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Abstract: The Black–Scholes formula is an important formula for pricing a contingent claim in complete
financial markets. This formula can be obtained under the assumption that the investor’s strategy is
carried out according to a self-financing criterion; hence, there arise a set of self-financing portfolios
corresponding to different contingent claims. The natural questions are: If an investor invests according
to self-financing portfolios in the financial market, what are the maximal and minimal distributions of the
investor’s wealth on some specific interval at the terminal time? Furthermore, if such distributions exist,
how can the corresponding optimal portfolios be constructed? The present study applies the theory of
backward stochastic differential equations in order to obtain an affirmative answer to the above questions.
That is, the explicit formulations for the maximal and minimal distributions of wealth when adopting
self-financing strategies would be derived, and the corresponding optimal (self-financing) portfolios
would be constructed. Furthermore, this would verify the benefits of diversified portfolios in financial
markets: that is, do not put all your eggs in the same basket.
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1. Introduction

In the realm of financial markets, the continuous trading of securities such as stocks
forms the backbone of economic dynamics. This paper delves into a market comprising N
securities operating within a fixed time horizon. The price trajectories of these securities
are modeled by geometric Brownian motion: each is characterized by distinct drifts and
volatilities. We explore the scenario of an investor investing his/her initial endowment
into these N securities. The investor’s portfolio, Π(t) := (π1(t), · · · , πN(t)), represents
the proportion of wealth invested in each stock. The notation VΠ

t represents the investor’s
wealth trajectory under the self-financing portfolio strategy Π(t). In the context of modern
portfolio theory, investors aim to balance risk and reward, with risk-averse individuals
prioritizing predictability and lower risk over potentially higher but uncertain returns; see,
for example, [1–4]. This preference underscores the importance of understanding the risk
associated with a portfolio, particularly through the probability of the wealth process Vπ

T
falling within a specific interval.

Therefore, a natural question is: Can we obtain the maximal and minimal distributions
of the wealth process VΠ

T on any specific interval over the portfolio set Θ. If this is possible,
how can these two optimal portfolios, Π∗ and Π∗, be constructed to achieve the maximal
and minimal distributions, respectively? This is, for any given positive numbers a < b and
0 ≤ T < ∞,

P(VΠ∗
T ∈ [a, b]) = sup

Π∈Θ
P(VΠ

T ∈ [a, b]), (1)

and
P(VΠ∗

T ∈ [a, b]) = inf
Π∈Θ

P(VΠ
T ∈ [a, b]). (2)
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In the above proposed financial market model, the drift terms of the securities’ price
processes are not precisely known, introducing ambiguity into the market dynamics. This
ambiguity reflects the real-world uncertainty that investors face when the true probabilities
of future events are unclear or indeterminate. Unlike risk, which can be quantified and
managed through probabilistic models, ambiguity challenges traditional decision-making
frameworks and necessitates novel approaches to portfolio optimization.

The current study addresses this ambiguity by considering the range of possible drift
values within known bounds [µ, µ]. By doing so, we aim to characterize the maximal
and minimal distributions of the wealth process VΠ

T , which represent the best- and worst-
case scenarios for an investor’s wealth at time T given the uncertain drift terms. These
distributions provide valuable insights for investors, particularly those who are risk-averse,
as they offer a way to gauge the potential outcomes of their investment strategies in the
face of ambiguous market conditions.

The study on ambiguity models dates back to Frank [5], who explains how uncertainty
can create imperfect market structures. The portfolio optimization problem is studied
by Hansen and Sargent [6], who model the volatility of stocks as a stochastic process
such that the volatility of stocks is uncertain. Chen and Epstein [2] conceptualize the
theoretical framework of ambiguity, risk and asset return with respect to a set of ‘objective’
probability measures. Cvitanic, Ma and Zhang [7] study the problem of computing
hedging portfolios for options that may have discontinuous payoffs. Schied [8] uses risk
assessment operators to solve the portfolio maximization problem. A robust mean-variance
maximization problem is studied by Maccheroni, Marinacci and Ruffino [9]. Bielecki,
Jin, Pliska and Zhou [10] study continuous-time mean-variance portfolio selection with
bankruptcy prohibition. Jin and Zhou [11] study continuous-time portfolio selection under
ambiguity, in which the appreciation rates are only known to be in a certain convex closed
set, and the portfolios are allowed to be only based on historical stock prices. Bai, Ma and
Xing [12] study a class of optimal dividend and investment problems with the assumption
that the underlying reserve process follows the Sparre Andersen model. Hu, Jin and
Zhou [13] study portfolio selection in a complete, continuous time market, in which the
preference is dictated by the rank-dependent utility. Chen, Feng and Zhang [14] study
sampling-strategy-driven limit theorems that generate the maximum or minimum average
reward in the two-armed bandit problem.

To date, the above model has been widely studied. However, the explicit formulations
of the maximal and minimal distributions remain unknown. The present study introduces
a new method to investigate the above model. Specifically, based on the theory of backward
stochastic differential equations (BSDEs), a confirmed answer can be obtained for the above
question. That is, the explicit expression of Π∗ and Π∗ would be established, and the
closed form of P(VΠ∗

T ∈ [a, b]) and P(VΠ∗
T ∈ [a, b]) would be obtained. Actually, we shall

show that the maximal and minimal distributions are closely related to a BSDE that is
nonlinear in zt. Nonlinear BSDEs were initially studied by Pardoux and Peng [15]. It has
been widely recognized that BSDEs provide a useful framework for formulating problems
in various fields, such as financial mathematics, stochastic optimal control, and partial
differential equations (PDEs). For example, El Karoui, Peng and Quenez [16] study different
properties of BSDEs and their applications in finance, especially contingent claim valuation
and recursive utility (independently introduced by Duffie and Epstein [17]). Pardoux and
Peng [18] establish some estimates and regularity results for the solution of BSDEs and
provide a Feynman–Kac representation for solutions to some nonlinear parabolic PDEs.
Peng [19] obtain the general stochastic maximum principle through the theory of BSDEs.
Yong [20] discusses the solvability of BSDEs with possibly unbounded coefficients and
their applications in a Black–Scholes type security market with unbounded risk premium
processes and/or interest rates. Chen and Epstein [21] study a central limit theorem for a
sequence of random variables with a mean uncertainty, and it was revealed that the limit is
defined by a BSDE, which can be interpreted as modeling an ambiguous continuous-time
random walk.
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Although BSDEs have been used in various problems, this method still has some
limitations since the properties of zt and the explicit solution of general nonlinear BSDEs
cannot be easily established. For the zt part, Chen, Kupperger and Wei [22] obtain an
interesting comonotonic theorem of zt for a nonlinear but special generator. Although it is
difficult to obtain the explicit formulations for the solution of a general nonlinear BSDE,
Chen, Liu, Qian and Xu [23] obtain explicit solutions to an interesting class of nonlinear
BSDEs, which is the k-ignorance model that arose from modeling the ambiguity of asset
pricing (e.g., Chen and Epstein [2]).

Motivated by these above results, the present paper uses BSDEs to study the optimal
investment problem. The main ideas are as follows: First, the correlation between the
maximal distribution sup

Π∈Θ
P(VΠ

T ∈ [a, b]) and the solution for a special kind of nonlinear

BSDE (Theorem 1) is established. Second, through the formulation of the BSDE, the
corresponding optimal portfolio is constructed (Theorem 2). Third, after obtaining the
explicit solution for the derived BSDE, the maximal distribution is explicitly computed
(Theorem 4). Similarly, the minimal distribution inf

Π∈Θ
P(VΠ

T ∈ [a, b]) and the corresponding

optimal portfolio are similarly studied. For wider applications, a general utility function
φ including the indicator function 1[a,b] is considered (Theorem 3). From the explicit
formulations of the optimal strategy and the optimal distribution, it can easily be observed
that diversified portfolios with two stocks would be better than portfolios with only
one stock.

The present study is organized as follows. Section 2 presents the definition of maximal
and minimal distributions and some basic results for the BSDEs used for the study. Section 3
presents the explicit representations of optimal portfolios Π∗ and Π∗, which correspond
to the maximal and minimal distributions, respectively. The explicit expressions for the
maximal and minimal distributions and a general utility function case are presented
in Section 4. The maximal distribution is applied to explain the benefits of diversified
portfolios in Section 5.

2. Preliminaries

In this section, some notations and lemmas are provided. Let (Ω,F ,P) refer to the
probability space, (Bt)t≥0 refer to the standard Brownian motion on this probability space,
and (Ft)t≥0 refer to the σ-filtration generated by the Brownian motion, which is augmented
by all P-null sets N (P). That is, Ft = σ{Bs; 0 ≤ s ≤ t} ∨N (P). Let L2(Ω,FT ,P) refer to the
set of all FT-measurable and square-integrable random variables, S(0, T;R) refer to the set
of all real-valued Ft-adapted processes with E

[
supt∈[0,T] |yt|2

]
< +∞, and M(0, T;R) refer

to the set of all Ft-progressively measurable real-valued processes with E
[∫ T

0 |zt|2dt
]
< ∞.

Throughout the study, 1A represents the indicator function on set A, EP[·] denotes the
expectation under probability measure P, and the sign function sgn(x) is given by

sgn(x) =

{
1, x > 0,
−1, x ≤ 0.

The definition of a maximal distribution is initially given. The minimal distribution is
similarly defined.

Definition 1 (Maximal distribution). Let Xθ refer to the family of random variables over a given
index set Θ. The maximal distribution of Xθ over the set Θ is denoted by the following:

sup
θ∈Θ

P
(

Xθ ∈ [a, b]
)

, for all a, b ∈ R+.
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We now introduce the model of our study, which is set within a finite time horizon
0 ≤ T < ∞. The price dynamics of the securities are governed by the following system of
stochastic differential equations (SDEs):{

dSi(t) = µi Si(t)dt + σi Si(t)dBt,
Si(0) = xi, i = 1, 2, · · · , N,

(3)

where µi represents the drift, σi > 0 is the volatility, xi is the initial price, and Bt is a
Brownian motion within the probability space (Ω,F ,P). A feature of our model is the
ambiguity of the exact values of µi, with only their maximum and minimum known. For
simplicity, we only consider the case N = 2 and xi = 1 for i = 1, 2. This simplification
does not detract from the generality of our results, which can be extended to scenarios with
N > 2.

We explore the scenario of an investor investing his/her initial endowment into two
stocks. The investor’s portfolio, Π(t) := (π(t), 1 − π(t)), represents the proportion of
wealth invested in each stock. The evolution of the investor’s wealth, Vπ

t , is governed by
the stochastic differential equation:{

dVΠ
t = VΠ

t [π(t)µ1 + (1 − π(t))µ2]dt + VΠ
t [π(t)σ1 + (1 − π(t))σ2]dBt, t ∈ [0, T],

VΠ
0 = 1.

(4)

The set of all possible self-financing portfolios, Θ, is defined as:

Θ :=
{

Π(t) = (π(t), 1 − π(t)) : π(t) ∈ [ρ, ρ] is a predictable process
}

,

where ρ, ρ ∈ [0, 1] refer to two fixed numbers that represent the constraints on the investment
proportion of these two stocks.

At the end of this section, nonlinear BSDEs are briefly introduced, which were initially
investigated in [15]:

yt = ξ +
∫ T

t
g(ys, zs)ds −

∫ T

t
zsdBs. (5)

Lemma 1 ([15]). Assume that g : R2 → R is uniformly Lipschitz continuous. Hence, for any
ξ ∈ L2(Ω,FT ,P) and T > 0, the BSDE (5) has a unique pair of solution (y, z) ∈ S(0, T;R)×
M(0, T;R).

Usually, it is difficult to obtain the closed form for the solution of the BSDE (5) when
g is nonlinear. Interestingly, as shown in the following lemma, for cases g(z) = k|z| and
ξ = φ(BT), the following BSDE has a pair of explicit solutions:

Yt = φ(BT) +
∫ T

t
k|Zs|ds −

∫ T

t
ZsdBs, (6)

where φ satisfies the following assumption:

Hypothesis 1. There exists some c ∈ R such that φ is symmetric on c. That is, φ(c − x) =
φ(c + x) for all x ∈ R.

Lemma 2 ([23]). Assume that φ ∈ C3(R) satisfies (H.1) for some c ∈ R, and φ(i) (where
i = 0, 1, 2, 3) have, at most, polynomial growth. Then BSDE (6) has a pair of explicit solutions

Yt = H(Bt), Zt = ∂hH(Bt),

with H defined as follows:
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(i) If φ′ ≥ 0 and φ′ ̸≡ 0 on (c, ∞), then

H(h) = e−
1
2 k2(T−t)

∫
R

∫
y≥0

φ(x + h)ek|x−c+h|−k|c−h|−kyP(BT−t ∈ dx, Lc−h
T−t ∈ dy);

(ii) If φ′ ≤ 0 and φ′ ̸≡ 0 on (c, ∞), then

H(h) = e−
1
2 k2(T−t)

∫
R

∫
y≥0

φ(x + h)e−k|x−c+h|+k|c−h|+kyP(BT−t ∈ dx, Lc−h
T−t ∈ dy),

where P(Bt ∈ dx, Lℓ
t ∈ dy) is the joint distribution of Bt and its local time Lℓ

t with respect to ℓ and
is given by

P(Bt ∈ dx, Lℓ
t ∈ dy)

=
1√

2πt3
(y + |x − ℓ|+ |ℓ|) exp

{
−(y + |x − ℓ|+ |ℓ|)2

2t

}
· 1{y>0}dxdy

+
1√
2πt

[
exp

{
− x2

2t

}
− exp

{
− (|x − ℓ|+ |ℓ|)2

2t

}]
· 1{y=0}dxdy. (7)

3. Explicit Representation of Optimal Portfolios

For simplicity, in the following, we will suppress the time variable t in π(t) when
there is no confusion. This section provides the optimal portfolios Π∗ = (π∗, 1 − π∗) and
Π∗ = (π∗, 1 − π∗) such that

P(VΠ∗
T ∈ [a, b]) = sup

Π∈Θ
P(VΠ

T ∈ [a, b]) = sup
Π∈Θ

P(log VΠ
T ∈ [log a, log b]),

and
P(VΠ∗

T ∈ [a, b]) = inf
Π∈Θ

P(VΠ
T ∈ [a, b]) = inf

Π∈Θ
P(log VΠ

T ∈ [log a, log b]).

Moreover, in the following it is assumed that σ1 = σ2 = σ and x = 1. Then, the wealth
process takes the following form:{

dVΠ
t = VΠ

t [Π(t)µ1 + (1 − Π(t))µ2]dt + σVΠ
t dBt,

VΠ
0 = 1, t ∈ (0, T].

(8)

Denote
µ(t) := π(t)

(
µ1 −

1
2

σ2
)
+ (1 − π(t))

(
µ2 −

1
2

σ2
)

.

Similarly, µ∗(t) and µ∗(t) are denoted corresponding to Π∗ and Π∗, respectively. In order
to study the optimal portfolios, the following result needs to be initially obtained.

Theorem 1. Suppose that VΠ
t is the wealth process defined in (8) with σ1 = σ2 = σ, and

Π(t) = (π(t), 1 − π(t)) is the related portfolio. Assume that φ(σBT) ∈ L2(Ω,FT ,P). Then

(1) sup
Π∈Θ

E
[
φ
(
log VΠ

T
)]

is the value of the solution Yt of the following BSDE at t = 0:

Yt = φ(σBT) +
∫ T

t

(µ

σ
Z+

s −
µ

σ
Z−

s

)
ds −

∫ T

t
ZsdBs, (9)

(2) inf
Π∈Θ

E
[
φ
(
log VΠ

T
)]

is the value of the solution yt of the following BSDE at t = 0:

yt = φ(σBT) +
∫ T

t

(µ

σ
z+s − µ

σ
z−s
)

ds −
∫ T

t
zsdBs, (10)
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where

µ =
[ρ − ρ

2
sgn(µ1 − µ2) +

ρ + ρ

2

]
(µ1 − µ2) + µ2 −

1
2

σ2,

µ =
[ρ − ρ

2
sgn(µ1 − µ2) +

ρ + ρ

2

]
(µ1 − µ2) + µ2 −

1
2

σ2,

and ρ̄, ρ ∈ [0, 1] are the upper bound and lower bound, respectively, of π(t).

Proof. Note that
d log VΠ

t = µ(t)dt + σdBt, log VΠ
0 = 0.

Let H be the set of {Ft}-progressively measurable processes θs, 0 ≤ s ≤ T taking values in
[µ, µ]. Then, from

µ(t) = π(t)
(

µ1 −
1
2

σ2
)
+ (1 − π(t))

(
µ2 −

1
2

σ2
)

,

we have
Π(t) ∈ Θ ⇐⇒ µ(t) ∈ H.

Therefore,

sup
Π∈Θ

E
[

φ
(

log VΠ
T

)]
= sup

Π∈Θ
E
[

φ
(

σBT +
∫ T

0
π(s)

(
µ1 −

1
2

σ2
)
+ (1 − π(s))

(
µ2 −

1
2

σ2
)

ds
)]

= sup
µ∈H

E
[

φ
(

σBT +
∫ T

0
µ(s)ds

)]
.

(11)
Let (Yt, Zt) be the solution of BSDE (9). Define

as =
µ

σ
1Zs>0 +

µ

σ
1Zs≤0, and B̃s = Bs −

∫ s

0
ardr. (12)

By Girsanov’s theorem (see for example [24]), we know B̃s is a Brownian motion under Q, where

dQ
dP

∣∣∣
Ft

= exp
( ∫ t

0
ardBr −

1
2

∫ t

0
a2

r dr
)

. (13)

Therefore,

Yt =φ(σBT) +
∫ T

t

(µ

σ
Z+

s −
µ

σ
Z−

s

)
ds −

∫ T

t
ZsdBs

=φ(σBT)−
∫ T

t
ZsdB̃s

=φ
(

σB̃T + σ
∫ T

0
ardr

)
−
∫ T

t
ZsdB̃s.

Hence,

Y0 = EQ
[

φ
(

σB̃T + σ
∫ T

0
ardr

)]
≤ sup

µ∈H
EQ
[

φ
(

σB̃T +
∫ T

0
µ(r)dr

)]
. (14)

For any σθs ∈ H, consider the following BSDE:

Yθ
t = φ(σBT) +

∫ T

t
θsZθ

s ds −
∫ T

t
Zθ

s dBs. (15)
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Define Bθ
s = Bs −

∫ s
0 θrdr. Then Bθ

s is a Brownian motion under Pθ , where

dPθ

dP

∣∣∣
Ft

= exp
( ∫ t

0
θrdBr −

1
2

∫ t

0
θ2

r dr
)

.

Thus,

Yθ
t = φ(σBT) +

∫ T

t
θsZθ

s ds −
∫ T

t
Zθ

s dBs = φ
(

σBθ
T + σ

∫ T

0
θrdr

)
−
∫ T

t
Zθ

s dBθ
s .

Hence,

Yθ
0 = EPθ

[
φ
(

σBθ
T + σ

∫ T

0
θrdr

)]
.

It follows from the comparison theorem of BSDE (e.g., [16]) that

Yθ
0 ≤ Y0.

Consequently,

sup
θ∈H

EPθ

[
φ
(

σBθ
T +

∫ T

0
θrdr

)]
≤ Y0. (16)

Note

sup
θ∈H

EPθ

[
φ
(

σBθ
T +

∫ T

0
θrdr

)]
= sup

θ∈H
EP
[

φ
(

σBT +
∫ T

0
θrdr

)]
= sup

µ∈H
EQ
[

φ
(

σB̃T +
∫ T

0
µ(r)dr

)]
.

Combining (11), (14) and (16), we have

Y0 = sup
Π∈Θ

E[φ(log Vπ
T )].

Similarly, part (2) of Theorem 1 can be proved.

Now, we can give the main result of this section, which is about the optimal portfolios.

Theorem 2. The optimal portfolios Π∗ = (π∗, 1 − π∗) and Π∗ = (π∗, 1 − π∗) defined by (1)
and (2) are given as follows: For t ∈ [0, T],

π∗(t) =
ρ + ρ

2
+

(ρ − ρ)sgn(µ1 − µ2)

2
sgn
(
− Rt +

log(ab)
2σ

−
µ + µ

2σ
(T − t)

)

=


ρ + ρ

2
+

ρ − ρ

2
sgn
(
− Rt +

log(ab)
2σ

−
µ + µ

2σ
(T − t)

)
, µ1 > µ2,

ρ + ρ

2
−

ρ − ρ

2
sgn
(
− Rt +

log(ab)
2σ

−
µ + µ

2σ
(T − t)

)
, µ1 ≤ µ2.

(17)

and

π∗(t) =
ρ + ρ

2
+

(ρ − ρ)sgn(µ1 − µ2)

2
sgn
(
− Rt +

log(ab)
2σ

−
µ + µ

2σ
(T − t)

)

=


ρ + ρ

2
+

ρ − ρ

2
sgn
(
− Rt +

log(ab)
2σ

−
µ + µ

2σ
(T − t)

)
, µ1 > µ2,

ρ + ρ

2
−

ρ − ρ

2
sgn
(
− Rt +

log(ab)
2σ

−
µ + µ

2σ
(T − t)

)
, µ1 ≤ µ2.

(18)
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where

dRt =
[µ − µ

2σ
sgn
(
− Rt +

log(ab)
2σ

−
µ + µ

2σ
(T − t)

)
+

µ + µ

2σ

]
dt + dBt, R0 = 0,

and

dRt =
[µ − µ

2σ
sgn
(
− Rt +

log(ab)
2σ

−
µ + µ

2σ
(T − t)

)
+

µ + µ

2σ

]
dt + dBt, R0 = 0.

In this case,
d
( log VΠ∗

t
σ

)
=
[
π∗(t)

(
µ1 −

1
2

σ2
)
+ (1 − π∗(t))

(
µ2 −

1
2

σ2
)]

dt + dBt

=
[µ − µ

2σ
sgn
(
− Rt +

log ab
2σ

−
µ + µ

2σ
(T − t)

)
+

µ + µ

2σ

]
dt + dBt,

log VΠ∗
0 = 0,

and 
d
( log VΠ∗

t
σ

)
=
[
π∗(t)

(
µ1 −

1
2

σ2
)
+ (1 − π∗(t))

(
µ2 −

1
2

σ2
)]

dt + dBt

=
[µ − µ

2σ
sgn
(
− Rt +

log ab
2σ

−
µ + µ

2σ
(T − t)

)
+

µ + µ

2σ

]
dt + dBt,

log VΠ∗
0 = 0.

That is, eσRt is the wealth at time t with respect to Π∗ = (π∗, 1 − π∗), and eσRt is the wealth at
time t with respect to Π∗ = (π∗, 1 − π∗)

Proof. By Theorem 1, we have

sup
Π∈Θ

P(VΠ
T ∈ [a, b]) = sup

Π∈Θ
P(log VΠ

T ∈ [log a, log b]) = Y0,

where

Yt = 1[log a,log b](σBT) +
∫ T

t

(µ

σ
Z+

s −
µ

σ
Z−

s

)
ds −

∫ T

t
ZsdBs,

and 1[log a,log b](·) is the indicator function on [log a, log b]. Moreover,

Y0 = EQ
[
1[log a,log b]

(
σB̃T + σ

∫ T

0
asds

)]
,

where as and Q are given by (12) and (13), respectively. Define B̂t = Bt −
µ+µ

2σ t. We know
from Girsanov’s theorem that B̂t is a Brownian motion under P̂ with

dP̂
dP

∣∣∣
Ft

= exp
{

µ + µ

2σ
Bt −

1
2

∣∣∣µ + µ

2σ

∣∣∣2t
}

,

and

Yt =1[log a,log b](σBT) +
∫ T

t

(µ

σ
Z+

s −
µ

σ
Z−

s

)
ds −

∫ T

t
ZsdBs

=1
[

log a
σ − µ+µ

2σ T, log b
σ − µ+µ

2σ T]
(B̂T) +

∫ T

t

µ − µ

2σ
|Zs|ds −

∫ T

t
ZsdB̂s.



Mathematics 2024, 12, 1503 9 of 18

It follows from ([23] Corollary 6) that

sgn(−Zs) = sgn
(

B̂s −
log(ab)

2σ
+

µ + µ

2σ
T
)
= sgn

(
Bs −

log(ab)
2σ

+
µ + µ

2σ
(T − s)

)
.

Therefore,

Y0 = EP̃

[
1[log a,log b]

(
σB̃T +

∫ T

0

[µ − µ

2
sgn
(
− Bs +

log(ab)
2σ

−
µ + µ

2σ
(T − s)

)
+

µ + µ

2

]
ds
)]

.

Define

dRt =
[µ − µ

2σ
sgn
(
− Rt +

log(ab)
2σ

−
µ + µ

2σ
(T − t)

)
+

µ + µ

2σ

]
dt + dBt, R0 = 0.

We have

Y0 = EP
[
1[log a,log b]

(
σBT +

∫ T

0

[µ − µ

2
sgn
(
− Rs +

log(ab)
2σ

−
µ + µ

2σ
(T − s)

)
+

µ + µ

2

]
ds
)]

.

Since

sup
Π∈Θ

EP[1[log a,log b](log Vπ
T )]

= sup
µ∈H

EP
[
1[log a,log b]

(
σBT +

∫ T

0
µ(t)dt

)]
=EP

[
1[log a,log b]

(
σBT +

∫ T

0

[µ − µ

2
sgn
(
− Rt +

log(ab)
2σ

−
µ + µ

2σ
(T − t)

)
+

µ + µ

2

]
dt
)]

,

and sup
Π∈Θ

E
[
φ
(
log VΠ

T
)]

= sup
µ∈H

E
[

φ
(

σBT +
∫ T

0 µ(s)ds
)]

, from (11), we obtain that

µ∗(t) =
µ − µ

2
sgn
(
− Rt +

log(ab)
2σ

−
µ + µ

2σ
(T − t)

)
+

µ + µ

2
.

Moreover, we know

µ∗(t) = π∗(t)(µ1 −
1
2

σ2) + (1 − π∗(t))(µ2 −
1
2

σ2).

Thus,

π∗(t) =
ρ + ρ

2
+

µ − µ

2(µ1 − µ2)
sgn
(
− Rt +

log(ab)
2σ

−
µ + µ

2σ
(T − t)

)
=

ρ + ρ

2
+

(ρ − ρ)sgn(µ1 − µ2)

2
sgn
(
− Rt +

log(ab)
2σ

−
µ + µ

2σ
(T − t)

)

=


ρ + ρ

2
+

ρ − ρ

2
sgn
(
− Rt +

log(ab)
2σ

−
µ + µ

2σ
(T − t)

)
, µ1 > µ2,

ρ + ρ

2
−

ρ − ρ

2
sgn
(
− Rt +

log(ab)
2σ

−
µ + µ

2σ
(T − t)

)
, µ1 ≤ µ2.

(19)

Similarly, by Theorem 1, we have

inf
Π∈Θ

P(VΠ
T ∈ [a, b]) = inf

Π∈Θ
P(log VΠ

T ∈ [log a, log b]) = y0,

where

yt = 1[log a,log b](σBT) +
∫ T

t

(µ

σ
z+s − µ

σ
z−s
)

ds −
∫ T

t
zsdBs,
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and

y0 = EP̌

[
1[log a,log b]

(
σB̌T + σ

∫ T

0
βsds

)]
,

B̌t = Bt −
∫ t

0 βsds is a Brownian motion under P̌ with

dP̌
dP

∣∣∣
Ft

= exp
( ∫ t

0
βsdBs −

1
2

∫ t

0
β2

s ds
)

,

and

βs =
µ

σ
1zs>0 +

µ

σ
1zs≤0 =

µ − µ

2σ
sgn(zs) +

µ + µ

2σ
.

It follows from ([23] Corollary 6) that

sgn(−zs) = sgn
(

Bs −
log(ab)

2σ
+

µ + µ

2σ
(T − s)

)
.

Therefore,

y0 =EP̌

[
1[log a,log b]

(
σB̌T +

∫ T

0

[µ − µ

2
sgn
(
− Bs +

log(ab)
2σ

−
µ + µ

2σ
(T − s)

)
+

µ + µ

2

]
ds
)]

=EP
[
1[log a,log b]

(
σBT +

∫ T

0

[µ − µ

2
sgn
(
− Rs +

log(ab)
2σ

−
µ + µ

2σ
(T − s)

)
+

µ + µ

2

]
ds
)]

.

Then we have

µ∗(t) =
µ − µ

2
sgn
(
− Rt +

log(ab)
2σ

−
µ + µ

2σ
(T − t)

)
+

µ + µ

2
.

From
µ∗(t) = π∗(t)(µ1 −

1
2

σ2) + (1 − π∗(t))(µ2 −
1
2

σ2),

we have

π∗(t) =
ρ + ρ

2
+

µ − µ

2(µ1 − µ2)
sgn
(
− Rt +

log(ab)
2σ

−
µ + µ

2σ
(T − t)

)
=

ρ + ρ

2
+

(ρ − ρ)sgn(µ1 − µ2)

2
sgn
(
− Rt +

log(ab)
2σ

−
µ + µ

2σ
(T − t)

)

=


ρ + ρ

2
+

ρ − ρ

2
sgn
(
− Rt +

log(ab)
2σ

−
µ + µ

2σ
(T − t)

)
, µ1 > µ2,

ρ + ρ

2
−

ρ − ρ

2
sgn
(
− Rt +

log(ab)
2σ

−
µ + µ

2σ
(T − t)

)
, µ1 ≤ µ2.

This completes the proof.

Remark 1. If the drifts µ1 and µ2 of the prices are known, based on (17) and (18), the optimal portfolios
can be obtained with reference to the processes/wealth Rt and Rt, respectively. For the case that µ1 and
µ2 are unknown, the optimal portfolios cannot be applied directly. However, if µ1 ∨ µ2 and µ1 ∧ µ2
are known while µ1 and µ2 are unknown, under the criterion of exploration and exploitation, the
reinforcement learning technique (e.g., the ε-greedy method, ([25] Chapter 2) and [26]) and the above
optimal portfolios can be combined together to construct the desired portfolios. With the estimated drifts
(based on the historic data), a portfolio can be constructed to achieve the largest coverage probability on
any interval [a, b], for which the stock deduced by the optimal portfolios (17) and (18) with the estimated
drifts is selected most of the time. However, every once in a while, such as with a small probability ε, the
two stocks are chosen randomly (i.e., chosen with equal probabilities) independent of the estimated
drifts for portfolios (17) and (18). Specifically, when the sign function in (17) is positive, the stock
with the larger estimated drift is chosen with probability 1 − ε, and the two stocks are chosen
randomly with the probability ε. Otherwise, the stock with the smaller estimated drift is chosen with
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probability 1 − ε, and the two stocks are chosen randomly with the probability ε. Similarly, when
the sign function in (18) is positive, the stock with smaller estimated drift is chosen with probability
1 − ε, and the two stocks are chosen randomly with the probability ε. Otherwise, the stock with the
larger estimated drift is chosen with probability 1 − ε, and the two stocks are chosen randomly with
the probability ε. The algorithm with ε = 0.1 is presented in Appendix A.

4. Maximal and Minimal Distributions

Next, the explicit distributions of the ambiguity portfolio model will be provided: that
is, the explicit expressions of sup

Π∈Θ
P(VΠ

T ∈ [a, b]) and inf
Π∈Θ

P(VΠ
T ∈ [a, b]). In particular, the

representations of sup
Π∈Θ

E[φ(log VΠ
T )] and inf

Π∈Θ
E[φ(log VΠ

T )] for general utility function φ

are initially given. Then, the maximal and minimal distributions are obtained.

Theorem 3. Assume that φ ∈ C3(R) satisfies (H.1) for some c ∈ R, and φ(i) (i = 0, 1, 2, 3) have,

at most, polynomial growth. Set k =
µ−µ

2σ . Then the representations of sup
Π∈Θ

E[φ(log VΠ
T )] and

inf
Π∈Θ

E[φ(log VΠ
T )] are given as follows:

(1) If φ′ ≥ 0 and φ′ ̸≡ 0 on (c, ∞), then

sup
Π∈Θ

E[φ(log VΠ
T )] = e−

1
2 k2T ×

{ ∫
R

∫
y≥0

φ
(

σx +
µ + µ

2
T
)

· exp{k|x − c| − k|c| − ky}P(BT ∈ dx, Lc
T ∈ dy)

}
,

inf
π∈Θ

E[φ(log Vπ
T )] = e−

1
2 k2T ×

{ ∫
R

∫
y≥0

φ
(

σx +
µ + µ

2
T
)

· exp{−k|x − c|+ k|c|+ ky}P(BT ∈ dx, Lc
T ∈ dy)

}
,

where P(BT ∈ dx, Lc
T ∈ dy) is given by (7).

(2) If φ′ ≤ 0 and φ′ ̸≡ 0 on (c, ∞), then

sup
Π∈Θ

E[φ(log VΠ
T )] = e−

1
2 k2T ×

{ ∫
R

∫
y≥0

φ
(

σx +
µ + µ

2
T
)

· exp{−k|x − c|+ k|c|+ ky}P(BT ∈ dx, Lc
T ∈ dy)

}
,

inf
Π∈Θ

E[φ(log VΠ
T )] = e−

1
2 k2T ×

{ ∫
R

∫
y≥0

φ
(

σx +
µ + µ

2
T
)

· exp{k|x − c| − k|c| − ky}P(BT ∈ dx, Lc
T ∈ dy)

}
.

Proof. Let φ̃(x) = φ(σx). Then E[φ(log Vπ
T )] = E

[
φ̃
(

log Vπ
T

σ

)]
. We will only give the proof

of sup
Π∈Θ

E[φ(log VΠ
T )] when φ′ ≥ 0 and φ′ ̸≡ 0 on (c, ∞) since the other case can be treated

similarly. Using Theorem 1, we have

sup
Π∈Θ

E
[

φ̃
( log VΠ

T
σ

)]
= Y0,

where Y0 is the solution Yt of the following BSDE at t = 0:
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Yt = φ̃(BT) +
∫ T

t

(µ

σ
Z+

s −
µ

σ
Z−

s

)
ds −

∫ T

t
ZsdBs. (20)

Set B̂s = Bs −
µ+µ

2σ s and φ̂(x) = φ̃(x +
µ+µ

2σ T). Then BSDE (20) is equivalent to the
following equation:

Yt = φ̂(B̂T) +
∫ T

t

µ − µ

2σ
|Zs|ds −

∫ T

t
ZsdB̂s, (21)

where B̂t is a Brownian motion under measure Q̂ defined by

dQ̂
dP

∣∣∣
Ft

= exp

{∫ t

0

µ + µ

2σ
dBs −

1
2

∫ t

0

(
µ + µ

2σ

)2

ds

}
.

Thus, it suffices to solve BSDE (21) on (Ω,F , Q̂). By Lemma 2, we have

sup
Π∈Θ

E[φ(log VΠ
T )] = Y0 = e−

1
2 k2T ×

{∫
R

∫
y≥0

φ̂(x)ek|x−c|−k|c|−kyQ̂(B̂T ∈ dx, L̂c
T ∈ dy)

}
,

where

Q̂(B̂T ∈ dx, L̂c
T ∈ dy) = P(BT ∈ dx, Lc

T ∈ dy)

=
1√

2πT3
(y + |x − c|+ |c|) exp

{
−(y + |x − c|+ |c|)2

2T

}
· I{y>0}dxdy

+
1√

2πT

[
exp

{
− x2

2T

}
− exp

{
− (|x − c|+ |c|)2

2T

}]
· I{y=0}dxdy.

So we obtain the expression of sup
Π∈Θ

E[φ(log VΠ
T )].

Similarly, applying Theorem 1, we have

inf
Π∈Θ

E
[

φ(log VΠ
T )
]
= y0,

where y0 is the solution yt of the following BSDE when t = 0:

yt = φ̃(BT) +
∫ T

t

(µ

σ
z+s − µ

σ
z−s
)

ds −
∫ T

t
zsdBs = φ̂(B̂T)−

∫ T

t

µ − µ

2σ
|zs|ds −

∫ T

t
zsdB̂s.

It then follows from Lemma 2 that

inf
Π∈Θ

E
[

φ(log VΠ
T )
]
= y0 = e−

1
2 k2T ×

{∫
R

∫
y≥0

φ̂(x)e−k|x−c|+k|c|+kyQ̂(B̂T ∈ dx, L̂c
T ∈ dy)

}
;

thus, the expression of inf
Π∈Θ

E[φ(log VΠ
T )] is obtained.

Applying Theorem 3, the explicit formulations of the maximal and minimal distributions
when φ(x) = 1[a,b](x) with 0 < a < b < +∞ can be obtained.

Theorem 4. Let k =
µ−µ

2σ and c = log(ab)
2σ − µ+µ

2σ T with 0 < a < b < +∞; then the maximal and
minimal distributions are given by

sup
Π∈Θ

P(VΠ
T ∈ [a, b]) = Φ

(
−
|c| − kT − log(b/a)

2σ√
T

)
− e−

k
σ log(b/a)Φ

(
−
|c| − kT +

log(b/a)
2σ√

T

)
,
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and

inf
Π∈Θ

P(VΠ
T ∈ [a, b]) = Φ

(
−
|c|+ kT − log(b/a)

2σ√
T

)
− e

k
σ log(b/a)Φ

(
−
|c|+ kT +

log(b/a)
2σ√

T

)
, (22)

where Φ(·) is the distribution function of the standard normal distribution.

Proof. First, recall that sup
Π∈Θ

E
[
φ
(
log VΠ

T
)]

is the value of the solution Yt of the following

BSDE at t = 0:

Yt =1[a,b](σBT) +
∫ T

t

(µ

σ
Z+

s −
µ

σ
Z−

s

)
ds −

∫ T

t
ZsdBs

=1
[

log a
σ − µ+µ

2σ T, log b
σ − µ+µ

2σ T]
(B̂T) +

∫ T

t

µ − µ

2σ
|Zs|ds −

∫ T

t
ZsdB̂s,

(23)

where B̂t = Bt −
µ+µ

2σ t is a Brownian motion under P̂ with

dP̂
dP

∣∣∣
Ft

= exp
{

µ + µ

2σ
Bt −

1
2

∣∣∣µ + µ

2σ

∣∣∣2t
}

.

For simplicity, let

â =
log a

σ
−

µ + µ

2σ
T, b̂ =

log b
σ

−
µ + µ

2σ
T.

For any ε > 0, define

φε(x) := EP̂

[
1[â,b̂](x +

√
εξ)
]
=
∫ ∞

−∞
1[â,b̂](v)

1√
2πε

exp
[
− (v − x)2

2ε

]
dv,

where ξ is a standard normal distribution under probability measure P̂. Then φε ∈ C∞(R)
and φε(x) → I[â,b̂](x) as ε → 0. Consider the following BSDE:

Yε
t = φε(B̂T) +

∫ T

t
k|Zε

s |ds −
∫ T

t
Zε

sdB̂s.

By Theorem 3, we have
Yε

t = Hε(B̂t),

where

Hε(h) = e−
1
2 k2(T−t)

{ ∫
R

∫
y≥0

φε(x + h)e−k|x−c+h|+k|c−h|+kyP̂
(

B̂T−t ∈ dx, L̂c−h
T−t ∈ dy

)}
= e−

1
2 k2(T−t)

∫
R

∫
y>0

φε(x + h)√
2π(T − t)3

e−k|x−c+h|+k|c−h|+ky(y + |x − (c − h)|+ |c − h|)

exp
{−(y + |x − (c − h)|+ |c − h|)2

2(T − t)

}
dxdy

+ e−
1
2 k2(T−t)

∫
R

φε(x + h)√
2π(T − t)

e−k|x−c+h|+k|c−h|

[
exp

{
− x2

2(T − t)

}
− exp

{
− (|x − (c − h)|+ |c − h|)2

2(T − t)

}]
dxdy.
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Define

H(h) := e−
1
2 k2(T−t)

{∫
R

∫
y≥0

1[â,b̂](x + h)ek|x−c+h|−k|c−h|−kyP̂
(

B̂T−t ∈ dx, L̂c−h
T−t ∈ dy

)}
= e−

1
2 k2(T−t)

∫
R

∫
y>0

1[â,b̂](x + h)√
2π(T − t)3

e−k|x−c+h|+k|c−h|+ky(y + |x − (c − h)|+ |c − h|)

exp
{−(y + |x − (c − h)|+ |c − h|)2

2(T − t)

}
dxdy

+ e−
1
2 k2(T−t)

∫
R

1[â,b̂](x + h)√
2π(T − t)

e−k|x−c+h|+k|c−h|

[
exp

{
− x2

2(T − t)

}
− exp

{
− (|x − (c − h)|+ |c − h|)2

2(T − t)

}]
dxdy.

After some computations, we have

H(h) = Φ
(
−

|h − c| − k(T − t)− b̂−â
2√

T − t

)
− e−k(b̂−â)Φ

(
−

|h − c| − k(T − t) + b̂−â
2√

T − t

)
.

By Lebesgue’s dominated convergence theorem, we have that Hε(h) converges to H(h) as
ε → 0, which means Hε(B̂t) converges to H(B̂t) almost surely. Therefore, Yt of (23) is given by

Yt = H(B̂t) = Φ
(
−

|B̂t − c| − k(T − t)− b̂−â
2√

T − t

)
− e−k(b̂−â)Φ

(
−

|B̂t − c| − k(T − t) + b̂−â
2√

T − t

)
.

Finally,
sup
Π∈Θ

E[1[a,b](V
Π
t )] = sup

Π∈Θ
E[1[log a,log b](log VΠ

t )] = Y0

=Φ
(
−

|c| − kT − b̂−â
2√

T

)
− e−k(b̂−â)Φ

(
−

|c| − kT + b̂−â
2√

T

)
.

Similarly, we have (22).

Remark 2. It can be observed from Theorem 4 that the maximal and minimal distributions of wealth
Vπ

T are no longer log-normal when µ ̸= µ. That is, if a random disturbance µ(t) is given to the
Brownian motion (or the price process of the stocks), then its distribution will no longer be normal.
That is, it would be a mixture of normal distributions. This is explained in the following example: If
the process (log Vt)t∈[0,T] follows the following SDE with some random disturbance µ(t),

d log Vt = µ(t)dt + dBt, log V0 = 0,

where |µ(t)| ≤ ε. Take T = 1, ε = 1/2, a = −b and set

FB1(b) := P(B1 ∈ [e−b, eb]), F̄log V1(b) := sup
|µ(t)|≤ε

P(log V1 ∈ [−b, b]),Flog V1
(b) := inf

|µ(t)|≤ε
P(log V1 ∈ [−b, b]).

Let f1(z) refer to the density function of B1, and let f̄ (z) and f (z) refer to the density functions of
F̄log V1(·) and Flog V1

(·), respectively. Based on Theorem 4, it is not difficult to obtain{
F̄log V1(b) = Φ(1/2 + b)− e−b · Φ(1/2 − b),
Flog V1

(b) = Φ(−1/2 + b)− eb · Φ(−1/2 − b),
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and consequently, f̄ (z) = 1√
2π

e−
z2+|z|+1/4

2 + 1/2 · e−|z| · Φ(−|z|+ 1/2),

f (z) = 1√
2π

e−
z2−|z|+1/4

2 − 1/2 · e|z| · Φ(−|z| − 1/2).

The differences in FB1 , F̄log V1 and Flog V1
and the differences in f1, f̄ and f can be intuitively

observed from Figure 1. This shows that the maximal and minimal distributions of V1 are no longer
log-normal.

Figure 1. Differences among FB1 , F̄log V1
and F̄log V1

and differences in f , f̄ and f when a = −b,
ε = 0.5, T = 1.

5. Do Not Put All the Eggs in One Basket

‘Do not put all your eggs in the same basket’ is a widespread proverb that means that
diversified investment is necessary in order to avoid great losses due to a single investment.
On the one hand, this advice can be partly formalized by considering the volatility of
the portfolio. For example, by constructing portfolios with assets that are imperfectly
correlated with one another, the risk inherent in the portfolio would decline as more assets
are added to the portfolio until, eventually, the volatility of the portfolio would converge to
the average covariance of assets that comprise the portfolio. Therefore, diversified risks
can be reduced when compared to undiversified risks. On the other hand, after obtaining
the explicit formulation for the maximal distribution and the corresponding portfolio, the
benefits of the diversified portfolios can be explained and the proverb from the probability
framework can be formalized, as shown in the following results.

Let ρ = 1 and ρ = 0. Then, Π1(·) ≡ (1, 0) and Π2(·) ≡ (0, 1) refer to two self-financing
portfolios. By applying Theorem 4, the following result can be obtained.

Proposition 1. For 0 < a < b < +∞,

P(VΠ∗
T ∈ [a, b]) = sup

Π∈Θ
P(Vπ

T ∈ [a, b]) ≥ P(V1
T ∈ [a, b]) ∨ P(V2

T ∈ [a, b]), (24)

where Π∗ = (π∗, 1−π∗), π∗(·) is defined in (19), V1
· and V2

· are the wealth processes corresponding
to portfolios Π1(·) and Π2(·), respectively: that is, investing only in the first stock and only in the
second stock respectively. Furthermore, let σ = T = 1, log b = µ + δ and log a = µ − δ for some
δ > 0; we have

P(VΠ∗
1 ∈ [a, b])− P(V1

1 ∈ [a, b]) ∨ P(V2
1 ∈ [a, b]) = (1 − e−(µ+µ)δ)Φ(−δ) > 0. (25)

The two portfolios, Π1(·) ≡ (1, 0) and Π2(·) ≡ (0, 1), correspond to the cases for
which all wealth is invested solely in the first and second stock, respectively. From (25), it
can be observed that neither of the above portfolios is optimal in the probability framework.
Instead, investing in both stocks according to π∗(·) would deduce a larger probability on
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any interval around the larger drift/return, thereby achieving a greater coverage probability
to win a larger drift/return and reducing the risk. Therefore, a diversified portfolio with
two stocks is better than a portfolio with only one stock (even when the stock has a larger
drift/return). That is, the existence of a stock with a smaller drift/return does not always
cause bad influences on the market. Interestingly, the combination of these two stocks
would induce a larger coverage probability of wealth on any specific interval, consequently
reducing the risk of the investment. Therefore, this verifies the benefits of diversified
portfolios and implies the mathematical explanations for the proverb.

Remark 3. The results for the maximal and minimal distributions can be extended to a case with
more than two stocks. For example, consider that there are N (N > 2) stocks in the financial market;
the wealth process would follow the following SDE:{

dVΠ
t = VΠ

t [∑N
i=1 µiπi(t)]dt + σVπ

t dBt,
VΠ

0 = 1, t ∈ (0, T],
(26)

in which ∑N
i=1 πi(t) = 1, and the set of self-financing portfolios is

ΘN := {Π(t) = (π1(t), · · · , πN(t)) : πi(t) ∈ [0, 1] is a predictable processes}.

Let

µ := sup{µ1 −
1
2

σ2, · · · , µN − 1
2

σ2} and µ := inf{µ1 −
1
2

σ2, · · · , µN − 1
2

σ2}. (27)

Then, similar to Theorem 1, it can be proved that sup
Π∈Θ

E
[
φ
(
log VΠ

T
)]

is equal to Y0 of BSDE (9),

with µ and µ given by (27). Thus, through solving BSDE (9), the maximal distributions of this case
can be obtained based on Theorem 4. Furthermore, the minimal distribution can be similarly obtained.
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Appendix A

The algorithm is as follows:

Algorithm A1: ϵ-greedy algorithm
Input: time partition K; returns µ1, µ2; reward interval [a, b];
Output: Wealth log Vπ∗

1 .
1: terminal time T = 1, tk =

k
K , k = 0, 1, · · · , K, initial condition log Vπ∗

0 = 0,
maximal drift coefficient µ = µ1 ∨ µ2, minimal drift coefficient µ = µ1 ∧ µ2.

2: for i = 1, 2 do
3: sample means µi(0) = 0;
4: the number of times each state has been observed Ti = 1;
5: end for
6: for each k ∈ [0, K] do
7: if k mod 10 == 0, then
8: j = randperm(2, 1);
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Algorithm A1: Cont.

9: ∆ = 1
K µj + σB( 1

K );

10: µj(tk+1) =
Tj−1

Tj
µj(tk) +

∆
Tj

;

11: µi(tk+1) = µi(tk), i ̸= j;
12: log Vπ∗

tk+1
= log Vπ∗

tk
+ ∆;

13: Tj = Tj + 1;
14: else
15: if log Vπ∗

tk
≤ log(ab)

2σ − µ+µ

2σ (1 − tk), then
16: find j such that µj(tk) = µ1(tk) ∨ µ2(tk);

17: ∆ = 1
K µj + σB( 1

K );

18: µj(tk+1) =
Tj−1

Tj
µj(tk) +

∆
Tj

;

19: µi(tk+1) = µi(tk), i ̸= j;
20: log Vπ∗

tk+1
= log Vπ∗

tk
+ ∆;

21 Tj = Tj + 1;
22: else
23: find j such that µj(tk) = µ1(tk) ∧ µ2(tk);

24: ∆ = 1
K µj + σB( 1

K );

25: µj(tk+1) =
Tj−1

Tj
µj(tk) +

∆
Tj

;

26: µi(tk+1) = µi(tk), i ̸= j;
27: log Vπ∗

tk+1
= log Vπ∗

tk
+ ∆;

28: Tj = Tj + 1;
29: end if
30: end if
31: end for
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