.8993 × 103 3.4578 × 103 3.3241 × 103 3.0630 × 103 2.7113 × 103 3.0329 × 103 5.2231 × 103 3.7000 × 103 3.1991 × 103

Std 6.7525 × 101 1.1615 × 102 1.6406 × 102 1.2523 × 102 7.6296 × 101 1.1468 × 102 2.2509 × 102 6.9053 × 101 1.1995 × 102

t/s 11.2853 3.9329 8.6258 14.5870 3.7253 7.6213 4.3612 3.5679 10.6390

F22

Best 1.4706 × 104 2.1747 × 104 1.7122 × 104 2.1173 × 104 2.4077 × 103 1.8214 × 104 3.4997 × 104 3.2321 × 104 1.5585 × 104

Mean 1.6709 × 104 2.7760 × 104 2.1685 × 104 3.0173 × 104 1.7497 × 104 2.0738 × 104 3.6326 × 104 3.5870 × 104 1.7864 × 104

Std 1.0502 × 103 5.1501 × 103 2.5970 × 103 6.2967 × 103 4.2990 × 103 1.5652 × 103 1.1526 × 103 1.0500 × 103 1.3444 × 103

t/s 11.9621 4.1626 9.2919 15.4954 3.9517 8.0739 4.5633 3.7874 11.2156

F23

Best 3.1289 × 103 3.9940 × 103 3.8371 × 103 3.4007 × 103 3.1451 × 103 3.3018 × 103 7.3845 × 103 4.1557 × 103 3.2264 × 103

Mean 3.2435 × 103 4.3192 × 103 4.0723 × 103 3.5958 × 103 3.2704 × 103 3.6058 × 103 8.3627 × 103 4.4292 × 103 3.3341 × 103

Std 4.1727 × 101 1.9002 × 102 2.1326 × 102 1.3723 × 102 5.3526 × 101 1.4103 × 102 5.6612 × 102 1.3480 × 102 6.4360 × 101

t/s 15.1926 5.5650 12.7935 22.2219 5.7875 11.8548 6.4597 5.6356 16.3938

F24

Best 3.7121 × 103 4.9288 × 103 4.5541 × 103 3.9216 × 103 3.7656 × 103 3.8146 × 103 1.2819 × 104 5.0568 × 103 3.9351 × 103

Mean 4.0721 × 103 5.5242 × 103 4.8912 × 103 4.1406 × 103 3.7686 × 103 4.2280 × 103 1.3668 × 104 5.3300 × 103 4.1143 × 103

Std 9.5141 × 101 2.7871 × 102 2.5385 × 102 1.0905 × 102 1.0704 × 102 2.1226 × 102 4.7064 × 102 1.5014 × 102 1.0862 × 102

t/s 15.3368 5.2928 12.1025 20.1292 5.0871 10.4204 5.7957 4.9850 14.7719

F25

Best 3.3703 × 103 7.1010 × 103 3.5576 × 103 4.1541 × 103 3.5454 × 103 3.5503 × 103 2.5785 × 104 1.0844 × 104 3.4388 × 103

Mean 3.4659 × 103 1.0917 × 104 3.7129 × 103 4.3814 × 103 3.6742 × 103 3.6542 × 103 2.7099 × 104 1.3963 × 104 3.4874 × 103

Std 3.8636 × 101 1.3786 × 103 1.0013 × 102 1.6779 × 102 7.0170 × 101 1.0724 × 102 8.9908 × 102 1.7536 × 103 4.4924 × 101

t/s 16.2199 5.6225 12.7534 21.5116 5.3606 10.9005 6.0473 5.2539 15.3668

F26

Best 4.2482 × 103 2.3675 × 104 1.6922 × 104 8.5673 × 103 1.0347 × 104 4.5873 × 103 5.3226 × 104 2.1715 × 104 1.3437 × 104

Mean 1.2894 × 104 2.6205 × 104 2.3501 × 104 1.5935 × 104 1.3042 × 104 1.5902 × 104 5.5629 × 104 2.5357 × 104 1.7650 × 104

Std 8.7666 × 102 1.9928 × 103 2.8476 × 103 3.3081 × 103 5.9210 × 102 6.2693 × 103 2.8633 × 103 1.7195 × 103 3.4457 × 103

t/s 18.4209 6.3755 14.6249 24.1155 6.1177 12.4201 6.9180 6.0451 17.7302

F27

Best 3.4415 × 103 4.6112 × 103 3.6331 × 103 3.7372 × 103 3.4504 × 103 3.4969 × 103 1.4301 × 104 4.5779 × 103 3.5013 × 103

Mean 3.5507 × 103 5.2965 × 103 4.0863 × 103 3.8545 × 103 3.5561 × 103 3.6907 × 103 1.5975 × 104 5.3025 × 103 3.6725 × 103

Std 4.4152 × 101 4.8442 × 102 3.7591 × 102 1.0072 × 102 5.4205 × 101 1.1816 × 102 1.3819 × 103 3.0042 × 102 9.6210 × 101

t/s 21.6908 7.5655 17.0821 28.2063 7.2471 14.4803 7.7225 6.9533 20.6600

F28

Best 3.4311 × 103 1.2511 × 104 3.6413 × 103 4.1375 × 103 3.5947 × 103 3.6602 × 103 3.2926 × 104 1.2856 × 104 3.4807 × 103

Mean 3.5304 × 103 1.4895 × 104 3.7791 × 103 4.5742 × 103 3.7016 × 103 3.8729 × 103 3.4814 × 104 1.8798 × 104 3.5489 × 103

Std 2.8488 × 101 1.8064 × 103 1.0424 × 102 2.3463 × 102 7.5750 × 101 1.7185 × 102 1.0261 × 103 2.3601 × 103 4.4406 × 101

t/s 20.3126 7.0375 16.0974 26.7131 6.7057 13.6471 7.3563 6.5969 19.4686
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F29

Best 5.5609 × 103 1.0282 × 104 6.7047 × 103 7.0291 × 103 5.7472 × 103 6.1751 × 103 2.0970 × 105 1.2670 × 104 6.0744 × 103

Mean 6.7735 × 103 1.4408 × 104 8.1342 × 103 8.0338 × 103 6.7680 × 103 7.0021 × 103 6.0719 × 105 1.5696 × 104 7.0861 × 103

Std 4.1233 × 102 2.6989 × 103 7.8854 × 102 5.5954 × 102 4.5455 × 102 6.0298 × 102 2.2917 × 105 1.9861 × 103 6.4075 × 102

t/s 11.8714 4.1179 9.0858 15.3447 3.9481 8.1091 4.5869 3.8195 11.2354

F30

Best 2.1290 × 105 2.0930 × 109 5.9159 × 104 6.4714 × 106 9.8111 × 105 1.9687 × 104 3.6778 × 1010 6.4606 × 108 2.1974 × 105

Mean 3.3491 × 105 4.9291 × 109 3.9761 × 105 3.3182 × 107 2.4353 × 106 7.0768 × 104 4.2002 × 1010 1.4630 × 109 4.9313 × 105

Std 6.8108 × 104 2.6076 × 109 2.4141 × 105 1.6641 × 107 8.9803 × 105 9.8358 × 104 3.5515 × 109 4.7415 × 108 2.0895 × 105

t/s 18.8142 6.4678 14.8348 24.6204 6.2497 12.6758 6.8239 6.0993 18.0452

Significant values are in bold.

To summarize, there is minimal difference in the results achieved in 50 and 100 dimen-
sions. Both dimensions have their advantages in handling simple multi-peak and combined
functions. However, when it comes to single-peak and mixed functions, the MPA algorithm
only performs slightly better than the other dimensions. Hence, the function suggested in
this research exhibits superior search capabilities and is better suited for highly oscillatory
issues.

This paper presents convergence curve images in both 50 and 100 dimensions. Figure 3
demonstrates that, in terms of convergence accuracy, the IWKGJO algorithm performs
slightly worse than the MPA, LSHADE, and HMSWHO algorithms in functions F1, F8,
F12–F15, F24, F26, and F30. However, in the remaining functions, the IWKGJO algorithm
still maintains an advantage. The convergence speed of the IWKGJO algorithm in F4, F6,
and F21–F23 function images is clearly evident. While the IWKGJO algorithm does not
outperform MPA, HMSWHO, and LSHADE in terms of convergence speed, it still holds
a significant edge over the WO, GTO, and ECWOA algorithms, which are considered
better. Regarding stability, each function exhibits several inflection points, with the most
prominent ones observed in functions F8, F10, F12, F13, F15, F16, F19, F20–F22, and the F30
image. These functions demonstrate a remarkable capacity to escape local optima.
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In Figure 4, the convergence accuracy of the MPA, LSHADE, and HMSWHO algo-
rithms will be marginally inferior compared to the functions F1, F8, F12–F15, F21, F26,
and F30 images. Nevertheless, the IWKGJO algorithm fails to reach the optimal solution
in the functions F1, F3, F13, and F30, indicating the possibility of enhancing the accuracy
of convergence. Regarding convergence speed, the IWKGJO algorithm is significantly
slower than LSHADE. It only converges slower than MPA in functions F3, F14, F18, F19,
and F25. The convergence speed of pictures in functions F1, F4, F13, F15, F19, and F30 is
lower compared to that of HMSWHO. Regarding stability, the IWKGJO algorithm exhibits
significant volatility in the early stages of image iteration. At approximately 300 iterations,
numerous images experience a substantial leap, followed by a rapid convergence. This
observation suggests that the proposed algorithm possesses a robust capability to escape
local optima.

Figures 3 and 4, as well as Tables 7 and 8, provide a comprehensive analysis. The results
indicate that while the data and images obtained from the F1, F12–F15, and F18–F19 functions
are slightly inferior to those obtained from the MPA algorithm, the proposed algorithm still
outperforms other algorithms in the remaining functions. In summary, the proposed algorithm
demonstrates a significant advantage over many high-quality algorithms.

5.3. Wilcoxon Rank-Sum Test

The Wilcoxon rank-sum test is a non-parametric statistical test that takes into account
both the direction and amount of the difference. Its purpose is to determine if there is a
significant difference in the probability distribution of experimental data within a popu-
lation. This test is suitable for analyzing the distribution of flying pillowcases, allowing
the procedure to provide a more scientific representation of the algorithm’s optimization
performance compared to the mean value and standard deviation. This section presents a
comparison and analysis of the various dimensions of CEC2017 test results. The optimiza-
tion outcomes of GJO, GTO, WO, HMSWHO, IGWO, LSHADE, and ECWOA are evaluated
using the Wilcoxon rank-sum test according to the IWKGJO algorithm.

The results of the Wilcoxon rank-sum test and p-value computation are presented in
Tables 9 and 10. The judgment criterion for hypothesis testing is set at a significance level of
p = 5%. When the p-value is less than 5%, it is possible to observe a significant difference
between the two sets of samples. The symbols “+”, “=”, and “−” are used to denote the
relative performance of the IWKGJO algorithm in comparison to the comparison algorithm.
The obtained statistical and analytical findings are shown below.
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The data in Table 9 clearly demonstrate that IWKGJO outperforms both the original
method and the IGWO algorithm. However, IWKGJO performs slightly worse than GTO
in the F4 and F25 functions. Additionally, it is worse than WO in the F17, F24, and F26
functions. Furthermore, IWKGJO is also inferior to MPA in the F4, F8, F11, and F25
functions. The performance of the HMSWHO algorithm is marginally superior to that
of the F4, F11, F16, F17, F24, and F29 functions. The algorithm performs less effectively
than the LSHADE algorithm in the F4, F16, F20, F22, F27, and F30 functions. IWKGJO is
significantly inferior to ECWOA in functions F1, F18, F19, F25, and F30. However, it still
maintains an advantage over ECWOA in other functions.

The performance of the F4, F11, F16, F17, F24, and F29 functions is marginally inferior
based on the results of the rank-sum test comparing various dimensions; the IWKGJO
algorithm exhibits numerous advantages. However, it may somewhat underperform
in certain functions compared to the reference algorithm. Consequently, the statistical
outcomes typically outperform other algorithms and exhibit strong stability.

Table 10 demonstrates that in 100 dimensions, the IWKGJO method outperforms the
original algorithm, as well as the WO and IGWO algorithms, with notable distinctions.
IWKGJO performs slightly less effectively than GTO in functions F4 and F11. IWKGJO
is less effective than MPA in functions F5, F9, F19, F20, and F27. Additionally, IWKGJO
is inferior to HMSWHO in functions F9, F17, F20, and F29. Furthermore, IWKGJO per-
forms worse than LASHADE in functions F16 and F27. Lastly, IWKGJO is also inferior to
LASHADE in functions F9, F13, F18, F22, and F29. Consequently, IWKGJO is considered to
be of lower quality compared to the ECWOA algorithm. In general, however, it exhibits
superior performance compared to 50 dimensions, surpassing the other algorithms.
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5.3. Wilcoxon Rank-Sum Test 

The Wilcoxon rank-sum test is a non-parametric statistical test that takes into account 
both the direction and amount of the difference. Its purpose is to determine if there is a 
significant difference in the probability distribution of experimental data within a popu-
lation. This test is suitable for analyzing the distribution of flying pillowcases, allowing 
the procedure to provide a more scientific representation of the algorithm’s optimization 
performance compared to the mean value and standard deviation. This section presents a 
comparison and analysis of the various dimensions of CEC2017 test results. The optimi-
zation outcomes of GJO, GTO, WO, HMSWHO, IGWO, LSHADE, and ECWOA are eval-
uated using the Wilcoxon rank-sum test according to the IWKGJO algorithm. 

The results of the Wilcoxon rank-sum test and p-value computation are presented in 
Tables 9 and 10. The judgment criterion for hypothesis testing is set at a significance level 
of 𝑝 ൌ 5%. When the p-value is less than 5%, it is possible to observe a significant differ-
ence between the two sets of samples. The symbols “+”, “=”, and “−” are used to denote 
the relative performance of the IWKGJO algorithm in comparison to the comparison al-
gorithm. The obtained statistical and analytical findings are shown below. 
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Table 9. Results of Wilcoxon rank-sum test of CEC2017 test function (d = 50).

Function
D = 50

GJO GTO WO MPA HMSWHO IGWO LSHADE ECWOA

F1 3.3918 × 10−6 3.3918 × 10−6 3.3918 × 10−6 7.0162 × 10−3 3.3918 × 10−6 3.3918 × 10−6 3.3918 × 10−6 5.6145 × 10−1

F3 3.3918 × 10−6 1.1457 × 10−4 3.3918 × 10−6 1.3295 × 10−5 3.3918 × 10−6 3.3918 × 10−6 2.1337 × 10−2 3.3918 × 10−6

F4 3.3918 × 10−6 6.1970 × 10−2 3.3918 × 10−6 6.1867 × 10−1 8.3571 × 10−1 3.3918 × 10−6 2.8084 × 10−1 1.0122 × 10−2

F5 3.3918 × 10−6 3.3918 × 10−6 2.4626 × 10−3 2.4549 × 10−2 5.4521 × 10−3 3.3918 × 10−6 3.3918 × 10−6 7.4772 × 10−6

F6 3.3918 × 10−6 3.3918 × 10−6 3.3918 × 10−6 8.1340 × 10−5 4.0200 × 10−5 3.3918 × 10−6 4.1432 × 10−6 3.3918 × 10−6

F7 3.3918 × 10−6 3.3918 × 10−6 7.4772 × 10−6 1.8067 × 10−2 4.0200 × 10−5 3.3918 × 10−6 9.0734 × 10−6 1.0992 × 10−5

F8 3.3918 × 10−6 2.3290 × 10−5 2.2531 × 10−2 7.4002 × 10−1 1.7107 × 10−2 3.3918 × 10−6 3.3918 × 10−6 2.7983 × 10−5

F9 3.3918 × 10−6 1.6053 × 10−5 9.0734 × 10−6 9.0734 × 10−6 4.2247 × 10−4 3.3918 × 10−6 3.3918 × 10−6 2.6217 × 10−4

F10 3.3918 × 10−6 1.6053 × 10−5 7.4772 × 10−6 1.8441 × 10−2 8.1340 × 10−5 3.3918 × 10−6 2.9976 × 10−2 7.9403 × 10−3

F11 3.3918 × 10−6 1.6197 × 10−3 3.3918 × 10−6 5.8974 × 10−1 9.7091 × 10−2 3.3918 × 10−6 1.5846 × 10−2 1.9352 × 10−5

F12 3.3918 × 10−6 3.3568 × 10−5 5.0527 × 10−6 4.1432 × 10−6 3.3918 × 10−6 3.3918 × 10−6 3.3918 × 10−6 5.4521 × 10−3

F13 3.3918 × 10−6 7.8021 × 10−4 7.4772 × 10−6 6.1516 × 10−6 1.0992 × 10−5 3.3918 × 10−6 5.0527 × 10−6 6.8368 × 10−5

F14 4.0200 × 10−5 1.0992 × 10−5 1.0500 × 10−3 3.3918 × 10−6 7.9403 × 10−3 3.3918 × 10−6 3.3918 × 10−6 1.0992 × 10−5

F15 3.3918 × 10−6 3.1017 × 10−2 3.3918 × 10−6 3.3918 × 10−6 1.2822 × 10−2 3.3918 × 10−6 3.3918 × 10−6 2.7925 × 10−2

F16 1.6197 × 10−3 3.6906 × 10−3 4.7948 × 10−3 1.2822 × 10−2 5.8974 × 10−1 3.3918 × 10−6 8.1495 × 10−2 1.6197 × 10−3

F17 2.2289 × 10−4 4.7948 × 10−3 9.7091 × 10−2 3.2301 × 10−3 6.7830 × 10−1 3.3918 × 10−6 4.9369 × 10−4 4.2099 × 10−3

F18 1.1457 × 10−4 7.4772 × 10−6 1.2486 × 10−2 3.3918 × 10−6 9.6615 × 10−5 3.3918 × 10−6 3.3918 × 10−6 1.9851 × 10−1

F19 3.3918 × 10−6 1.5846 × 10−2 9.6615 × 10−5 3.3918 × 10−6 1.0574 × 10−2 3.3918 × 10−6 3.3918 × 10−6 8.0346 × 10−1

F20 1.0122 × 10−2 2.0191 × 10−2 7.9403 × 10−3 4.7948 × 10−3 6.1867 × 10−1 3.3918 × 10−6 7.4002 × 10−1 5.4521 × 10−3

F21 3.3918 × 10−6 5.0527 × 10−6 3.6150 × 10−2 1.3564 × 10−4 1.7107 × 10−2 3.3918 × 10−6 3.3918 × 10−6 1.0992 × 10−5

F22 7.4772 × 10−6 4.8063 × 10−5 8.1340 × 10−5 1.1457 × 10−4 2.2289 × 10−4 3.3918 × 10−6 8.6823 × 10−1 2.8226 × 10−3

F23 3.3918 × 10−6 6.1516 × 10−6 4.6487 × 10−2 2.3290 × 10−5 1.1499 × 10−2 3.3918 × 10−6 3.3918 × 10−6 5.0527 × 10−6

F24 3.3918 × 10−6 1.0992 × 10−5 5.8974 × 10−1 1.6053 × 10−5 8.3571 × 10−1 3.3918 × 10−6 3.3918 × 10−6 3.3918 × 10−6

F25 3.3918 × 10−6 5.6392 × 10−2 3.3918 × 10−6 8.3571 × 10−1 6.7090 × 10−4 3.3918 × 10−6 1.4397 × 10−2 7.4496 × 10−2

F26 3.3918 × 10−6 2.6217 × 10−4 7.4496 × 10−2 8.9720 × 10−3 2.2531 × 10−2 3.3918 × 10−6 5.4521 × 10−3 3.3568 × 10−5

F27 3.3918 × 10−6 1.9352 × 10−5 4.9369 × 10−4 4.2111 × 10−2 1.8067 × 10−2 3.3918 × 10−6 9.7091 × 10−2 4.2247 × 10−4

F28 3.3918 × 10−6 1.2152 × 10−3 4.1432 × 10−6 2.6275 × 10−2 3.6093 × 10−4 3.3918 × 10−6 1.5846 × 10−2 1.1401 × 10−2

F29 3.3918 × 10−6 7.4772 × 10−6 2.8084 × 10−2 3.1017 × 10−2 5.0691 × 10−1 3.3918 × 10−6 8.1340 × 10−5 7.0162 × 10−3

F30 3.3918 × 10−6 1.0574 × 10−2 3.3918 × 10−6 1.6053 × 10−5 3.4009 × 10−2 3.3918 × 10−6 5.8974 × 10−1 1.0000
+/=/− 29/0/0 27/0/2 26/0/3 25/0/4 22/0/7 29/0/0 23/0/6 24/0/5

Significant values are in bold.
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Table 10. Results of Wilcoxon rank-sum test of CEC2017 test function (d = 100).

Function
D = 100

GJO GTO WO MPA HMSWHO IGWO LSHADE ECWOA

F1 3.3918 × 10−6 7.7155 × 10−1 3.3918 × 10−6 1.3295 × 10−5 1.3295 × 10−5 3.3918 × 10−6 3.3918 × 10−6 3.3918 × 10−6

F3 1.3564 × 10−4 4.1432 × 10−6 2.7983 × 10−5 3.3918 × 10−6 1.1457 × 10−4 3.3918 × 10−6 1.4041 × 10−3 3.3918 × 10−6

F4 3.3918 × 10−6 5.0527 × 10−6 3.3918 × 10−6 2.2531 × 10−2 4.0200 × 10−5 3.3918 × 10−6 1.8655 × 10−3 1.5846 × 10−2

F5 3.3918 × 10−6 3.3918 × 10−6 1.3295 × 10−5 5.8974 × 10−1 1.3295 × 10−5 3.3918 × 10−6 6.1516 × 10−6 2.3290 × 10−5

F6 3.3918 × 10−6 3.3918 × 10−6 3.3918 × 10−6 1.0574 × 10−2 3.3918 × 10−6 3.3918 × 10−6 3.3918 × 10−6 3.3918 × 10−6

F7 3.3918 × 10−6 3.3918 × 10−6 3.3918 × 10−6 2.6217 × 10−4 2.6217 × 10−4 3.3918 × 10−6 1.6053 × 10−5 9.0734 × 10−6

F8 3.3918 × 10−6 3.3918 × 10−6 2.3290 × 10−5 9.6691 × 10−1 3.3568 × 10−5 3.3918 × 10−6 7.4772 × 10−6 4.1432 × 10−6

F9 7.8021 × 10−4 6.7090 × 10−4 4.8063 × 10−5 1.1457 × 10−4 7.4496 × 10−2 4.1432 × 10−6 3.3918 × 10−6 4.5530 × 10−1

F10 3.3918 × 10−6 2.0191 × 10−2 3.3918 × 10−6 3.4397 × 10−2 4.1432 × 10−6 3.3918 × 10−6 4.1432 × 10−6 1.2486 × 10−2

F11 3.3918 × 10−6 3.1951 × 10−1 3.3918 × 10−6 2.8226 × 10−3 1.3295 × 10−5 3.3918 × 10−6 2.0191 × 10−2 4.1432 × 10−6

F12 3.3918 × 10−6 1.1401 × 10−2 3.3918 × 10−6 4.7996 × 10−2 1.0992 × 10−5 3.3918 × 10−6 3.3918 × 10−6 2.7983 × 10−5

F13 3.3918 × 10−6 5.7371 × 10−5 1.0500 × 10−3 4.0200 × 10−5 3.3918 × 10−6 3.3918 × 10−6 3.3918 × 10−6 4.0679 × 10−1

F14 4.1432 × 10−6 7.4772 × 10−6 7.4772 × 10−6 3.3918 × 10−6 2.7983 × 10−5 3.3918 × 10−6 3.3918 × 10−6 7.4772 × 10−6

F15 3.3918 × 10−6 3.3918 × 10−6 1.8919 × 10−4 6.7090 × 10−4 3.3918 × 10−6 3.3918 × 10−6 3.3918 × 10−6 2.0191 × 10−2

F16 4.1432 × 10−6 7.7155 × 10−1 3.6906 × 10−3 1.3538 × 10−2 4.0679 × 10−2 3.3918 × 10−6 5.0691 × 10−1 4.1970 × 10−2

F17 1.3295 × 10−5 1.4041 × 10−3 4.7091 × 10−2 1.1457 × 10−4 7.4002 × 10−1 3.3918 × 10−6 4.7996 × 10−2 2.5103 × 10−2

F18 3.3568 × 10−5 3.3918 × 10−6 2.4626 × 10−3 3.3918 × 10−6 2.7925 × 10−2 3.3918 × 10−6 3.3918 × 10−6 1.5846 × 10−1

F19 3.3918 × 10−6 2.7983 × 10−5 3.3918 × 10−6 5.6145 × 10−1 3.3918 × 10−6 3.3918 × 10−6 3.3918 × 10−6 1.4397 × 10−2

F20 2.2289 × 10−4 3.1495 × 10−2 1.4041 × 10−3 2.1337 × 10−1 5.0691 × 10−1 3.3918 × 10−6 7.8021 × 10−4 2.4626 × 10−3

F21 3.3918 × 10−6 3.3918 × 10−6 6.7090 × 10−4 5.0527 × 10−6 4.7948 × 10−3 3.3918 × 10−6 3.3918 × 10−6 7.4772 × 10−6

F22 3.3918 × 10−6 4.8063 × 10−5 3.3918 × 10−6 1.4397 × 10−2 1.6053 × 10−5 3.3918 × 10−6 4.1432 × 10−6 2.4549 × 10−1

F23 3.3918 × 10−6 3.3918 × 10−6 3.3918 × 10−6 2.4549 × 10−2 6.1516 × 10−6 3.3918 × 10−6 9.0734 × 10−6 4.7948 × 10−3

F24 3.3918 × 10−6 3.3918 × 10−6 9.6615 × 10−5 8.1340 × 10−5 5.7598 × 10−4 3.3918 × 10−6 1.1457 × 10−4 2.6217 × 10−4

F25 3.3918 × 10−6 4.1432 × 10−6 3.3918 × 10−6 5.0527 × 10−6 5.0527 × 10−6 3.3918 × 10−6 2.5103 × 10−2 4.7948 × 10−3

F26 3.3918 × 10−6 3.3918 × 10−6 1.0500 × 10−3 5.7371 × 10−5 2.0191 × 10−2 3.3918 × 10−6 5.7371 × 10−5 1.3564 × 10−4

F27 3.3918 × 10−6 4.1432 × 10−6 3.3918 × 10−6 7.7155 × 10−1 9.0585 × 10−4 3.3918 × 10−6 9.0097 × 10−1 3.6093 × 10−4

F28 3.3918 × 10−6 3.3918 × 10−6 3.3918 × 10−6 3.3568 × 10−5 3.3918 × 10−6 3.3918 × 10−6 3.2301 × 10−3 2.7925 × 10−2

F29 3.3918 × 10−6 6.7090 × 10−4 1.6033 × 10−4 4.6487 × 10−2 1.0000 3.3918 × 10−6 2.8226 × 10−3 5.3383 × 10−1

F30 3.3918 × 10−6 6.7090 × 10−4 3.3918 × 10−6 7.4772 × 10−6 3.3918 × 10−6 3.3918 × 10−6 3.3918 × 10−6 2.4626 × 10−3

+/=/− 29/0/0 26/0/3 29/0/0 24/0/5 25/0/4 29/0/0 27/0/2 24/0/5

Significant values are in bold.

Overall, as the number of dimensions increases, IWKGJO’s performance in compar-
ison to GTO, WO, MPA, HMSWHO, and LSHADE algorithms improves progressively.
Nevertheless, the performance of MPA, HMSWHO, and ECWOA algorithms will improve
as the dimensionality increases. Out of all the functions, IWKGJO surpasses the com-
parison algorithm in terms of performance, while only a small number of functions are
marginally inferior to these algorithms. Regardless of the specific function used, both other
comparison algorithms and the original algorithm consistently outperform them in terms
of performance.

6. Practical Engineering Application

The objective function f
(→

x
)

is the fitness function in the engineering optimization

problem [29], where
→
x is the search space and distinct variables are the dimensions. The

objective function, constraints, and variable interval are all subject to equal or unequal
restrictions. There are other methods to convert algorithms into restricted optimization
problems, and the literature has extensively examined and assessed the CHT method [30].
These comprise penalty, separation of constraints and objectives, special operators, hybrid,
and repair-algorithms-based CHTs. The punishment function is the most basic and often
utilized. The penalty function serves to convert a constrained problem into one or multiple
unconstrained problems. During the solving process, any point that violates a constraint is
assigned a high value for the objective function, which is then replaced with a new value
in the subsequent iteration. This forces the extreme point of the unconstrained problem
to approach the feasible domain infinitely closely, until it ultimately converges to the
extreme point of the original constrained problem. Due to the widespread applicability and
usefulness of the penalty function, the suggested algorithm utilizes the penalty function to
handle restrictions.

This work selects three classical engineering instances, namely, the pressure vessel
design problem, the three-bar truss design problem, and the gear train design problem, in
order to assess the engineering application abilities of the suggested algorithm. This paper
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selects and compares five algorithms that are suitable for engineering applications: the
butterfly optimization algorithm (BOA) [31], the snake optimization algorithm (SO) [3], the
osprey optimization algorithm (OOA) [32], the sine and cosine algorithm (SCA) [33], and
the Harris eagle optimization algorithm (HHO) [34]. The maximum iteration and overall
size (search agent) are set to 1000 and 100, respectively.

6.1. Pressure Vessel Design Problem

The current research analyzes the actual architectural problem of the broadened
algorithm’s performance using an actual pressure vessel design optimization contention.
We chose the variables below to minimize manufacturing expenses and assure pressure
vessel function. The following four elements influence shell thickness (TS), head thickness
(Th), inner radius (R), and cylindrical section length (L) minus a head:

→
x = [x1 x2 x3 x4] = [TS Th R L]

Figure 5 is the schematic diagram of the pressure vessel.
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The aim of this exercise is to minimize the corresponding significance of the aim of
the function:

f
(→

x
)
= 0.6224x1x3x4 + 1.7781x2x2

3 + 3.1661x2
1x4 + 19.84x2

1x3

The preceding restrictions ought to be carried out:

g1

(→
x
)
= −x1 + 0.0193x3 ≤ 0

g2

(→
x
)
= −x3 + 0.00954x3 ≤ 0

g3

(→
x
)
= −πx2

3 −
4
3

πx3
3 + 1, 296, 000 ≤ 0

g4

(→
x
)
= x4 − 240 ≤ 0

The number associated with the span is where the topic is:

0 ≤ x1, x2 ≤ 99, 10 ≤ x3, x4 ≤ 200

The most appropriate divergence curve for the pressure-related problem design is
highlighted in Figure 6. IWKGJO converges with greater speed than the remaining algo-
rithms, as can be discovered. Table 11’s optimization outcomes regarding the pressure
vessel design problems demonstrate that IWKGJO generated the lowest number of opti-
mization results all around, indicating that the algorithm’s accuracy stood out more than
that of the other strategies. Because of this, it showcases the excellence of IWKGJO and
its engineering optimization competence, which can be employed to address real-world
problem areas in engineering.
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Table 11. Optimization results of pressure vessel design problems.

Algorithm TS(x1) Th(x2) R(x3) L(x4) Result

BOA 2.7332 11.5585 56.7424 57.0640 8.1439 × 104

SO 0.8598 0.4324 43.9128 155.3836 6.1419 × 103

OOA 5.8318 12.9359 53.4190 73.3678 1.2381 × 105

SCA 0.8250 0.5383 40.3831 200.0000 6.6846 × 103

HHO 1.0813 0.5132 53.7796 70.9268 6.7164 × 103

GJO 0.7788 0.4274 40.3268 200.0000 6.0143 × 103

IWKGJO 0.7799 0.3855 40.4089 198.7621 5.8883 × 103

Significant values are in bold.

6.2. Three-Bar Truss Design Problem

By tweaking two parameter variables along with matching the stress restrictions
on both edges of the truss member, the most important objective of the three-bar truss
design issue is to mitigate the whole weight of the entire structure. The parameters of the
two trusses are x1 and the parameters of the middle trusses are x2, as shown in the Figure 7.
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Function:
min f (x) =

(
2
√

2x1 + x2

)
× l

Constraint condition:

g1(x) =
√

2x1 + x2√
2x2

1 + 2x1x2
p − σ ≤ 0

g2(x) =
x2√

2x2
1 + 2x1x2

p − σ ≤ 0
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g3(x) =
1√

2x2 + x1
p − σ ≤ 0

0 ≤ xi ≤ 1, i = 1, 2

Argument:

l = 100 cm, p = 2 KN/
(

cm2
)

, σ = 2 KN/
(

cm2
)

The final score of IWKGJO is 263.8959, as Table 12 demonstrates. As shown in Figure 8,
IWKGJO converges faster than other algorithms. While contrasting the updated guidelines
weight in general against various algorithms and the original procedure, it is the minimum,
presuming that the stress boundaries on each of the sides of the truss members are main-
tained. The improvement’s performance and adaptability to initiatives in the real world
have therefore been verified.

Table 12. Optimization results of three-bar truss design problems.

Algorithm x1 x2 Result

BOA 0.7901 0.4447 267.9272
SO 0.7882 0.4095 263.8960

OOA 0.7491 0.5338 265.2504
SCA 0.7961 0.3891 264.0967
HHO 0.7931 0.3958 263.9103
GJO 0.7900 0.4046 263.8994

IWKGJO 0.7890 0.4074 263.8959
Significant values are in bold.
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6.3. Gear Train Design Problem

In the discipline of mechanical engineering, gearing train engineering problem-solving
is an unbounded combinatorial design task where the ultimate objective is to lessen
the gear proportion—which is a combination of the angle of rotation of the shaft that
goes into the machine to the angular speed of the resultant wheel—and thereby decrease
the individual communication cost of a gear train. The variable is the number of gears
Na(x1), Nb(x2), Nd(x3), and N f (x4) of the four gears, corresponding to the A, B, D, and F
gears in Figure 9 below, respectively.
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Function:

min f (x) =
(

1
6.931

− x2x3

x1x4

)2

Constraint condition:
12 ≤ xi ≤ 60, i = 1, 2, 3, 4

Table 13 reveals how IWKGJO picks up an outcome of 2.7009× 10−12. And in Figure 10,
IWKGJO reaches the optimal value first. When weighed against various alternatives and
the initially proposed approach, there is already a minimal transmission cost. It also clarifies
how IWKGJO can be used for architectural occasions and proves how well it works in gear
train layout.

Table 13. Optimization results of gear train design problems.

Algorithm Na(x1) Nb(x2) Nd(x3) Nf(x4) Result

BOA 21.5239 12.0000 12.0686 41.9815 1.3375 × 10−4

SO 53.1540 12.6016 30.4272 51.4634 2.3078 × 10−11

OOA 31.4092 12.4288 12.0956 32.1359 7.7786 × 10−7

SCA 42.8486 20.6894 13.3656 43.6433 9.9216 × 10−10

HHO 46.7179 12.5606 12.0000 23.2558 2.3576 × 10−9

GJO 34.0407 12.8914 20.3882 53.1689 2.3078 × 10−11

IWKGJO 48.5067 16.0298 18.7942 43.4418 2.7009 × 10−12

Significant values are in bold.
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7. Conclusions

To enhance the optimization performance of GJO, a refined golden jackal optimization
algorithm is suggested, utilizing a mixed strategy approach. The location update of the
enhanced development stage is employed to address the limitation of solely conducting
a local search in the algorithm’s later phase. Furthermore, the inclusion of the avoidance
of natural adversaries serves to enhance both search efficiency and optimization accuracy.
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Subsequently, the population’s variety was augmented by cross mutation. The crossbar
technique is implemented to enhance the global optimal solution, increase population
variety, and improve the capacity to avoid local optima. To assess the practicality and
resilience of the enhanced algorithm, we utilize 20 benchmark test functions to compare
it with the original approach. To further assess the benefits of the enhanced method,
simulation experiments are conducted using the CEC2017 test function set. Ultimately,
the engineering optimization capability of IWKGJO is demonstrated by the application of
pressure vessel design problems, three-bar truss design difficulties, and gear train design
challenges. This confirms that IWKGJO is suitable for solving real-world problems. The
results indicate that IWKGJO exhibits superior optimization performance and enhanced
convergence speed. The utilization of the golden jackal optimization technique has been
extensive in the field of engineering, with a future emphasis on addressing multi-objective,
nonlinear, and other intricate engineering optimization issues.
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