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Abstract: Although information theory resolves the inconsistencies (known in the form of famous
enigmas) of the traditional approach of thermostatistics, its place in the corresponding literature is
not what it deserves. This article supports the idea that this is mainly due to epistemological rather
than scientific reasons: the subjectivity introduced into physics is perceived as a problem. Here is an
attempt to expose and clarify where exactly this subjectivity lies: in the representation of reality and
in probabilistic inference, two aspects that have been integrated into the practice of science for a long
time and which should no longer frighten anyone but have become explicit with information theory.
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1. Introduction

With great success, statistical mechanics provides “the rational foundations of thermo-
dynamics” (Gibbs [1]), which thus becomes thermostatistics. However, “[it] is notorious for
conceptual problems to which it is difficult to give a convincing answer” (Penrose [2]). Since their
origin, these problems have been illustrated by famous enigmas that do not prevent the the-
ory from advancing but are like pebbles in the shoe. I think about the two Gibbs’ paradoxes
(related to the mixing of two volumes of gas), the Poincaré–Zermelo paradox (related to
the recurrence of dynamical systems), Loschmidt’s paradox (related to the reversibility of
the equations of mechanics) and its demonic version, the Maxwell’s demon (a ratchet–pawl
mechanism at the scale of particles). These enigmas all have one thing in common: they
are all concerned with the second law of thermodynamics and entropy, the concept that
was invented by Clausius [3] to account for the irreversibility of energy exchanges, linked
by Boltzmann [4], Planck [5] and Gibbs [1] to probabilities and finally “enlightened” by
Shannon’s information theory [6].

“Enlightened” is wishful thinking because, although information theory resolves
the inconsistencies raised by these enigmas (as will be shown), this contribution is far
from being unanimously recognized. In recent textbooks, apart from one exception [7],
information theory is either just mentioned but not really used [8] or totally ignored [9–12].
The situation is also ambiguous in the recent research literature.

The contribution of information theory to thermostatistics is two-fold, and each part
must be well identified. The first one is linked to the encoding significance of entropy [13]
and the relation it gives between energy and the information needed to reproduce the
system as it appears to our senses, that is to say, to make a representation of it. The
second, which is no less fundamental, is related to the “maximum entropy principle”,
which legitimates an inductive probabilistic inference based on our partial knowledge of
the system [14–16] to describe its state of equilibrium. It legitimates prior probabilities
(the first meaning of probability seen as a degree of belief) as opposed to a posteriori
probabilities on which a frequentist inference could be performed.
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This dual contribution allows for very efficient shortcuts of thought and for resolving
inconsistencies in the theory, such as those illustrated by the enigmas mentioned above.
This is not new, and these advantages are sometimes recognized even by those who do
not defend the viewpoint of information theory and virulently combat it. For instance,
“Although information theory is more comprehensive than is statistical mechanics, this very com-
prehensiveness gives rise to objectionable when it is applied in physics and chemistry” (Denbigh
and Denbigh [17] p. 117). So, if information theory is not more widely adopted, it is either
because its benefits are poorly understood (which we will also try to remedy) or because
they are fully understood but rejected for epistemological rather than scientific reasons. In
fact, the stumbling block is that information theory is seen as introducing subjectivity into
physics, which is classified as a “hard science” practiced with rigor and objectivity.

In phenomenological thermodynamics, any system is considered a sort of “black box”
with inputs and outputs in the form of heat and work exchanged with the surroundings.
Phenomenological thermodynamics does not care about what is happening at a microscopic
level inside the black box. It only deals with these inputs and outputs at the macroscopic
scale, which are actually the only measurable quantities. How can a measurable quantity
be subjective? It appears to be nonsense. Let us first clarify this point.

The only definition of the entropy S of a system in thermodynamics (Clausius en-
tropy) is in fact that of its variation for a reversible transformation (i.e., sufficiently slow
compared to all relaxation processes of the system). Only, in this case, it is given by the
exact differential dS = T−1 dQ (where T is the temperature and Q the quantity of heat
exchanged). But transformations, say from A to B, are not reversible in most cases, so
the corresponding variation in entropy cannot be measured. The only way to measure
it is to close a thermodynamic cycle by returning to the initial state A, this time through
a reversible transformation. The subjectivity of entropy lies precisely here: How to be
certain that the cycle is indeed closed? This clearly depends on our knowledge of the initial
state, which depends on the information we have on it: “The idea of dissipation of energy
depends on the extent of our knowledge” (Maxwell [18]). “Objective” means that the quantity
under consideration only depends on the object and not on the observer (the subject). In
this paper, “subjective” means that the subject (the observer) plays a role. But this role is
independent of the person of the subject; two scientists with the same information would
reach the same conclusion [15]. Although this notion of subjectivity thus understood was
already present in classical phenomenological thermodynamics, it completely disappeared
with the advent of statistical mechanics.

Probably everything (and its opposite) has already been written on this subject, so the
main purpose of this article is to attempt clarification and remove any ambiguity. In the
first part, we will see how exactly subjectivity is brought to thermostatistics via entropy
by two means: the encoding of a representation and the probabilistic inference, which are
linked to the two features already evoked. Also, the last point will be compared to the
alternative frequentist (objectivist) inference, namely the ergodic hypothesis.

The second part addresses the above puzzles and highlights the inconsistencies they
raise in relation to the “objectivist” position. These inconsistencies are all removed with
information theory (namely the “subjectivist” position) in a concise manner.

The last part tries to put the debate at an epistemological level: the objective versus
subjective conceptions of entropy. It aims to extricate things, to show precisely where the
arbitrariness lies and to answer the question: why is subjective entropy such a disturbing
concept? A particular focus will be made on the filiation of the ideas behind the approach
of information theory once applied to thermostatistics. This filiation ultimately corresponds
to a particular conception of what science is, which originates from Plato’s allegory of the
cave and develops where modern representationalism (or indirect realism), empiricism, fal-
sificationism and Bayesianism meet. That being exposed, everyone can decide whether this
conception is natural or worrying, weigh it against the advantages provided by information
theory and make a choice.
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2. Information
2.1. Encoding, Information, Uncertainty

In everyday life, the question “How much information does this newspaper contain?”
is understood in terms of the novelty of the meaning (the substance). With the advent of
communication and computer sciences, an alternative signification concerns the minimum
quantity of bits that would be needed to transmit, store and reproduce it later (the form).
But the form is the physical support of the substance, and the novelty may lie in the
form. Also, an entirely predictable source of “information” does not require storing data
to be reproduced. So, both acceptations of the term “quantity of information” are linked.
However, the latter has the advantage of being much more manageable. This was the
approach of Shannon: “[The] semantic aspects of communication are irrelevant to the engineering
problem. The significant aspect is that the actual message is one selected from a set of possible
messages. [Transmission and storage devices] must be designed to operate for each possible selection,
not just the one which will actually be chosen since this is unknown at the time of design.” [6]. With
Shannon, the message becomes a random variable to be lossless encoded and stored.

Consider a source (a thermodynamic system) that sequentially emits a random mes-
sage x ∈ Γ (e.g., adopts a given microstate, Γ is the phase space) according to a fixed
probability distribution p(x) (the system is at equilibrium). We plan to perform a lossless
recording of the sequence to reproduce it exactly, for instance, to study and describe it
later. Whatever the nature of the random events, if the number W of their possibilities (the
cardinality of Γ or its “volume”) is finite, we can establish a one-to-one correspondence
table m (a mapping) that assigns to each event x an integer n = m(x) ranging from 1 to W:

m : x ∈ Γ 7−→ n ∈ {1, . . .W} (1)

So, recording the system’s behavior (the source emission) would start by recording the
correspondence table (the metadata), then continue by recording the sequential outcomes
of the random integer variable n (the data). This passes through the encoding of the latter,
say a binary representation. Thus the question arises: what minimum number H of bits
per outcome should be provided for storage or transmission with a given bandwidth? By
quantity of information emitted by the source, we mean this minimum number of bits per
outcome for lossless recording.

2.1.1. Fixed-Length Encoding

The central point is to seek the most economical encoding rule [19]. The first answer
is to plan a fixed length per outcome (per word). Of course, for the decoder to be able to
discriminate the end of a word from the start of the next, this conventional fixed length
must be recorded with the metadata. The length must be large enough to store the largest
integer W outcome that is expected. Since W = 2log2(W), up to a rounding error,

H = log2(W) (2)

The greater the number W of possibilities, the greater the uncertainty of a given
outcome and the greater the minimum length. This last equation allows us to consider H
either as the a posteriori average number of bits per outcome or as the a priori expected
number of bits that should be scheduled to record upcoming events in case we have
absolutely no idea about their actual probability distribution. In the former case, H is a
measure of the quantity of information that has been emitted by the source, whereas in the
latter case, it is for the observer a measure of the uncertainty about the outcomes. These
two facets are found in the usual meaning of probability.

2.1.2. Variable-Length Encoding

Equation (2) is not an optimal solution for storing data because small numbers that
only require a few bits take up the same storage space as large numbers. Variable-length
encoding that uses just enough space for each outcome, i.e., log2(m(x)) bits for outcome x,
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is better. Of course, this supposes a special encoding type, named prefix code, making it
possible for decoding to identify the end of a given word and the beginning of the next. For
instance, this can be performed using a delimiter. This also supposes that the encoding rules
are recorded with the rest of the metadata, the size of which, however, will be assumed
to be negligible compared to that of the data (which is legitimate for a long sequence of
recordings). With variable-length encoding, the average number of bits per outcome is

H = ∑
x∈Γ

p(x) log2(m(x)) (3)

where p(x) is the probability of the outcome x to which was assigned the integer m(x),
according to the mapping.

Let us first examine the special case where p(x) takes the constant value 1/W whatever
x. Equation (3) gives

H =
1
W

∑
x∈Γ

log2(m(x)) (4)

The smallest values for the series n = m(x) are obtained by starting from n1 = 1 and then
applying the rule ni = ni−1 + 1. This sequence is that of natural numbers up to W, so
one obtains

H =
1
W

W

∑
i=1

log2(i) =
1
W

log2(W!) (5)

For large W, the Stirling formula leads to

H = log2(W) + o(1) (6)

which is asymptotically the same as Equation (2). Note that the same result is obtained
whether no a priori information is known about the outcomes except that it is bounded
(Equation (2)) or if we know in advance that outcomes obey a uniform probability distribu-
tion (Equation (6)).

Variable-length encoding is not economic of storage space for a uniform probability
distribution. But there remain others. For non-uniform distributions, it is possible to choose
m(x) as being an increasing function of improbability 1/p(x), so that the values that require
the most storage space are mapped to the rarest events. Different rules of assignment can
be applied. For instance, according to the median, one can split Γ into two subsets labeled
0 and 1. The first encoding bit for m(x) is the label to which subset x belongs, and the other
bits are obtained by subsequent similar recursive dichotomies. This procedure, named
Fano encoding [20], gives a near-optimal encoding length. Shannon [6] showed that in no
case can the average length per outcome be less than

H = ∑
x∈Γ

p(x) log2(1/p(x)) (7)

Note that the uniform distribution is a special case of this last equation.

2.1.3. Information Encoding and Energy

To factor ln 2, one recognizes in Equations (2) and (6) the formula for the Boltzmann
entropy of an isolated system (microcanonical), and in Equation (7), that of Gibbs entropy
of a closed system (canonical). In both cases, one can write

S = H ln 2 (8)

which is called Shannon entropy [21] (in this paper, the temperature is in Joule, so the
entropy is dimensionless). The Boltzmann–Gibbs entropies are in reality special cases of
that of Shannon, for which the random events would be the different microstates that a
thermodynamic system can adopt.
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Here, let us recall that the formula for the Gibbs entropy was obtained from the canon-
ical distribution of energy levels and from an identification with certain thermodynamic
equalities involving Clausius entropy [22]. The derivation of the Gibbs entropy formula
is entirely dependent on thermodynamics. The Shannon entropy, for its part, is obtained
independently of thermodynamics but with the aim of optimizing the encoding size, an
aim that is reminiscent of the idea that Gibbs entropy is at its maximum at thermodynamic
equilibrium. The equality of the formula and the idea behind it are likely not coincidental.

The Shannon entropy of the distribution of microstates and the Boltzmann–Gibbs
entropy are the same quantity. As the latter is the same as the Clausius entropy, the three
are one and the same quantity. Hence, there is a connection between energy on one side
and information/uncertainty on the other.

To be more precise about this connection, let us recall some thermodynamics. Consider
a system with internal energy U. For any quasistatic process it undergoes, one can write

∆U = Q + W, (9)

where Q is the heat exchanged with the surroundings and W is the work defined as the
complementary part of Q in virtue of the conservation law (first law of thermodynamics).

The second law of thermodynamics is two-fold: the first part defines the entropy S as
a state quantity linked to the heat exchanged for a reversible process, for which the entropy
is given by its exact differential dS = dQ/T. Whereas the second is the Clausius inequality,
which concerns the general irreversible case. In this paper, for the sake of simplicity, we
will consider only processes at a constant temperature, allowing us to more easily integrate∫

T−1 dQ. Then, the two parts of the second law become

Second law of thermodynamics (§1):
There exists a state quantity S, whose variation for a reversible process is such as Q = T∆S, where
T is the temperature.

Second law of thermodynamics (§2.1):
Clausius inequality: in all cases,

Q ≤ T∆S (10)

The energy exchanges can be seen as a dissipation (Q) of an energy cost (W) because,
generally, heat is unwanted and work is more valued. So, at constant internal energy
(∆U = 0), say at a constant temperature for a gas, the Clausius inequality tells us that the
energy cost to achieve a process is always greater than −T∆S (i.e., W ≥ −T∆S).

The twin of the Clausius inequality in terms of the quantity of information emitted by
the source, or equivalently, in terms of the uncertainty about its emission, is obtained with
Equation (8), leading to W ≥ −T∆H ln 2. The second part of the second law (§2) can thus
be rewritten as

Second law of thermodynamics (§2.2):
The energy cost W to vary the uncertainty about the microstate of a system by ∆H is always

W ≥ −T∆H ln 2 (11)

The acquisition of data about the system via measurement of certain properties (for instance,
the boundary of the phase space) is a way to reduce the uncertainty about the outcomes.
So, the previous equation can be expressed per bit (∆H = −1) of acquired data:

Wacq/bit ≥ T ln 2 (12)

Equations (11) and (12) are the key equations for linking energy and information. There is
nothing more than that.
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The two above versions of the second law (§2.1 and §2.2) express exactly the same
thing but in different ways. The first speaks of heat dissipation and entropy, whereas the
second prefers to speak of work and uncertainty. It is thus legitimate to question the real
usefulness of the notion of information encoding in thermostatistics. The first answer is that
a link between two fields of knowledge is part of what we call understanding something.
The second answer is that the link between information encoding and energy allows us
to express certain ideas in a more concise and consistent way. In particular, it provides
shortcuts to solving thermostatistic enigmas. So, if a theory is ultimately an economy of
thought [23–25], this is undoubtedly progress. The third answer is that entropy, so defined
as an uncertainty, forms a package with the probabilistic induction that will be discussed in
the following section.

2.1.4. Stability of Equilibrium

The second law of thermodynamics is often expressed for an isolated system to which
neither heat nor work is exchanged with the surroundings (Q = W = 0). So, Equation (10)
becomes

T∆S ≥ 0 (13)

This leads to another version of the second law:

Second law of thermodynamics (§2.3):
The entropy of an isolated system cannot spontaneously decrease.

Or, in terms of information,

Second law of thermodynamics (§2.4):
The uncertainty (the quantity of information) about the microstate of an isolated system cannot
spontaneously decrease.

Classical and phenomenological thermodynamics is traditionally only concerned with
equilibrium stricto sensu: “a system is in an equilibrium state if its properties are consistently
described by thermodynamic theory” (H.B. Callen [26] p. 15). In classical thermodynamics, equi-
librium is by definition a stationary stable state and the “equilibrium state” is a pleonasm:
no states other than those at equilibrium are defined (by state quantities).

With Boltzmann–Gibbs entropy, probabilities come into play for the description of the
thermodynamic equilibrium. Therefore, an isolated system can now fluctuate and deviate
slightly from equilibrium. As this notion was absent in phenomenological thermodynamics,
we are now faced with this problem: How can the equilibrium be stable? What is the
restoring force of the system when it deviates from equilibrium? To ensure the stability of
equilibrium, if we do not want to postulate it, we need an additional ingredient in the form
of an alternative postulate or a definition of the nature of equilibrium. This definition can
be the following:

Definition of equilibrium (v1):
The equilibrium of an isolated system is the state of maximum entropy.

Or, equivalently,

Definition of equilibrium (v2):
The equilibrium of an isolated system is the state of maximum uncertainty about its microstate.

With these definitions, the restoring force comes from the second law: due to fluctuations,
the system may deviate from equilibrium but will return to it spontaneously.

2.2. Inductive Probabilistic Inference

The first program of statistical mechanics is to calculate certain observable macro-
scopic quantities of a thermodynamic system at equilibrium from the average of certain
random variables that are relevant at a microscopic level. For instance, calculating the



Mathematics 2024, 12, 1498 7 of 27

temperature from the average kinetic energy of particles. These averages are computed
over a probability distribution.

The central point is thus to determine which random variable to consider and what
probability distribution it is supposed to obey. That is to say, make a statistical inference.

2.2.1. Subjective versus Objective Probabilities

Two different types of statistical inferences are traditionally distinguished: “probabilis-
tic inference” and “frequentist inference”, which depends on how probabilities are defined.

1. Subjective (or prior) probabilities are reasonable expectations or degrees of belief that
one thing or another will happen. They are subjective in that they depend on our
knowledge of the system.

2. Objective relative frequencies of occurrence (over an ensemble) of one thing or another
that actually happened (or a posteriori probabilities). They are supposed to be tangible
property of the system.

Subjective probabilities are general and can always apply, so they are de facto the
most common on which to base a decision. But their arbitrary nature poses a problem
without a rational criterion to assign a value to them. They appear illegitimate and may
turn out to be false a posteriori. In contrast, frequencies are reliable, provided that the
corresponding measurement has been carried out. But this is often impossible or at least
not possible before making a decision. Their use is conditioned on the existence of an
ensemble or at least on the hypothesis of its existence, provided that it can be performed in
a consistent manner.

Consider the game of die. The die is cubic and offers six possible outcomes. Also,
from a symmetry argument, there is no reason to believe that one is more likely than
another. Prior to any toss of a die, we can reasonably assign to the outcomes a uniform
discrete probability distribution lying from 1 to 6. This reasoning, which accords with
common sense [27], is called “Laplace’s principle of insufficient reason” (or “principle of
indifference” [28]). It is a typical example of probabilistic inference.

An interesting point is that the most reasonable decision for a bet would be exactly the
same if we knew in advance that the die is loaded (we knew in advance that the distribution
is not uniform) but did not know which number is favored. The first assignment of
probabilities is ultimately based on a criterion that seems much more arbitrary (“there is
no reason to believe otherwise”) than waiting for a few tosses of the die and estimating
the frequency distribution from the sampling of outcomes (make a frequentist inference).
The decision is based on prior probabilities that do not seem legitimate but are the only
ones available.

In the problem of information processing, faced with an unknown source that we
want to record, we must begin by using one or other of the encoding rules and then
eventually use an adaptive procedure to reconsider (to update) the encoding according to
the observations. For a lossless recording, the best choice to begin with is a fixed-length
encoding (with an overestimated number of possible outcomes if it is unknown). This
choice maximizes the compatibility of the encoding procedure with future incoming data.
In Section 2.1, we saw that this choice amounts to assigning a uniform prior distribution
for the outcomes and is therefore in agreement with the principle of insufficient reason.
We know in advance that this prior distribution is certainly not the true one, but this does
not prevent it from being chosen rationally. This choice is the best we can make; any other
would be judged to be irrational.

The problem of assigning a prior distribution is ultimately reduced to the search for
an optimal compromise between two contradictory goals: (1) avoid any loss of information;
(2) avoid an unnecessary volume of storage. This problem of optimization is formalized
and generalized with another aspect of Shannon’s information theory that essentially aims
to optimize the use of our prior knowledge of the source for the statistical inference.
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2.2.2. Maximum Entropy Probabilistic Inference

Suppose we are dealing with a source that emits outcomes i about which we have only
a partial knowledge of the true probability distribution pi, so different distributions can
potentially satisfy these constraints. To start recording the source, we need to assign a prior
distribution that “agrees with what is known, but expresses a ’maximum uncertainty’ with respect
to all other matters” (Jaynes [15]), and thus leaves a maximum chance of compatibility with
subsequent data. The problem is reduced to maximizing the uncertainty, which therefore
remains to be measured.

In addition to the definition of entropy as the optimum length to encode the outcomes
of a source, Shannon [6] introduces another idea. He asks, “Can we find a measure [. . . ] of how
uncertain we are of the outcome?” and continues, “If there is such a measure, say H(p1, p2, . . .), it
is reasonable to require of it the following properties:” (1) being continuous in pi; (2) increasing in
W = 1/pi for a uniform distribution; (3) being additive over different independent sources
of uncertainty. Then, Shannon demonstrated that the only function (the only measure of
uncertainty) that fulfills these requirements is to a factor ∑ pi ln(1/pi), i.e., the Shannon
entropy. Hence, the theorem

Maximum entropy theorem: the best prior distribution p(x) that maximizes the uncertainty on
x while being consistent with our knowledge is the one that maximizes the Shannon entropy.

The validity of this theorem is ultimately determined by what is supposed to be
required for a measure of uncertainty. These requirements play the role of starting axioms
for their demonstration. As natural as they seem, some may find them arbitrary, wondering
why not prefer others, leading to another function being maximized. Shore and Johnson [16]
start with a completely different requirement, a consistency axiom that can be stated like
this: “if the problem of assigning a prior distribution can be solved in more than one way of taking
the same information into account (for instance in different coordinate systems), the results should be
consistent”. On which everyone should agree. Then, Shore and Johnson [16] prove that the
only procedure satisfying this requirement of uniqueness is that of maximizing Shannon
entropy. Given a random variable x, the maximum entropy theorem provides a legitimate
method to determine the prior probability distribution p(x).

However, to complete the program of statistical mechanics remains the first point
raised at the beginning of this section: which random variable x to consider. For instance,
imagine a random variable x ∈ [0, π] with a uniform distribution, sin(x) is also a random
variable whose distribution is not uniform but has a maximum for x = π/2. Thus, using
the maximum entropy criterion directly on x or on sin(x) leads to different distributions
in fine for x. However, “among all these distributions there is one particular one, corresponding
to the absolute maximum of entropy, which represents absolutely stable equilibrium.” (Planck [5]
p. 32). Jaynes [29] outlines a crucial point. The assumption of uniqueness of equilibrium
actually automatically brings to our knowledge other crucial information: the solution is
not supposed to depend on the orientation of the observer (invariance under rotation), on
its position (invariance under translation), or on the scale it is considered (invariance under
scaling). Among all the possible variables describing a system, considering only those
whose distributions are invariant in form under similarities avoids inconsistent results
(leads to the same result). Hence, the definition of equilibrium:

Definition of equilibrium (v3):
The equilibrium of a system is the only state that maximizes the uncertainty on variables whose
distributions are similarity-invariant in form.

This definition plus the maximum entropy theorem can be expressed all-in-one in the form
of the so-called maximum entropy principle, which is actually also an alternate definition
of the equilibrium:

Definition of equilibrium (v4):
The equilibrium of a system is the only state that maximizes the Shannon entropy of variables whose
distributions are similarity-invariant in form.
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Two classical examples of similarity-invariant distributions mentioned in the above
definitions are those of Boltzmann and Gibbs:

• Boltzmann [4] considers the phase space of one single particle (Γ1 ⊂ R6). For N
particles, provided that their phase spaces are identical, the probability distribution
p(x) he considers is that of finding one particle in a given elementary “volume” x (p(x)
is the particle density). The H-function he defines is the Shannons’s entropy of p(x).

• Gibbs [1] considers directly the phase space of N particles (Γ ⊂ R6N). p(x) is the
probability for the system to be in microstate x. The corresponding Shannon’s entropy
is the same as that defined by Gibbs, who showed that it is also equal to the Clausius
entropy of the system.

Maximizing the entropy of either distribution yields two consistent descriptions of
equilibrium. In practice, the maximization procedure is a variational calculus taking into
account the constraints imposed by our knowledge about the system [6]. For instance,
suppose that the only thing we know about p(x) is that it has a finite support (the minimum
required for a discrete distribution to be properly normalized), then the best distribution
is uniform (this is the microcanonical distribution for an isolated system). If p(x) is only
known to have a positive support, allowing x to have a finite average value, then the best
distribution is the exponential decay (this is the canonical distribution of energy levels for a
closed thermalized system).

In these last two definitions of equilibrium (v3 and v4), the statement of uniqueness
should not be controversial. The core of the controversy lies in the rest. One may consider
that there is absolutely no reason why the system would actually maximize the uncertainty
we, as observers, have about its microstate. But making another inference would be neither
optimal nor reasonable. Moreover, the similitude between the first definitions of equilib-
rium (v1 and v2) that were given in Section 2.1.4 and these last two is noticeable. Whereas
the first definitions were based on thermodynamical considerations and the need for the
theory to define the equilibrium as stable, the second are more general (not only concerned
with microstates) and emerge from a reasoning totally free from thermodynamics and any
considerations regarding stability. This reasoning is an inductive probabilistic inference,
which will be called “subjective”, in contrast with the alternative, called “frequentist”,
which is believed to be more objective.

2.2.3. Alternative “Frequentist” Inference

Statistical mechanics did not wait for information theory to infer distributions at
equilibrium. Alternative approaches focus on the distribution of microstates. In addition,
the problem lies uniquely in deciding what is the distribution for an isolated system.
Because, this being determined, the distribution for any closed subpart can be deduced [22].
These alternative approaches are essentially of two kinds.

The first is based on the already-mentioned principle of insufficient reason, which is
renamed for the circumstance “fundamental postulate of statistical mechanics” [30]. In
fact, it is nothing other than a less formalized and less general expression of the maximum
entropy principle [31].

We will only focus on the second alternative approach, that of “frequentists”, which
intends to adopt an objective point of view. To compensate for the lack of knowledge of
the system, the idea is to make a strong hypothesis, that of “ergodicity”. This hypothesis
essentially aims to fulfill the prerequisite for the definition of probabilities as relative
frequencies: the existence of an ensemble on which to calculate them.

Consider an isolated thermodynamic system; its phase space Γ is the set (ensemble) of
all possible microstates x of probability p(x) under which copies of the system can be found.
Take one of these copies. It is dynamical, that is to say, over time it continuously undergoes
a transformation F : Γ 7→ Γ, allowing one to define, from the initial condition x0, a trajectory
(an orbit) as the set of points in the phase space T(t) = {x0, F(x0), F2(x0), . . . Ft(x0)}. The
ergodic hypothesis is that this trajectory will finally pass recurrently through all points of
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the phase space at the frequency p, which is therefore supposed to remain unchanged over
time (the transformation F preserves the volume of the phase space).

For our concern of determining which probability distribution is that of microstates,
one consequence of the ergodic hypothesis is that “volume preserving” transformation
means that for any point x of the trajectory,

p(x) = p(F−1(x)) (14)

That is, the probability of a given consequent microstate is that of its antecedent. The
probability distribution is therefore uniform and unchanged throughout the trajectory,
which will ultimately cover the entire phase space. We thus obtain the microcanonical
distribution we were looking for.

For comparison with the maximum entropy approach, it is interesting to express the
hypothesis of ergodicity in the same form as previously, i.e., in the form of a definition
of equilibrium:

Definition of equilibrium (v5):
The equilibrium of a system is the only state where the distribution of microstates is the same over
its time transformation as over an ensemble of its copies.

It immediately appears that this definition, contrary to the previous ones, does not contain
any warranty of the stability of the equilibrium. There is no restoring force for the equilib-
rium, which, so defined, is not an attractor for the system. This point is one of the sources
of the inconsistencies that will be discussed in the following.

At the basis of the hypothesis of ergodicity is the fact that deterministic Hamiltonian
systems (according to Liouville’s theorem) are volume-preserving and thus ergodic. In
this context, the trajectory of the system in the phase space is a chain of causality. So,
Equation (14) is more particularly interpreted as follows: the probability of a given conse-
quent microstate is that of its “cause”.

Still, for the sake of comparison, the detailed logical steps of the inductive reasoning
for the ergodic hypothesis, which make it natural to us, are the following: (1) a set of atoms
(a thermodynamic system) is analogous to a set of colliding rigid spheres (in the time of
Maxwell and Boltzmann, as the notion of atom itself, this was far from obvious); (2) usually,
a set of colliding rigid spheres comes under classical mechanics; (3) usually, the equations
of motion of mechanics alone determine the future state of classic mechanical systems
(this is generally the meaning of the word “deterministic”, but there exist exceptions of
non-deterministic classic mechanical systems, e.g., the “Norton’s dome” [32]). From this is
the following: (4) given a microstate x adopted by the system, the equations of motion of
classical mechanics alone determine the future microstate F(x) (Equation (14)).

In short, there is no definitive proof for the system to be ergodic, as measurements are
not possible, but we consider this very likely. The reasoning is ultimately not that far from a
probabilistic inference, but much less explicit on this point than that of maximum entropy.

3. Enigmas

Information theory introduces subjectivity in thermostatistics in two different and
related manners: (1) the encoding of a representation of the system and its link with energy;
(2) a probabilistic inference. In what follows, these two features are used to resolve the
inconsistencies raised by the thermostatistic enigmas quoted in the introduction.

Here, these enigmas are classified into two categories, paradoxes and demons, which
do not have the same level of importance. Paradoxes raise inconsistencies that cannot be
removed by classical statistical mechanics without information theory. As for demons and
the devices they drive, they do not actually introduce inconsistencies, in so far as they are
physical systems that obey the second law of thermodynamics, as do all others. But they
can rather be considered the first evidence of the link between information and energy that
was given by Maxwell, Zermello and Szilard well before Shannon.
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3.1. Gibbs Paradoxes
3.1.1. The Problems

Consider a system D (for disjoined) made of two adiabatic containers, denoted A
and B, of the same volume V, each containing the same quantity N of an ideal gas (of the
same species or not) with the same degree of freedom and at the same temperature T (see
Figure 1). So, the entropy of the two sub-systems is equal S = SA = SB. From the additivity
of entropy,

SD = 2S (15)

Joining these two volumes by removing the partition between them results in another
system J (for joined). The process is never accompanied by any observable thermodynamic
effect: neither heat nor work is exchanged with the surroundings. To determine whether
or not this is accompanied by an increase in Clausius entropy, we must go back to the
disjoined state (close the cycle) by a reversible process and measure heat exchange. Here,
two paradoxes arise and continue to be debated for 150 years (for a review of the debate,
see, e.g., the papers in [33,34]).

Figure 1. Usual image of the joining–disjoining thermodynamic cycle of two volumes of gas of the
same species: removing the partition joins the two volumes and putting it back restores the system to
its initial state with neither work nor heat exchanged with the surroundings.

If the two gases are identical, according to thermodynamic phenomenology, replacing
the partition between the two containers allows the system to return to its initial state. This
is performed without heat exchange, leading to the conclusion that the two states have the
same Clausius entropy.

∆S = SJ − SD = 0 (16)

However, if initially the two gases differ, removing the partition mixes them, and just
putting it back is insufficient to separate them again. The separation can be performed by
two isothermal compressions against two pistons equipped with different semi-permeable
membranes [35]. The first piston is only able to compress one species (from 2V to V) and
the second only the other species (by the same ratio). The total work is thus equal to
W = −Q = T∆S = T × 2N ln 2, leading to

∆S = SJ − SD = 2N ln 2 (17)

In Equations (16) and (17), ∆S is called the entropy of mixing.
The first paradox mentioned by Gibbs [36] is that ∆S is a bivalued discontinuous

step function of the dissimilarity of the gases, but it can legitimately be expected to be
continuous like other property variations in the system (density, refractive index. . . ).

The second paradox comes from statistical mechanics. The Boltzmann entropy of the
disjoined state is SD = 2S = 2N ln V, whereas it is SJ = 2N ln 2V for the joined state. This
leads to the difference ∆S = 2N ln 2. This is true regardless of the gas species, whether
identical or not. If statistical mechanics solve the paradox of discontinuity, it raises another:
Why do the Boltzmann and Clausius entropies differ when they should be the same?

3.1.2. Usual Solutions

Concerning the first paradox, the consensus is that the discontinuity is not problematic.
In fact, the dissimilarity of two species of atoms is discontinuous; thus, that of entropy is not
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a problem. In terms of the classification of Quine [37], the discontinuity is mostly treated in
the literature as a veridical paradox (the two premises are correct but not inconsistent; for a
different approach, see [38]).

As for the second paradox, it is most of the time treated as a falsidical paradox (at
least one premise is wrong). As phenomenology is the final arbiter, the calculation of the
cardinality of the phase spaces must be reconsidered (corrected).

Justifications for this correction are mainly of two kinds. Denote VD = V2 and VJ as
the cardinality of the phase spaces for systems D and J, respectively, in the case where all
the particles are different and clearly identified with a label, such as a serial number. Also,
denote WD = W2 and WJ as the corresponding cardinality in the case where all particles
are identical.

The first approach to justify a correction is based on the notion of the indistinguisha-
bility of particles, which comes from quantum mechanics [39]. For N indistinguishable
particles, their N! permutations give the same microstate, which must therefore be counted
only once, leading to W = V/N!. This is known as the correct Boltzmann counting,
leading to

WD =
VD

N!N!
, WJ =

VJ

(2N)!
(18)

The second approach remains within the framework of classical mechanics, where
particles (even identical) are always distinguishable in the sense that they always have
distinct trajectories, allowing them to be (in principle) traceable and thus identified at any
time. When partitioning the system into two compartments, particles can be combined
in (2N!)/N!N! different manners into the two separate compartments [40–42]. It follows
that the number of possible results for the disjoined state is increased by this multiplicative
factor, leading to

WD = VD
(2N)!
N!N!

, WJ = VJ (19)

It follows that, with the two approaches, the entropy of mixing two identical gases is
the same,

∆S = ln
(

WJ

WD

)
= ln

(
VJ

VD

N!N!
(2N)!

)
(20)

but for different reasons [43]. In both cases, the second Gibbs paradox is claimed to be
solved because, by using an approximation of the Stirling formula, one obtains
ln(N!N!/(2N)!) = 2N ln(N) − 2N ln(2N) = −2N ln 2. So, the excess of entropy
(Equation (17)) obtained with the Boltzmann equation is corrected.

It is important to outline that Equation (19) for WD counts the number of all possible
disjoined microstates. That is to say, WD is the cardinality of the phase space viewed as
an ensemble of different possibilities, including the different possible combinations in the
repartition of particles. But once the partition is in place, a given disjoined microstate thus
obtained will never by itself have a dynamic trajectory allowing it to reach another repar-
tition (the repartition is frozen). In other words, the dynamics of a disjoined state cannot
allow all the possibilities accounted for by Equation (19) to be explored. The disjoined state
is no longer ergodic (this is noted in [44]). It follows that Equation (19) is implicitly valid if
the corresponding entropy is an uncertainty about the actual state of the disjoined system.
Probabilities are prior probabilities and not frequencies. In a classical mechanics framework,
the above solution automatically places us implicitly in a “subjectivist” rather than in a
“frequentist” position. That is to say, there is no solution to the second Gibbs paradox in
the framework of classical statistical mechanics and frequentist (ergodic) inference. The
solution is necessarily quantum or based on a probabilistic inference. It is up to the reader
to decide which one is more consistent and natural. This often goes unnoticed.

The “subjectivist” position to solve the second Gibbs paradox is explicit in some
papers, which are nevertheless largely in a minority (see, e.g., [45–48]). But even in these
latter papers, the paradox of discontinuity is either eluded or treated as veridical.



Mathematics 2024, 12, 1498 13 of 27

3.1.3. Yet Another Solution

The aim of this section is to show how, from the information point of view, the
dissimilarity of two gaseous contents is not bivalued but gradual, and Shannon’s entropy
is too, that is, it is as close as possible to a continuous function with atomistic matter. So,
the paradox of discontinuity is actually falsidical. In doing so, the second paradox is also
solved by considering it to be veridical.

Let us start by observing that thermodynamics considers cycles performed repeat-
edly and reproducibly. Therefore, if the two gases are identical, the representation of a
joining/disjoining cycle does not care about the following:

1. The exact number of particles in each compartment up to the standard deviation
√

N
of the binomial distribution;

2. The traceability of particles (this information is only relevant if the two gases
initially differ).

The correct image of the joining–disjoining cycle is given in Figure 2 (instead of Figure 1).
It is to this very cycle that thermodynamics refers in Equation (16). The calculation of ∆S
in terms of probabilities has thus to be performed by accounting for these two useless
pieces of information. Accounting for the latter is very common and leads to the correct
Boltzmann counting (− ln N! term); accounting for the former requires in addition the
use of the exact Stirling formula ln(N!) = N ln(N/e) + ln(

√
2πN) + o(1) (rather than the

usual approximation that consists in the first term only). It can be found in [49]. Here, a
different derivation is proposed that avoids the term − ln(N!) and allows us in doing so to
solve the paradox of discontinuity.

Figure 2. Correct image of a joining–disjoining thermodynamic cycle supposed to be repeatable (to
be compared to Figure 1): putting back the partition leaves each compartment with the same number
of particles up to the standard deviation

√
N.

Consider a first kind of cycle (see Figure 3, top) that consists of just moving the
partition between the two compartments, denoted A and B. Let t0 be the time just before
the first cycle starts. After the first cycle ends, all pieces of information about the exact
contents of A and B at time t0 are lost. At the end of each cycle in the disjoined state, the
number of particles per compartment is always N ±

√
N. Also, after t0, any information

about the traceability of particles is lost. So, the uncertainty concerning these two features,
the exact number of particles and traceability, is unchanged by further cycles, and so is the
Shannon entropy. Therefore, by considering these further cycles, the Shannon entropy of
mixing is zero, just like the Clausius entropy:

∆S1 = 0 (21)

Imagine that we know for certain that the two compartments initially had exactly
the same number of particles N ± 0 and that we want to retrieve this information when
restoring the disjoined state (see Figure 3, middle). The procedure for the gas partition can
be the following:

1. Put all particles in a separate box;
2. Partition the empty volume 2V into A and B;
3. Iteratively take one pair (a, b) of particles; put one particle (either a or b) in compart-

ment A and the other in B.
4. After N iterations, the two compartments have exactly the same number of particles.
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There are four possibilities to arrange a and b in two boxes: {.|ab, a|b, b|a, ab|.}, and only
a|b or b|a are convenient. Therefore, each iteration divides the number of possibilities
by two and gives us 1 bit of information. The N iterations of the overall procedure and
Equation (12) provide the corresponding entropy of mixing:

∆S2 = N ln 2 (22)

Note that the procedure can be stopped at any iteration if we are satisfied by the uncertainty
on N would lead a random repartition of the rest of the particles. So, depending on our
wish, the entropy of mixing can take any value from 0 to N ln 2 by a step of ln 2.

Imagine that we know for certain that at t0, compartment A was filled with isotope
a and compartment B with isotope b (see Figure 3, bottom). So, we are not satisfied by
the previous procedure and want to restore the original state exactly. In other words, we
want to preserve the traceability. To achieve this, among the two possibilities {a|b, b|a} in
the previous procedure, we must choose a|b. Here again, at each iteration, the number of
possibilities is divided by two and gives us one additional bit of information. So, at the end,
compared to the previous state, the entropy has decreased by an additional amount N ln 2.
Finally, if we consider traceability as crucial, the Shannon entropy of mixing is

∆S3 = 2N ln 2 (23)

Here again, the procedure can be stopped at any iteration according to which degree of
impurities is acceptable.

Figure 3. Mixing–unmixing cycle of a gas made of two species. The cycle depends on the infor-
mation we had and do not want to lose. Top: information about the exact number of particles per
compartment and traceability is lost at the end of the first cycle; therefore, further cycles leave it
unchanged (∆S1 = 0). Middle: retrieving exactly the same number of particles in each compartment
has a minimal energy cost of N ln 2 (∆S2 = N ln 2). Bottom: preserving particles’ traceability has an
additional minimal energy cost also equal to N ln 2 (∆S3 = 2N ln 2).

Depending on our knowledge about the original state or depending on what we
consider as being important about it, the mixing–unmixing cycle differs and the Shannon
entropy of mixing does too. The latter can gradually take any value from 0 to 2N ln 2 by
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steps of ln 2. The two Gibbs paradoxes are solved. Concerning the first Gibbs paradox of
discontinuity, it makes sense only in the case where the dissimilarity of two volumes of gas
is a continuous variable. Otherwise, one cannot speak about a discontinuous function but
only about a discrete function. Two species, a and b, are either identical or different, there
is no intermediate case. By mixing them, we can obtain all intermediate cases between
pure-a and pure-b volumes. Then, we have shown that the entropy of mixing is continuous,
so the first Gibbs paradox is actually falsidical. Pailluson [38] reaches the same result
by considering polydisperse gases and allowing their dissimilarity to vary continuously.
Concerning the second Gibbs paradox, introducing information shows that there is actually
no contradiction between the calculation of Boltzmann (so that no correction is needed)
and the result of thermodynamics. The two deal with different cases. The second Gibbs
paradox is actually veridical.

3.2. Paradoxes Related to H-Function

Boltzmann was the first [4] to write a quantity defined at any time t, named H-function,
which takes the form of an entropy. For that, he considers the phase space of one single
particle (Γ1 ⊂ R6) and the probability p(x) to find a particles at x ∈ Γ1 at time t (with a time
scale supposed to be discretized like the phase space). The H-function is defined as

H(t) = ∑
x∈Γ1

p(x, t) ln(1/p(x, t)) (24)

which is nothing other than Shannon’s entropy of the particle density p.
Starting from the idea of Maxwell’s kinetic theory of gases, that the motion of colliding

rigid particles is governed by the equations of classical mechanics, but also that their large
number allows statistical treatment, Boltzmann obtained an integro-differential equation
(named the Boltzmann transport equation) for the time variation in the density p of a dilute
gas (for a reference book, see [50]). Boltzmann’s equation allowed him to prove that, for a
bounded phase space (an isolated system),

dH
dt

≥ 0 (25)

with the equality corresponding to the equilibrium state defined as stationary. Equation (25)
is known as the H-theorem. “Its proof is clever and beautiful, although not perfectly rigorous.”
(Villani [51]); in fact, the proof in the general case is still in progress. But for physicists,
the H-theorem is quite natural and can be viewed as another expression of the second
law of thermodynamics [52] (concerning another distribution than that of microstates)
plus a definition of equilibrium that warrants its stability. The second law states that
the entropy of an isolated system cannot spontaneously decrease. So, even if classical
thermodynamics (those of Clausius) say nothing about what exactly happens during a
spontaneous process but only deal with the entropy before and after (the time variable
is not present in classical thermodynamic equations), it is legitimate to say that entropy
increases with time during a spontaneous process. For instance, consider a gas that is
initially confined in a small box inside a larger room. Opening the box allows the gas to
expand freely over an increasing volume (dH/ dt > 0) until it uniformly occupies the entire
room (dH/ dt = 0) in a stationary state. In doing so, its entropy continuously increases.

The Boltzmann transport equation and H-theorem constitute the first attempt to
demonstrate the macroscopic second law of thermodynamics from what happens at the
microscopic scale. Against this attempt, two objections have been raised: the reversibility
paradox and the recurrence paradox.

3.2.1. Loschmidt’s Reversibility Paradox

This paradox was originally stated [53] in the form of a thought experiment. Consider
the free expansion of a gas enclosed initially at time t0 in a box placed in a larger room.
Once the system is at equilibrium, after a certain time τ, imagine that the direction of the
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velocity of each particle is reversed, without changing its magnitude. The operation does
not change the macroscopic properties of the gas, such as temperature or volume. So,
neither heat nor work are provided to the system. But, once this has occurred, the gas
particles go backward through the same sequence of collisions as the previous one. So, at
time 2τ, its original microstate is restored. The gas is returned to the box in contradiction
with the second law of thermodynamics and with the observation that this never happens.

The problem can be viewed in two different manners. First, to decide whether or
not the process violates the second law, we must wonder how the operation of reversing
the velocities of particles is possible and whether it can occur without energy expenditure
(certainly not if the operation is physically performed with a device that obeys the second
law). This problem, thus posed in term of an operating “demon”, will be discussed in
Section 3.3.2.

The other viewpoint is that this paradox basically raises the question of how, from
time-symmetrical equations of motion (those of mechanics), it is possible to obtain time-
asymmetrical results. The consensual answer [52,54,55] is that, within the ingredients that
permit us to write the Boltzmann transport equation, the time asymmetry is already present
in the form of the “hypothesis of molecular chaos”: the velocities of two particles before
their collision are fully uncorrelated but, of course, are fully correlated and determined by
mechanics after the collision. Fundamentally, the Boltzmann transport equation (and thus
the H-theorem) is obtained by moving the time asymmetry of the second law of thermody-
namics from the macroscopic to the microscopic scale. The second law is phenomenological
and comes from an inductive reasoning, which basically is a generalization of observations.
By moving at the microscopic scale, it becomes a postulate or a hypothesis allowing us to
build a deductive reasoning. This looks like circular reasoning, but actually for a theory, it
is a progress in terms of economy of thought and potential unification of different areas of
physics (for instance, the unification of thermodynamics and fluid mechanics).

However, for the purpose of this paper, two points are worth emphasizing. The first
is that, in the spirit of the mechanical approach, the independence of probabilities for the
velocities of pre-colliding particles results from the impossibility of reaching a sufficient
accuracy of the initial conditions, i.e., it results from an incomplete knowledge (in this
mechanistic conception, real stochasticity does not exist). The underlying conception of
probabilities is therefore much closer to that of subjectivists than to that of objectivists
(despite a frequentist ambition).

The second point is that, whatever its origin, that is to say, either incomplete knowledge
(usual meaning of chaos) or true stochastic process, the molecular chaos results over time
in a loss of correlation between microstates along the trajectory in the phase space. The
system is no longer deterministic in the sense that the chain of causality, representing the
trajectory of the system in the phase space, is broken. The volume-preserving dynamics
(Equation (14)) and the ergodic hypothesis can still be postulated but they have lost their
principal physical justification and the corresponding inductive reasoning has lost its
strength and is much more hypothetical.

3.2.2. Poincaré–Zermelo Recurrence Paradox

Here comes in to play the Poincaré recurrence theorem. Consider a system with
a bounded phase space Γ that continuously undergoes over time a transformation F
that preserves the volume of any subset of Γ. Hamiltonian systems obey this condition
according to Liouville’s theorem, but here the condition is more general and can apply not
only to deterministic but also to stochastic (purely random) systems like the Ehrenfest urn
model [56]. Then, Poincaré shows that the system will recurrently pass to any point of Γ
already visited.

Going back to the example above of the free expansion of a gas from a small box into
a larger room, yes the gas expands, but it is also expected to return to the box on its own
without any demon. Although it would take a long time, it is not impossible, and not just
once but recurrently.
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Hence, the paradox stated by Zermelo (for a historical perspective, see [57]): How can
such a recurrence be consistent with a continuously increasing H-function? How, also, can
it be consistent with a stable state of equilibrium?

Different arguments have been put forward to resolve the Poincaré–Zermelo para-
dox. For instance, no system has a strictly bounded phase space; even the universe is
expanding. Or, in the thermodynamical limit of an infinite number of particles, the time
of recurrence is also infinite. The argument initiated by Boltzmann himself is that, for
concrete thermodynamic systems with a very large number of particles, the calculated
average time of recurrence is greater than the age of the universe. Practically, the gas
never returns to the box on its own. So, everything is a question of a time window: “The
range of validity of Boltzmann’s equation . . . is limited in time by phenomena such as the Poincaré
recurrence”(Villani [58]), but this limitation is never reached.

All these arguments are valid for resolving the paradox: they all amount to saying that,
in practice, there is no recurrence. But it remains a problem. If there is no recurrence, how
to conceive probabilities as frequencies? Or in the reverse manner, if there is recurrence,
how to reconcile it with the second law (H-theorem) and with a stable equilibrium? The
probabilist inference offered by information theory avoids this inconsistency.

3.3. Demons

Demons observe thermodynamic systems, acquire information about them and use it
to act on them. In doing so they can possibly produce energy. Where does this energy come
from? In fact, energy is an abstraction only defined by a conservation principle [59]. So, if
something is missing in an energy balance, it means that we have discovered a new form of
energy. Demons, on their own, demonstrate the link between information and energy. The
same idea can be expressed in another manner: “In so far as the Demon is a thermodynamic
system already governed by the Second Law, no further supposition about information and entropy is
needed to save the Second Law.” Earman and Norton [60]. In other words, the very definition
of a principle is that everything conforms to it; by definition, a principle is inviolable.

This is an application of pure logic with which I completely agree. However, given the
great expenditure of gray matter devoted to this question, such an answer cannot suffice.
“How does it happen that there are people who do not understand mathematics? If the science
invokes only the rules of logic, those accepted by all well-formed minds, if its evidence is founded on
principles that are common to all men, and that none but a madman would attempt to deny, how
does it happen that there are so many people who are entirely impervious to it?” (Poincaré [61]
p. 46). In fact, demons raise paradoxes that exist, and continue to exist even after they have
been “resolved”, by the mere fact that they have been stated. So, we cannot shrug them
off only by pure logic: we need more. Thus, in what follows, we do not use the shortcut
given in the preamble and rather examine whether what we know from the encoding
problem is sufficient for understanding how demons can operate in accordance with the
second law. No further supposition about information and entropy is needed to save the
second law [60], but we suppose that we already have information theory at our disposal
to solve the inconsistencies raised in the previous section. So, here, we just want to check
its consistency with demons.

With the encoding problem, the quantity of information needed to represent a system,
or equivalently the uncertainty about its state, is identified with its entropy, thus linked to
energy. In particular, acquiring information, i.e., reducing uncertainty, requires an energy
expenditure (Equations (11) and (12)). This acquired information is similar to potential
energy: it is stored and could be used in return. Increasing the potential energy requires
work, but to use it in return, something else is needed: know-how. Otherwise, the potential
information energy simply dissipates at the end of a cycle, which is when the information
is outdated. In short, it is not the acquisition of information that directly has an effect on
the system, it is the acquisition plus the action that depends on it. A misunderstanding of
this point is at the origin of ill-founded criticisms of information theory (e.g., [62]).
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Demons are supposed to know how, but the realization requires a physical imple-
mentation, not only of the action itself but also of all the information processing chain.
By the physical implementation of information processing, I mean a black box including
everything necessary for measurement, storage, transmission, eventual erasure, etc., that
necessarily fall under the second law of thermodynamics. It is this physical implementation
that is responsible for the minimum energy expenditure for demons to operate.

From the second law of thermodynamics expressed in terms of information
(Equations (11) and (12)), the acquisition of 1 bit of information has a minimum energy cost
equal to T ln 2. Therefore, to check if demons work in accordance with the second law, it is
enough to check if the quantity of information necessary for their action is consistent with
the energy that can be obtained in return.

3.3.1. Maxwell’s Demon

The family of thermodynamical demons [63] was born with the temperature demon
of Maxwell [64]. Imagine a gas in an insulating container separated in two compartments
A and B by a thermally insulating wall in which there is a small hole. A demon “can see the
individual particles, opens and c1oses this hole, so as to allow only the swifter particles to pass from
A to B, and only the slower ones to pass from B to A. He will thus, without expenditure of work, raise
the temperature of B and lower that of A in contradiction to the second law of thermodynamics.”
([64] p. 308). The temperature difference between the two compartments can eventually be
used for running a thermodynamic cycle and producing work.

A simplified version is the pressure demon: particles whatever their speed can only
pass from A to B. This results in a pressure difference between the two compartments,
which can be used for producing mechanical work. Alternatively, in this simplified version,
the demon can be replaced by a concrete device, either by a one-way valve, as proposed by
Smoluchowski [63], by a ratchet–pawl mechanism [65], or by an electric diode and the gas
particles by electrons [19,66]. Then, if the two compartments communicate by an additional
channel, the device is expected to rectify thermal fluctuations and produce a net current of
particles, which can deliver useful energy. For the last two concrete devices, it has been
experimentally shown that they can work provided that the rectifier (ratchet–pawl or diode)
is cooled at a lower temperature than the rest of the system [67,68] in return for the entropy
decrease. Demons work in the same way once physically implemented.

The quantitative verification of the correspondence between, on the one hand, the
information necessary for the demon and, on the other hand, the energy that can be
obtained in return is simplified with the device proposed by Szilard [69]. It is composed of
a single particle in a volume 2V (see Figure 4). The demon does not care about the velocity
of the particle but only the compartment it is in. This information is encoded with only 1
bit, which costs at least T ln 2 (Equation (12)). In the opposite compartment, the demon
installs a piston, which encloses the particle in a volume V. The system can return to the
original state by an isothermal expansion that provides to the surroundings a work equal
to, at best, T ln 2. The overall cycle is consistent with thermodynamics.

Figure 4. Szilard demon detects when the particle is in the suitable compartment and then installs a
piston, allowing the device to subsequently produce work.

3.3.2. Loschmidt’s Demon

Let us return to the Loschmidt’s paradox of reversibility (Section 3.2.1), this time with
an operating demon actually able to reverse the velocities of particles. We wonder whether
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the quantity of information (in terms of the minimum number of bits to encode it) necessary
for the demon to operate is in agreement with the mechanical work that the gas could
produce with a subsequent isothermal expansion.

Let V1 and V2 denote, respectively, the volume of the initial box and that of the room
in which the gas was expanded, and λ such as V2/V1 = 2λ. So, the mechanical work per
particle provided by an expansion is equal to, at best, λT ln 2, and for N particles,

W ≤ NλT ln 2 (26)

For the demon to reverse the velocity of one particle in volume V2, it must intercept
the trajectory of the particle with an elastic wall (a mirror) having the correct direction
(perpendicular to the trajectory), the correct orientation (+ or −) and the correct position
(that of the particle) [70]. All the necessary information resides in the recording of the
corresponding microstate of the particle. From V1 to V2, the number of bits required for
encoding the velocity of one particle remains unchanged, but encoding its position requires
λ extra bits (the cardinality of the phase space of one particle increases by a factor V2/V1).
For N particles, Nλ extra bits are needed. From Equation (12), their acquisition costs at
least NλT ln 2, in agreement with the work that can be obtained in return and with the
second law of thermodynamics.

3.3.3. Landauer’s “Principle”

Equation (12), obtained in the sole framework of Shannon’s information theory (plus
the second law of thermodynamics), strongly resembles another one known as Landauer’s
“principle” [71–74] (which also uses the second law but is free of Shannon’s information
theory and of the encoding problem). Clarification is therefore necessary to avoid confusion.

Landauer considers the physical implementation of a logical bit in the form of one-
to-one mapping between the two logical states (0 and 1) and two thermodynamical states
materialized, for instance, by a particle in a bistable potential. In this framework, it was
shown that the irreversible logical operation ERASE (or RESET TO 0) of the bit can be split
into two steps:

1. Put the bit into an undetermined state by flattening the potential;
2. Set the bit to 0 by applying a bias and then raise back the energy barrier.

The point is that during the first step, the probability distribution of the particle undergoes
a leakage comparable to the irreversible adiabatic free expansion of a gas (by a factor 2). So,
neither heat nor work are exchanged with the surroundings. Comparatively, the second
step can be quasistatic. Suppose that the initial state was 0, the second step closes a
thermodynamic cycle. So, to be in agreement with the second law, it must have an energy
cost at least equal to T ln 2. It follows that the total energy cost of the operation ERASE (of
the cycle) is

Werase 1 bit ≥ T ln 2 (27)

This result is known as the Landauer’s “principle”, despite the fact that it cannot be a
general principle (hence the quotes) but only applies to this particular physical implemen-
tation. Actually, to avoid any leakage from one potential hole to its neighbor, it is enough
to design a physical implementation based on a two-to-one mapping between logic and
thermodynamic states [75]. With only one potential hole, there is no leak.

Equation (12) has general validity and concerns the acquisition of a data bit, whatever
the way in which it was carried out and including all the steps necessary for this acquisition.
Equation (27) concerns the erasure of a data bit with a particular physical implementation
consisting of a bistable potential and results from the thermodynamics of this particular
case. The difference between “acquisition” and “erasure” should be clear enough to avoid
confusion. But we can conceive certain particular data acquisition procedures (in particular
that envisaged by Landauer and Bennet [72,74] in which they propose to replace the
thermostatistic demons) that require erasing the bit before writing a new value there. In
this case, Equations (12) and (27) lead to the same result. Hence, a possible confusion.
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The generic black box of the demons based on Equation (12), which dissipates T ln 2
per bit, includes everything necessary for measurement, storage, transmission, eventual
erasure, etc. Different physical implementations correspond to different places where
dissipation could occur. There is absolutely no clue that allows us to suggest that this place
is universal. Brillouin analyzed the physical limits for an observation through numerous
examples of measurement procedures that could be implemented [19]. He showed that, in
all cases, the energy expenditure needed to reach a given accuracy and the corresponding
decrease in entropy that this information would allow are consistent with the second law
of thermodynamics.

But, currently, the most popular physical implementation is that of Landauer. The
functioning of Landauer’s black box is such that the measurement is free and only its
recording in the form of bit values causes energy dissipation. For 1 bit of data, this
functioning is as follows (see Figure 5):

1. The bit is materialized with a bistable potential. Erasing the bit dissipates at least
T ln 2 (Equation (27)).

2. The recording procedure requires the bit to be erased before new data are recorded.

This functioning is a doubly special case: a special case of bit implementation and a special
case of recording procedure. Based on the second law, it is obviously in full agreement
with Equation (12). So, if it is claimed that a solution using Landauer’s “principle” is found
for the paradoxes introduced by demons, then the same solution is valid using the sole
framework of Shannon’s information theory and Equation (12). But, this time, in a more
direct way with general validity.

Landauer’s “principle” is presented as the key point for definitively resolving the para-
doxes caused by demons and, therefore, to definitively link information to
energy [70,76–82]. In addition to the previous objection that it is not a general principle, let
me focus on the second point of the functioning of Landauer’s black box for demons.

When I was a teenager, I had a boombox to record my favorite music. With this device,
it was possible to fully erase an already-used cassette to start with an almost blank tape (a
standard state). The idea behind this was that if you leave a blank between two pieces of
music, you will not hear the old music when listening to the new. But erasing the cassette
was not mandatory. The cassette could be directly overwritten, for example, if a long
concert was recorded. In this case, the silence between two pieces (as silences within a
given piece) is not a blank (an absence of message) but a message in itself. In other words,
it is possible to record and process data without having to erase anything (whether the data
are digitized or not does not change anything). The injunction to avoid overwriting (and
thus the need of erasing), which we find in the recent literature (e.g., [70]), is unfounded.

Actually, ERASE and OVERWRITE are irreversible logical operations. The logical
irreversibility is defined by Landauer himself: “We shall call a device [an operation] logically
irreversible if the output of a device does not uniquely define the inputs.” [71]. It is a property
of the initial and final states of the bit. For instance, a logical operation from A to B
is logically irreversible if, once in B, the information of where the system was initially
has been lost, so it is not possible to return to the starting point, A. On the contrary, a
transformation is thermodynamically irreversible if it is not possible to return to A using
the same path backwards. Thermodynamical irreversibility is a path property. Therefore, it
is not surprising that a logical irreversible operation can be achieved by using a reversible
thermodynamic process.
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Figure 5. Generic implementation (Equation (12)) versus Landauer implementation (Equation (27))
of a demon.

4. About Subjectivity in Physics

The approach of information theory to statistical mechanics avoids all inconsistencies
of the alternative frequentist position. But we are forced to note an opposition to this idea.
This opposition goes beyond science and is epistemological. The subjectivity introduced
by information theory is the sticking point. Among many quotes, I note these which are
particularly clear in this regard:

“The Jaynes approach [that of maximum entropy principle] is associated with a philosoph-
ical position in which statistical mechanics is regarded as a form of statistical inference
rather than as a description of objective physical reality.” (Penrose [2])

“A number of scientists and information theorists have maintained that entropy is a
subjective concept and is a measure of human ignorance. Such a view, if it is valid, would
create some profound philosophical problems and would tend to undermine the objectivity
of the scientific enterprise.” (Denbigh and Denbigh [17])

“This [the maximum entropy principle] is an approach which is mathematically fault-
less, however, you must be prepared to accept the anthropomorphic nature of entropy.”
(Lavis [83])

The aim of this section is to show that the type of subjectivity introduced into physics
by information theory is in reality not new at all. It is in line with an ancient development
of a general conception of what science is, which I propose to clarify.
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4.1. Representationalism

The first subjective character introduced by information theory lies in the problem of
coding a representation of the system that allows its behavior to be reproduced.

This representation depends on our knowledge, in the sense that it depends on
the state of the art of the devices used to measure and probe the parameters needed
for this representation. It also depends on the parameters that we consider relevant for
this representation. Consider, for example, the unavoidable impurities in any chemical
substance. A correct representation of the system must take them into account. But, below
a given threshold, which depends on our tools of measurement, impurities are no longer
detectable and cannot be part of our representation of the system. But we can suppose
them to be still present in an objective being of the system. Impurities are present in the
real system but not in our representation of it. Additionally, impurities can be isotopes.
What about the representation of the system before their discovery? [46]. Also, in the
thermodynamics of motors, pumps etc., most of the time we do not care about isotopes
(actually, we do not care about atoms either; before their discovery, thermodynamic engines
already worked very well), so their presence or absence is useless information for the
representation of the system (and does not need to be encoded). In this sense, information
is subjective. It depends on the state of knowledge of the observer or which level of detail
we (collectively) consider as relevant to describe a system. But it does not depend on the
personality of the observer; it is not a personal element [15].

The subjectivity of entropy was already acknowledged by Maxwell (“The idea of
dissipation of energy depends on the extent of our knowledge” [18]) and Gibbs (“It is to states
of systems thus incompletely defined that the problems of thermodynamics relate.” [36]). This is
believed to contrast with other physical quantities considered objective properties. Actually,
information theory does nothing other than explicitly introduce representationalism (also
named indirect realism) into these problems.

The basic idea of indirect realism is that our only access to reality is that provided by
our senses (in a broad sense, that includes all laboratory instruments). Following Einstein,
“all knowledge about reality begins with experience and terminates in it” [25]. If “experience” is
understood as a conscious event that passes through our senses, it follows that the concern
of science is not the reality but the representation our senses give us of it. Fifty years
before Shannon, Mach wrote, “The law always contains less than the fact itself, because it does
not reproduce the fact as a whole but only in that aspect of it which is important for us, the rest
being either intentionally or from necessity omitted.” [84]. He was not talking about entropy or
thermodynamics, he was talking about the laws of physics in general.

Information theory formalizes this idea, which would otherwise remain unclear and
implicit. Entropy itself is a very objective property and is well defined mathematically.
But it is an objective property of a subjective representation of reality. In this, according
to indirect realism, entropy does not differ from other physical quantities. The above
argument should be able to answer the question asked by some: “Thermodynamic entropy is
not different, in regard to its status of objectivity, from physical properties in general. How came
it then that so many scientists have held, and still hold, the opposite opinion?” (Denbigh and
Denbigh [17] p. 18).

Regarding all physical quantities other than entropy, from a purely scientific point of
view, the difference between direct and indirect realism is just a question of vocabulary. For
direct realists, science is directly about the real world. For indirect realists, we do not have
access to the real world but only a representation of it, so only this representation is the
subject matter of science. This difference can be ignored in the daily practice of science.
Rename “representation of reality” to “reality” and both realisms are talking about the
same thing. In both frameworks, theories concern the same object and their experimental
examinations are equally achieved from our interactions with this object. The difference
is only epistemological. Poincaré wrote: “Does the harmony [the laws of nature] the human
intelligence thinks it discovers in nature exist outside of this intelligence? No, beyond doubt, a
reality completely independent of the mind which conceives it, sees or feels it, is an impossibility.
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A world as exterior as that, even if it existed, would for us be forever inaccessible. But what we
call objective reality is, in the last analysis, what is common to many thinking beings, and could be
common to all; this common part can only be the harmony expressed by mathematical laws. It is this
harmony then which is the sole objective reality, the only truth we can attain.” ([85] p. 15).

When it comes to entropy as seen by information theory, what becomes troubling is
that the difference between the direct and indirect realism views can no longer be ignored,
even in science. This is the only point on which entropy is so special compared to all other
physical quantities. Shannon’s entropy quantifies the complexity of the representation itself
(in this case, the quantity of information is a particular case of complexity [13]). In doing
so, it makes the notion of representation crucial and explicit.

4.2. Induction

Science is linked to knowledge, understood as a set of statements recognized as true.
According to logical empiricism (or logical positivism), we have two possible sources of
knowledge, each linked to a type of reasoning that assert that a statement is true: the first is
purely logical (deductive reasoning) and the second empirical (inductive reasoning). Here,
we will not enter into the debate on the justification of deduction, that is to say, on the
origin of the elementary rules of natural logic (which can possibly be empirical), we will
focus only on induction, but we will need deduction for comparison.

Induction is unavoidable and omnipresent in natural sciences: generalization, interpo-
lation, regression analysis, analogy, etc., are all inductions based on known experimental
facts. “Without generalisation, prediction is impossible” (Poincaré [86]). In fact, induction is
the reasoning that allows us, from our current knowledge, to predict new observations
or answer new questions. At the basis of phenomenological laws, but also theoretical
hypothesis, postulates or principles, there is always inductive reasoning, at least implicit.

However, if the truth of a deductive statement can be proved and verified (provided
the premises and the logical rules are right), the verification of an inductive statement
can never be definitively achieved because this would imply a infinite non-countable set
of experimental facts. The truth of a deduction is certain; that of an induction is at best
probable. “By generalization, every fact observed enables us to predict a large number of others;
only, we ought not to forget that the first alone is certain, and that all the others are merely probable”
(Poincaré [86]). If known experimental facts make it possible to base an inductive reasoning,
new or upcoming ones can only either confirm or refute it, but never definitely prove it.
Inductions are by essence provisional and likely to be updated or replaced by better ones
as progress is made.

If an inductive statement can never be verified (proven to be true), how can we
differentiate between a well-founded scientific claim and another that is ill founded and
irrational? How can we make a hierarchy between different reasonings? Which is the best?
This is known as the problem of induction (for a recent book on this topic, see [87]).

A first piece of answer was provided by the falsificationism of Popper [88]. Since
verifiability cannot be required for induction, Popper instead suggests replacing it with
falsifiability. A valid inductive reasoning must be falsifiable (or refutable): it must be able
to be confronted with the experiments. This is the first condition. If it is met, an induction
remains “true” until proven otherwise. The requirement of falsifiability of an induction
entails another: that of not being tacit or hidden, but explicit. Otherwise, we make the
reasonings without any chance of attempting to refute them [86]. But this is still not enough
to establish a hierarchy of inductive reasoning.

Confirmation or refutation of inductive reasoning passes though experiments. At first
glance, the refutation seems clear-cut, while the confirmation seems gradual (incremental)
as more and more facts consistent with an induction reinforce it. However, both are
conditioned on the validity of experimental results, themselves conditioned on confidence
intervals (errors bars). This automatically introduces a link between the notion of the
“degree of confirmation” or “degree of belief” and that of the “probability of truth” of an
induction [89]. Hence, the claim that all inductive reasoning in science falls under the same
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universal pattern as that of probabilistic inferences. The best is the most probable according
to our present knowledge, that is to say, the one that has the highest prior probability of
being true. This is the essence of Bayesianism [90] (named after Bayes and his theorem
about the probability of an event conditioned on prior knowledge) and its derivatives in
spirit, among which the maximum entropy inference can be classified.

Not everyone agrees with the existence of such a universal pattern for induction. For
example, Norton [91] introduces a material theory of induction that professes that the
logic of induction is determined by facts specific to each case and which cannot always
be expressed in terms of probability. To which it has been opposed [92] that as soon as
the confirmation procedure (and then the updating of the induction) involves data and
measurements, probabilities come into play.

Whether maximum entropy inference is a starting point to produce a first prior
probability distribution necessary for Bayesian updating or whether it is a generalization of
Bayesian inference, unless it is the other way around [93], is beyond the scope of this paper.
The main point is the universal aspect of all inductive reasoning, that of being ultimately
probabilistic, that of involving prior knowledge and prior probabilities and that of being
subjective (in the sense given to this word in this paper).

Although scientists are aware of the problem of induction and adopt probabilistic
inductive reasoning for their daily practice (personally, I do not know any scientist who
would prefer to work on the option they believe has the lowest probability of success), this
practice is not necessarily conscious and the problem of induction is often (temporarily)
forgotten or denied. Below are some quotes from the recent literature of interest here: “Ex-
perimental verification of Landauer’s principle linking information and thermodynamics.” (Bérut
et al. [76]); “Information and thermodynamics: experimental verification of Landauer’s Erasure
principle.” (Bérut et al. [77]); “We experimentally demonstrate a quantum version of the Landauer
principle.” (Yan et al. [79]); “Landauer’s principle has been recently verified experimentally”
(Binder [70]), etc. I cannot imagine that these authors ignore or disagree with the impossi-
bility of verifying an induction. Instead, I interpret these quotes as language facilities that
are not innocent but reveal a reluctance to inductions. Physicists prefer deductions, proofs
and definitive verifications; all things expected of hard sciences.

The problem with information theory is that here, again, as for representationalism,
everything is explicit: we cannot feign ignorance of our complete dependence on subjective
probabilities in natural sciences.

5. Conclusions

The subjectivity of information theory as it has been defined in this paper, that is to say,
something that is not personal but simply refers to the role played by our knowledge, allows
us to resolve the inconsistencies present in thermostatistics from the start. At the same time,
it is this subjectivity that worries some for epistemological rather than scientific reasons.

The role played by subjectivity should not be so surprising, at least in this area. Ther-
modynamics from the beginning refers to anthropocentric concepts and vocabulary, such as
energy grades, useful energy, energy cost, work, dissipation. . . In addition, thermodynamics
is a science of the macroscopic scale. This term itself is anthropocentric, since macroscopic
only designates our human scale. Indeed, in practice, the role that a certain subjectivity can
play is admitted in science. But we are so steeped in positivism and with the ambition to be
objective that when subjectivity becomes too explicit it becomes annoying. In fact, science
is a human construct. The “Laws of Nature” do not come from nature, they come from
us. The mere fact that these laws are provisional and subject to being continually replaced
(updated) by better ones as science and our knowledge progress proves this.

Finally, there is another source of reluctance towards information theory that can be
perceived in light of certain recent publications. It was not mentioned in this article but
probably deserves special attention. It is also linked to the ambition of objectivity, but not
in the same way that the refusal of representationalism and Bayesianism was. This is due
to a particular meaning given to the word “physical”, understood as “materialized”, as
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opposed to virtual or non-tangible. There is nothing more “objective” than matter. After
Landauer (“Information is physical” [72]), many authors interpreted his principle as the
missing element they were waiting for to materialize information. Probably the most
recent development of this idea can be found in the “mass-energy-information equivalence
principle” [94,95]. In short, information is energy, and energy has a mass equivalent in
special relativity (E = mc2); therefore, information has a mass. For example, the author
proposes measuring the mass of a hard drive before and after erasing 1 TB of data. The idea
behind it is that information is a kind of potential energy, which can be used for instance by
a demon to act on a system and produce work. What is the status of potential energy in
special relativity? [96,97]. Actually, potential energy is not energy, it is something that is
potentially energy. It is actually stored in the form of rest mass [98], just like the mass defect
in nuclear physics. Hence, the idea behind the “mass-information equivalence principle”.
Potential energy is a concept, just like entropy and information are. But there is a major
difference: if we wonder about the mass equivalence of T∆S when a body undergoes a
process, we implicitly consider a constant temperature and therefore a constant internal
energy to which no variation in rest mass can be associated as being localized in the body
considered, but more likely in its surroundings. In this sense, entropy and information
remain even more elusive concepts than that of potential energy. But developing this point
deserves another article [99].
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