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1. Introduction

In [1], the authors points out that the classical Chebyshev’s integral inequality is
deeply connected with the study of positive dependence of random variables, which are
monotone functions of a common random variable. The Chebyshev-type inequalities and
their applications were investigated by many authors [1–13]. In [2], the authors established
the Chebyshev-type inequalities involving the permanents of matrix as follows:

per(A ⊙ B)
n!

≥ perA
n!

· perB
n!

and
perA

∏n
i=1 ∑n

j=1 ai,j
≤ perB

∏n
i=1 ∑n

j=1 bi,j
.

In [3], the authors established the following Chebyshev type inequality:

⟨a, b⟩
⟨a∗, b∗⟩ ≥

∥a∥p

∥a∗∥p
·
∥b∥q

∥b∗∥q
,

where a, b, a∗, b∗ ∈ Rn
++,

⟨a, b⟩ ≜
n

∑
i=1

aibi and ∥a∥p ≜

(∑n
i=1 |ai|p)1/p, 0 < p < ∞

max
1≤i≤n

{|ai|}, p = ∞ .

The Jensen type inequalities and their applications were also investigated by many
authors [14–24]. In [14], the authors considered that comparing two integral means for
absolutely continuous functions, whose absolute value of the derivative are convex, and
displayed its applications.
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The probability density function [24–30] of the random variable is a basic concept in
the theories of probability and statistics. In [24], the authors studied the monotonicity of
the interval function

JVarϕ φ
(

X[a,b]

)
≜

∫ b
a pIϕ(φ)∫ b

a pI
− ϕ

(∫ b
a pI φ∫ b
a pI

)
,

which involving the probability density function pI , where I = [a, b] is an interval, and
displayed its applications in the analysis of variance and the higher education. In [25],
the authors considered the probability density function of a stochastic HIV model with
cell-to-cell infection.

This paper established the Chebyshev–Jensen-type inequalities involving the χ-products
⟨·⟩χ and [·]χ, and we proved that our main results are the generalizations of the classical
Chebyshev inequalities (see Corollaries 1 and 2), as well as displaying the applications
of our main results in probability theory, and the discrete with continuous probability
inequalities are obtained.

In Section 2, we defined the comonotone and the χ-products; in Section 3, we estab-
lished the discrete Chebyshev–Jensen-type inequalities; In Section 4, we established the
continuous Chebyshev–Jensen-type inequalities; in Section 5, we displayed the applications
of our main results in probability theory.

The research tools of this paper include the theories of functional analysis [31–33],
discrete mathematics [2,34], mean value [35,36], and probability [24–30]. The research
methods of this paper are based on mathematical induction [2,36], the reorder method [2],
and the dimension reduction method [36].

2. Basic Concepts and Classical Results

We will use the following hypotheses and notations throughout the paper.

N ≜ {0, 1, 2, . . . , j, . . .}, Nn
k ≜ {j ∈ N : k ≤ j ≤ n}, R ≜ (−∞, ∞),

R+ ≜ [0, ∞), R++ ≜ (0, ∞), X ≜ (x1, x2, . . . , xn) ∈ Rn, Y ≜ (y1, y2, . . . , yn) ∈ Rn,

X ≜ n−1(x1 + x2 + · · ·+ xi + · · ·+ xn) ∈ R, Xr ≜ (xr
1, xr

2, . . . , xr
i , . . . , xr

n) ∈ Rn,

e ≜ (1, 1, . . . , 1, . . . , 1) ∈ Rn, f (X) ≜ ( f (x1), f (x2), . . . , f (xi), . . . , f (xn)) ∈ Rn,

X1X2 · · · Xr · · · Xm ≜
(

x1
1x2

1 · · · xm
1 , x1

2x2
2 · · · xm

2 , . . . , x1
r x2

r · · · xm
r , . . . , x1

nx2
n · · · xm

n

)
∈ Rn,

C[0, 1] ≜ { f : [0, 1] → I : f be continuous}, Cr[0, 1] ≜ { fr : [0, 1] → Ir : fr be continuous},

f ≜
∫ 1

0
f (t)dt, f ∈ C[0, 1], T ≜ (t1, t2, . . . , tr, . . . , tm) ∈ Rm, Π(T) ≜ t1t2 · · · tr · · · tm,

χr(T) ≜
∂χ(T)

∂tr
, ∀r ∈ Nm

1 , χrs(T) ≜
∂2χ(T)
∂tr∂ts

, ∀r, s ∈ Nm
1 ,

Im ≜ I1 × I2 × · · · × Ir × · · · × Im, In = In ⇔ I1 = I2 = · · · = Ii = · · · = In = I,

where I, I1, I2, . . . , Ir, . . . , Im are the intervals, i ∈ Nn
1 , r ∈ Nm

1 , m ∈ N∞
2 and n ∈ N∞

2 .

Definition 1 (see [1]). The points X, Y ∈ Rn are said to be comonotone, written as X ∽ Y, if(
xi − xj

)(
yi − yj

)
≥ 0, ∀i, j ∈ Nn

1 , (1)

and X and Y are said to be countermonotone, written as X ⋍ Y, if −X ∽ Y; the functions
f , g : [0, 1] → R are said to be comonotone, written as f ∽ g, if

( f (x)− f (y))(g(x)− g(y)) ≥ 0, ∀x, y ∈ [0, 1], (2)
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and f and g are said to be countermonotone, written as f ⋍ g, if − f ∽ g.

Definition 2. Let the function χ : Im → R be continuous. Then, we define the functional [31–33]

⟨X1, . . . , Xm⟩χ : In
1 × · · · × In

m → R, ⟨X1, . . . , Xm⟩χ ≜
1
n

n

∑
i=1

χ
(

x1
i , . . . , xm

i

)
(3)

as the first χ-product of the points X1, X2, . . . , Xm, and the functional[
X1, . . . , Xm

]
χ

: In
1 × · · · × In

m → R,
[

X1, . . . , Xm
]

χ
≜

1
nm ∑

1≤i1,...,im≤n
χ
(

x1
i1 , . . . , xm

im

)
(4)

as the second χ-product of the points X1, X2, . . . , Xm.

By Definition 2, we see that the functional ⟨X1, . . . , Xm⟩χ is the mean value [35,36] of
the functions χ

(
x1

i , . . . , xm
i
)
, ∀i ∈ Nn

1 , and the functional
[
X1, . . . , Xm]

χ
is the mean value

of the functions χ
(

x1
i1

, . . . , xm
im

)
, ∀i1, . . . , im ∈ Nn

1 , and

⟨X1, X2, . . . , Xm⟩Π = X1X2 · · · Xm (5)

with [
X1, X2, . . . , Xm

]
Π
= Π

(
X1, X2, · · · , Xm

)
= X1 × X2 × · · · × Xm. (6)

Definition 3. Let the function χ : Im → R be continuous. Then, we define the functional [31–33]

⟨ f1, . . . , fm⟩χ : C1[0, 1]× · · · × Cm[0, 1] → R, ⟨ f1, . . . , fm⟩χ ≜
∫ 1

0
χ( f1, . . . , fm)dt (7)

as the first χ-product of the functions f1, f2, . . . , fm, where fr ≜ fr(t), ∀r ∈ Nm
1 , and the functional

[ f1, . . . , fm]χ : C1[0, 1]× · · · × Cm[0, 1] → R, [ f1, . . . , fm]χ ≜
∫ 1

0
· · ·

∫ 1

0
χ( f1, . . . , fm)dt1 · · ·dtm (8)

as the second χ-product of the functions f1, f2, . . . , fm, where fr ≜ fr(tr), ∀r ∈ Nm
1 .

By Definition 3, we see that the functional ⟨ f1, . . . , fm⟩χ is the mean value [35,36] of
the function χ( f1(t), . . . , fm(t)), and the functional [ f1, . . . , fm]χ is the mean value of the
function χ( f1(t1), . . . , fm(tm)), and

⟨ f1, f2, . . . , fm⟩Π = f1 f2 · · · fm (9)

with
[ f1, f2, . . . , fm]Π = Π

(
f1, f2, · · · , fm

)
= f1 × f2 × · · · × fm. (10)

The classical Chebyshev inequalities [1–13] can be expressed as follows.
Let X1, X2 ∈ Rn. If X1 ∽ X2, then we have the following discrete Chebyshev inequality:

1
n

n

∑
i=1

x1
i x2

i = ⟨X1, X2⟩Π ≥
[

X1, X2
]

Π
= X1 × X2 =

(
1
n

n

∑
i=1

x1
i

)
×
(

1
n

n

∑
i=1

x2
i

)
, (11)

and
⟨X1, X2⟩Π = X1 × X2 ⇔ X1 = x1

1e ∨ X2 = x2
1e. (12)

Let f1, f2 : [0, 1] → R be continuous. If f1 ∽ f2, then we have the following continuous
Chebyshev inequality:
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∫ 1

0
f1(t) f2(t)dt = ⟨ f1, f2⟩Π ≥ [ f1, f2]Π = f1 × f2 =

(∫ 1

0
f1(t1)dt1

)
×
(∫ 1

0
f2(t2)dt2

)
, (13)

and
⟨ f1, f2⟩Π = f1 × f2 ⇔ f1(t) ≡ f1(0) ∨ f2(t) ≡ f2(0). (14)

An important hypothesis of Chebyshev inequality (11) is X1 ∽ X2, and an important
hypothesis of Chebyshev inequality (13) is f1 ∽ f2. Using these methods to deal with the
inequality problems is called the reorder method [2].

The classical Jensen inequalities [14–24] can be expressed as follows.
Let the function f : I → R be a strictly convex function [14,21–23]. Then, for any

X ∈ In, we have the following discrete Jensen inequality:

f (X) ≥ f
(
X
)
, (15)

and
f (X) = f

(
X
)
⇔ X = x1e. (16)

Let the functions g : [0, 1] → R and f : g[0, 1] → R be continuous, where g[0, 1] is
the valued field of the function g, and let the function f : g[0, 1] → R be a strictly convex
function. Then, we have the following continuous Jensen inequality:

f (g) ≥ f (g), (17)

and
f (g) = f (g) ⇔ g(t) ≡ g(0). (18)

This paper will generalize the Chebyshev inequalities (11) and (13), and establish the
Chebyshev–Jensen-type inequalities involving the χ-products ⟨·⟩χ and [·]χ.

3. Discrete Chebyshev-Jensen-Type Inequalities

Theorem 1 (Discrete Chebyshev–Jensen-type inequalities). Let the function χ : Im → R be
continuous and

∂2χ(T)
∂tr∂ts

> 0, ∀T ∈ Im ∧ ∀r, s ∈ Nm
1 . (19)

If
(
X1, X2, . . . , Xm) ∈ In

1 × In
2 × · · · × In

m and

Xr ∽ Xs, ∀r, s ∈ Nm
1 , (20)

then we have the following discrete Chebyshev–Jensen-type inequalities:

⟨X1, X2, . . . , Xm⟩χ ≥
[

X1, X2, . . . , Xm
]

χ
≥ χ

(
X1, X2, . . . , Xm

)
. (21)

Both the equalities in (21) hold if and only if

Xr = xr
1e, ∀r ∈ Nm

1 . (22)

Lemma 1. For the equalities(
xr

i − xr
j

)(
xs

i − xs
j

)
= 0, ∀i, j ∈ Nn

1 ∧ ∀r, s ∈ Nm
1 ∧ r ̸= s (23)

and
Xs = xs

1e, ∃k ∈ Nm
1 ∧ ∀s ∈ Nm

1 \ {k}, (24)

then the conditions (23) and (24) are equivalent.

Proof. We first prove that (23) ⇒ (24).
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Indeed, if
Xs = xs

1e, ∀s ∈ Nm
1 , (25)

then for any k ∈ Nm
1 , the equalities in (24) hold.

Assume that there exists a k ∈ Nm
1 such that Xk ̸= xk

1e. Then, there exists a p ∈ Nn
2

such that xk
p ̸= xk

1.
Let i ∈ Nn

1 . Since xk
p ̸= xk

1, we have xk
i ̸= xk

p ∨ xk
i ̸= xk

1. Assume that xk
i ̸= xk

1. By (23),
we have (

xk
i − xk

1

)
(xs

i − xs
1) = 0, ∀i ∈ Nn

1 ∧ ∀s ∈ Nm
1 \ {k}

⇒ xs
i = xs

1, ∀i ∈ Nn
1 ∧ ∀s ∈ Nm

1 \ {k}
⇒ Xs = xs

1e, ∃k ∈ Nm
1 ∧ ∀s ∈ Nm

1 \ {k}
⇒ (24).

Assume that xk
i ̸= xk

p. By (23), we have(
xk

i − xk
p

)(
xs

i − xs
p

)
= 0, ∀i ∈ Nn

1 ∧ ∀s ∈ Nm
1 \ {k}

⇒ xs
i = xs

p, ∀i ∈ Nn
1 ∧ ∀s ∈ Nm

1 \ {k}
⇒ Xs = xs

pe, ∃k ∈ Nm
1 ∧ ∀s ∈ Nm

1 \ {k}
⇒ Xs = xs

1e, ∃k ∈ Nm
1 ∧ ∀s ∈ Nm

1 \ {k}
⇒ (24).

Next, we prove that (24) ⇒ (23).
Indeed, since r ̸= s, we have r ̸= k ∨ s ̸= k. Assume that r ̸= k. Then, by (24), we have

Xr = xr
1e. Hence, (23) holds. Assume that s ̸= k. Then, by (24), we have Xs = xs

1e. Hence,
the equalities in (23) also hold.

In summary, the conditions (23) and (24) are equivalent.

Lemma 2. Let the function χ : Im → R be continuous and

∂2χ(T)
∂tr∂ts

> 0, ∀T ∈ Im ∧ ∀r, s ∈ Nm
1 ∧ r ̸= s. (26)

If
(
X1, X2, . . . , Xm) ∈ In

1 × In
2 × · · · × In

m and

Xr ∽ Xs, ∀r, s ∈ Nm
1 ∧ r ̸= s, (27)

then we have the following Chebyshev-type inequality:

⟨X1, X2, . . . , Xm⟩χ ≥
[

X1, X2, . . . , Xm
]

χ
. (28)

The equality in (28) holds if and only if (24) holds.

Lemma 3. Lemma 2 is true when m = 2.

Proof. Define the auxiliary function κ as follows:

κ : I2 → R, κ(t) ≜ χ
(

x1
j , t
)
− χ

(
x1

i , t
)

, (29)

where i, j ∈ Nn
1 ∧ i ̸= j. Then, by Definition 2 and (29), we have
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⟨X1, X2⟩χ −
[

X1, X2
]

χ
=

1
n

n

∑
i=1

χ
(

x1
i , x2

i

)
− 1

n2 ∑
1≤i1,i2≤n

χ
(

x1
i1 , x2

i2

)
=

1
n

n

∑
i=1

χ
(

x1
i , x2

i

)
− 1

n2 ∑
1≤i,j≤n

χ
(

x1
i , x2

j

)
=

1
n2

[
n

n

∑
i=1

χ
(

x1
i , x2

i

)
− ∑

1≤i,j≤n
χ
(

x1
i , x2

j

)]

=
1
n2

[
∑

1≤i,j≤n
χ
(

x1
i , x2

i

)
− ∑

1≤i,j≤n
χ
(

x1
i , x2

j

)]

=
1
n2 ∑

1≤i,j≤n

[
χ
(

x1
i , x2

i

)
− χ

(
x1

i , x2
j

)]
=

1
n2 ∑

1≤j,i≤n

[
χ
(

x1
j , x2

j

)
− χ

(
x1

j , x2
i

)]
=

1
2n2 ∑

1≤i,j≤n

[
χ
(

x1
i , x2

i

)
− χ

(
x1

i , x2
j

)
+ χ

(
x1

j , x2
j

)
− χ

(
x1

j , x2
i

)]
=

1
2n2 ∑

1≤i,j≤n

[
χ
(

x1
j , x2

j

)
− χ

(
x1

i , x2
j

)
−
(

χ
(

x1
j , x2

i

)
− χ

(
x1

i , x2
i

))]
=

1
2n2 ∑

1≤i ̸=j≤n

[
χ
(

x1
j , x2

j

)
− χ

(
x1

i , x2
j

)
−
(

χ
(

x1
j , x2

i

)
− χ

(
x1

i , x2
i

))]
=

1
2n2 ∑

1≤i ̸=j≤n

[
κ(x2

j )− κ(x2
i )
]
,

i.e.,

⟨X1, X2⟩χ −
[

X1, X2
]

χ
=

1
2n2 ∑

1≤i ̸=j≤n

[
κ(x2

j )− κ(x2
i )
]
. (30)

According to the Lagrange mean value theorem, there exists a

ξ2
i,j ∈

[
min

{
x2

i , x2
j

}
, max

{
x2

i , x2
j

}]
⊆ I2

such that

κ(x2
j )− κ(x2

i ) =
(

x2
j − x2

i

)[dκi,j(t)
dt

]
t=ξ2

i,j

=
(

x2
j − x2

i

)(
χ2

(
x1

j , ξ2
i,j

)
− χ2

(
x1

i , ξ2
i,j

))
, (31)

and there exists a
ξ1

i,j ∈
[
min

{
x1

i , x1
j

}
, max

{
x1

i , x1
j

}]
⊆ I1

such that
χ2

(
x1

j , ξ2
i,j

)
− χ2

(
x1

i , ξ2
i,j

)
=
(

x1
j − x1

i

)
χ21

(
ξ1

i,j, ξ2
i,j

)
. (32)

Based on Definition 1, (26) and (27), we have(
x2

j − x2
i

)(
x1

j − x1
i

)
≥ 0 ∧ χ21

(
ξ1

i,j, ξ2
i,j

)
> 0, ∀i, j ∈ Nn

1 ∧ i ̸= j. (33)

Combining with (30), (31), (32), and (33), we obtain

⟨X1, X2⟩χ −
[

X1, X2
]

χ
=

1
2n2 ∑

1≤i ̸=j≤n

(
x2

j − x2
i

)(
x1

j − x1
i

)
χ21

(
ξ1

i,j, ξ2
i,j

)
≥ 0 ⇒ (28). (34)
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By (34), we see that the equality in (28) holds if and only if(
x2

j − x2
i

)(
x1

j − x1
i

)
χ21

(
ξ1

i,j, ξ2
i,j

)
= 0, ∀i, j ∈ Nn

1 ∧ i ̸= j. (35)

Since
χ21

(
ξ1

i,j, ξ2
i,j

)
> 0, ∀i, j ∈ Nn

1 ∧ i ̸= j

and
i = j ⇒

(
x2

j − x2
i

)(
x1

j − x1
i

)
= 0, ∀j ∈ Nn

1 ,

the equalities (35) can be rewritten as(
x2

j − x2
i

)(
x1

j − x1
i

)
= 0, ∀i, j ∈ Nn

1 . (36)

By Lemma 1, the equalities (36) can be rewritten as (24). In other words, the equality in (28)
holds if and only if (24) hold.

Lemma 4. Under the hypotheses in Lemma 2, then, for any i, j ∈ Nn
1 and any m ∈ N∞

3 , we have

χ
(

x1
i , . . . , xm−1

i , xm
j

)
+ χ

(
x1

j , . . . , xm−1
j , xm

i

)
≤ χ

(
x1

i , . . . , xm
i

)
+ χ

(
x1

j , . . . , xm
j

)
. (37)

The equalities in (37) hold if and only if(
xm

j − xm
i

)(
xk

j − xk
i

)
= 0, ∀i, j ∈ Nn

1 ∧ ∀k ∈ Nm
1 ∧ k ̸= m − 1. (38)

Proof. Define an auxiliary function as follows:

φ : Im → R, φ(t) ≜ χ
(

x1
j , . . . , xm−1

j , t
)
− χ

(
x1

i , . . . , xm−1
i , t

)
. (39)

First, we use the dimension reduction method [36] to prove that

φ
(

xm
j

)
− φ(xm

i ) ≥ 0, ∀i, j ∈ Nn
1 , (40)

and the equalities in (40) hold if and only if (38) hold.
Indeed, the inequalities (40) are the equalities when i = j. Now, we assume that i ̸= j.
According to the Lagrange mean value theorem, there exists a

ξm
i,j ∈

[
min

{
xm

i , xm
j

}
, max

{
xm

i , xm
j

}]
⊆ Im

such that

φ
(

xm
j

)
− φ(xm

i ) =
(

xm
j − xm

i

)[dφi,j(t)
dt

]
t=ξm

i,j

,

i.e.,
φ
(

xm
j

)
− φ(xm

i ) =
(

xm
j − xm

i

)
F
(

x1
j , x2

j , . . . , xk
j , . . . , xm−1

j

)
, (41)

where the function F : Im−1 → R is defined as

F
(

x1
j , x2

j , . . . , xk
j , . . . , xm−1

j

)
≜ χm

(
x1

j , . . . , xk
j , . . . , xm−1

j , ξm
i,j

)
− χm

(
x1

i , . . . , xk
i , . . . , xm−1

i , ξm
i,j

)
,

k ∈ Nm−1
1 ∧ i, j ∈ Nn

1 ∧ i ̸= j,
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x1
i , . . . , xk

i , . . . , xm−1
i , ξm

i,j are considered to be fixed constants, and x1
j , x2

j , . . . , xk
j , . . . , xm−1

j are
considered to be the variables. By hypothesis (26), we have

∂F
(

x1
j , . . . , xk

j , . . . , xm−1
j

)
∂xk

j
= χmk

(
x1

j , . . . , xk
j , . . . , xm−1

j , ξm
i,j

)
> 0. (42)

If xm
j − xm

i = 0, then the inequalities (40) are the equalities. Now we assume that
xm

j − xm
i > 0. By the hypotheses (27) and Definition 1, we have

Xm ∽ Xk, ∀k ∈ Nm−1
1 ⇒ xk

j − xk
i ≥ 0, ∀i, j ∈ Nn

1 ∧ ∀k ∈ Nm−1
1 . (43)

So, based on the mathematical analysis theory, (42) and (43), for any k ∈ Nm−1
1 and

any
(

x1
j , . . . , xk

j , . . . , xm−1
j

)
∈ Im−1, we have

F
(

x1
j , x2

j , . . . , xk
j , . . . , xm−1

j

)
≥ F

(
x1

j , x2
j , . . . , xk

i , . . . , xm−1
j

)
. (44)

By (44), we have

F
(

x1
j , x2

j , . . . , xk
j , . . . , xm−1

j

)
≥ F

(
x1

i , x2
j , . . . , xk

j , . . . , xm−1
j

)
≥ F

(
x1

i , x2
i , . . . , xk

j , . . . , xm−1
j

)
≥ · · ·
≥ F

(
x1

i , x2
i , . . . , xk

i , . . . , xm−2
i , xm−1

j

)
≥ F

(
x1

i , x2
i , . . . , xk

i , . . . , xm−2
i , xm−1

i

)
= 0.

Hence,
F
(

x1
j , x2

j , . . . , xk
j , . . . , xm−1

j

)
≥ 0. (45)

Combining with (41), (45), and xm
j − xm

i > 0, we obtain (40).
Similarly, we can prove that (40) also holds when xm

j − xm
i < 0. Thus, (40) is proved.

According to the above proof, the equalities in (40) hold if and only if

xm
j = xm

i ∨
(

x1
j , . . . , xk

j , . . . , xm−1
j

)
=
(

x1
i , . . . , xk

i , . . . , xm−1
i

)
, ∀i, j ∈ Nn

1 ⇔ (38).

This proves our assertion.
Next, we prove (37). By (40), we have

χ
(

x1
i , . . . , xm

i

)
+ χ

(
x1

j , . . . , xm
j

)
−
[
χ
(

x1
i , . . . , xm−1

i , xm
j

)
+ χ

(
x1

j , . . . , xm−1
j , xm

i

)]
= χ

(
x1

j , . . . , xm
j

)
− χ

(
x1

i , . . . , xm−1
i , xm

j

)
−
[
χ
(

x1
j , . . . , xm−1

j , xm
i

)
− χ

(
x1

i , . . . , xm
i

)]
= φ

(
xm

j

)
− φ(xm

i )

≥ 0, ∀i, j ∈ Nn
1

⇒ (37).

According to the above proof, we see that the equalities in (37) hold if and only
if (38) holds.

Now let us prove Lemma 2.

Proof. We use the mathematical induction [2,36] for m to prove Lemma 2.
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(A) Let m = 2. According to Lemma 3, Lemma 2 is true.
(B) Suppose that Lemma 2 is true when we replace m with m − 1 in Lemma 2, where

m ≥ 3. Now, we prove that Lemma 2 is also true as follows.

Based on the above hypothesis and Definition 2, for any im ∈ Nn
1 , we have

1
nm−1 ∑

1≤i1,i2,...,im−1≤n
χ
(

x1
i1 , x2

i2 , . . . , xm−1
im−1

, xm
im

)
≤ 1

n

n

∑
i=1

χ
(

x1
i , x2

i , . . . , xm−1
i , xm

im

)
, (46)

where xm
im is considered a constant, and the equalities in (46) hold if and only if

Xs = xs
1e, ∃k ∈ Nm−1

1 ∧ ∀s ∈ Nm−1
1 \ {k}. (47)

By Lemma 1, the equalities in (47) hold if and only if(
xr

i − xr
j

)(
xs

i − xs
j

)
= 0, ∀i, j ∈ Nn

1 ∧ ∀r, s ∈ Nm−1
1 ∧ r ̸= s. (48)

By Definition 2, (46) and (37) in Lemma 4, we obtain[
X1, X2, . . . , Xm

]
χ

=
1

nm ∑
1≤i1,i2,...,im≤n

χ
(

x1
i1 , x2

i2 , . . . , xm−1
im−1

, xm
im

)
=

1
nm

n

∑
im=1

∑
1≤i1,i2,...,im−1≤n

χ
(

x1
i1 , x2

i2 , . . . , xm−1
im−1

, xm
im

)
=

1
n

n

∑
im=1

1
nm−1 ∑

1≤i1,i2,...,im−1≤n
χ
(

x1
i1 , x2

i2 , . . . , xm−1
im−1

, xm
im

)
≤ 1

n

n

∑
im=1

1
n

n

∑
i=1

χ
(

x1
i , x2

i , . . . , xm−1
i , xm

im

)
=

1
n2

n

∑
im=1

n

∑
i=1

χ
(

x1
i , x2

i , . . . , xm−1
i , xm

im

)
=

1
n2

n

∑
j=1

n

∑
i=1

χ
(

x1
i , x2

i , . . . , xm−1
i , xm

j

)
=

1
n2 ∑

1≤i,j≤n
χ
(

x1
i , x2

i , . . . , xm−1
i , xm

j

)
=

1
n2 ∑

1≤j,i≤n
χ
(

x1
j , x2

j , . . . , xm−1
j , xm

i

)
=

1
2n2 ∑

1≤i,j≤n

[
χ
(

x1
i , x2

i , . . . , xm−1
i , xm

j

)
+ χ

(
x1

j , x2
j , . . . , xm−1

j , xm
i

)]
≤ 1

2n2 ∑
1≤i,j≤n

[
χ
(

x1
i , . . . , xm−1

i , xm
i

)
+ χ

(
x1

j , . . . , xm−1
j , xm

j

)]
=

1
2n2

[
∑

1≤i,j≤n
χ
(

x1
i , . . . , xm−1

i , xm
i

)
+ ∑

1≤i,j≤n
χ
(

x1
j , . . . , xm−1

j , xm
j

)]

=
1

2n2

[
n

n

∑
i=1

χ
(

x1
i , . . . , xm−1

i , xm
i

)
+ n

n

∑
j=1

χ
(

x1
j , . . . , xm−1

j , xm
j

)]

=
1
n

n

∑
i=1

χ
(

x1
i , . . . , xm−1

i , xm
i

)
= ⟨X1, X2, . . . , Xm⟩χ

⇒ (28).
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Hence, (28) is proved.
Based on the above proof and Lemma 4, the equality in (28) holds if and only if (38)

with (48) holds. In other words, the equality in (28) holds if and only if the equalities in (23)
holds. By Lemma 1, the equality in (28) holds if and only if (24) hold.

According to the principle of the mathematical induction, the proof of Lemma 2 is
completed.

Lemma 5. Let the function χ : Im → R be continuous and

∂2χ(T)
∂t2

r
> 0, ∀T ∈ Im ∧ ∀r ∈ Nm

1 . (49)

If
(
X1, X2, . . . , Xm) ∈ In

1 × In
2 × · · · × In

m, then we have the following Jensen type inequality[
X1, X2, . . . , Xm

]
χ
≥ χ

(
X1, X2, . . . , Xm

)
. (50)

The equality in (50) holds if and only if (22) holds.

Proof. By (49), we see that the function χ(T) is a strictly convex function [14,21–23] for the
variable tr, ∀r ∈ Nm

1 . So, according to Definitions 2 and the Jensen inequality (15), we have

[
X1, X2, . . . , Xm

]
χ

=
1
n

n

∑
i1=1

1
n

n

∑
i2=1

· · · 1
n

n

∑
im=1

χ
(

x1
i1 , x2

i2 , . . . , xr
ir , . . . , xm

im

)
≥ 1

n

n

∑
i1=1

1
n

n

∑
i2=1

· · · 1
n

n

∑
im−1=1

χ
(

x1
i1 , x2

i2 , . . . , xm−1
im−1

, Xm
)

≥ 1
n

n

∑
i1=1

1
n

n

∑
i2=1

· · · 1
n

n

∑
im−2=1

χ
(

x1
i1 , x2

i2 , . . . , xm−2
im−2

, Xm−1, Xm
)

≥ · · ·

≥ 1
n

n

∑
i1=1

χ
(

x1
i1 , X2, . . . , Xm−1, Xm

)
≥ χ

(
X1, X2, . . . , Xm−1, Xm

)
⇒ (50),

and the equality in (50) holds if and only if (22) holds by the above proof.

Let’s turn to the proof of Theorem 1.

Proof. According to the hypotheses of Theorem 1 and Lemma 2, we see that (28) holds. By
the hypotheses of Theorem 1 and Lemma 5, we see that (50) holds. Combining with (28)
and (50), we get the inequalities (21).

Based on the Lemmas 2 and 5, we known that both the equalities in (21) hold if and
only if (22) holds.

The proof of Theorem 1 is completed.

In Theorem 1, set Im = Rm
++ and χ = Π. Then, by (5) and (6), we have the fol-

lowing Corollary 1. Therefore, Theorem 1 is a generalization of the discrete Chebyshev
inequality (11).

Corollary 1. (Discrete Chebyshev type inequality) Let X1, X2, . . . , Xm ∈ Rn
++ and (27) hold.

Then, we have the following discrete Chebyshev type inequality:

X1X2 · · · Xm = ⟨X1, X2, . . . , Xm⟩Π ≥
[

X1, X2, . . . , Xm
]

Π
= X1 × X2 × · · · × Xm, (51)
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and
X1X2 · · · Xm = X1 × X2 × · · · × Xm ⇔ (24).

4. Continuous Chebyshev–Jensen-Type Inequalities

Theorem 2. (Continuous Chebyshev–Jensen-type inequalities) Let the function χ : Im → R be
continuous and (19) hold. If ( f1, f2, . . . , fm) ∈ C1[0, 1]× C2[0, 1]× · · · × Cm[0, 1] and

fr ∽ fs, ∀r, s ∈ Nm
1 , (52)

then we have the following continuous Chebyshev–Jensen-type inequalities:

⟨ f1, f2, . . . , fm⟩χ ≥ [ f1, f2, . . . , fm]χ ≥ χ
(

f1, f2, . . . , fm

)
, (53)

and

⟨ f1, f2, . . . , fm⟩χ = [ f1, f2, . . . , fm]χ = χ
(

f1, f2, . . . , fm

)
⇔ fr(t) ≡ fr(0), ∀r ∈ Nm

1 . (54)

Proof. Based on the theory of functional analysis [31–33], for any continuous functions
φ : [0, 1] → R and ϕ : [0, 1]m → R, we have

∫ 1

0
φ(t)dt = lim

n→∞

1
n

n

∑
i=1

φ

(
i − 1
n − 1

)
(55)

and∫ 1

0
· · ·

∫ 1

0
ϕ(t1, . . . , tm)dt1 · · ·dtm = lim

n→∞

1
nm ∑

1≤i1,...,im≤n
ϕ

(
i1 − 1
n − 1

, . . . ,
im − 1
n − 1

)
. (56)

Let
(
X1, X2, . . . , Xm) ∈ In

1 × In
2 × · · · × In

m, and let

xr
i = fr

(
i − 1
n − 1

)
, ∀i ∈ Nn

1 ∧ ∀r ∈ Nm
1 . (57)

Then

xr
ij
= fr

( ij − 1
n − 1

)
, ∀ij ∈ Nn

1 ∧ ∀r ∈ Nm
1 ∧ ∀j ∈ Nm

1 . (58)

By Definitions 2 and 3, (55), (56), (57), and (58), we have

lim
n→∞

⟨X1, X2, . . . , Xm⟩χ = ⟨ f1, f2, . . . , fm⟩χ, (59)

lim
n→∞

[
X1, X2, . . . , Xm

]
χ
= [ f1, f2, . . . , fm]χ (60)

and
lim

n→∞
χ
(

X1, X2, . . . , Xm
)
= χ

(
f1, f2, . . . , fm

)
. (61)

By (52), (57), and Definition 1, (27) holds. By (27) and Theorem 1, we see that (21)
holds. Combining with (59), (60), (61), and (21), we obtain

⟨ f1, f2, . . . , fm⟩χ = lim
n→∞

⟨X1, X2, . . . , Xm⟩χ ≥ lim
n→∞

[
X1, X2, . . . , Xm

]
χ

= [ f1, f2, . . . , fm]χ ≥ lim
n→∞

χ
(

X1, X2, . . . , Xm
)

= χ
(

f1, f2, . . . , fm

)
⇒ (53).
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Base on the above proof and Theorem 1, we see that (54) holds.
This completes the proof of Theorem 2.

In Theorem 2, set Im = Rm
++ and χ = Π. Then, by (9) and (10), we have the follow-

ing Corollary 2. Therefore, Theorem 2 is a generalization of the continuous Chebyshev
inequality (13).

Corollary 2. (Continuous Chebyshev type inequality) Let the functions fr : [0, 1] → R++

be continuous and (52) hold, ∀r ∈ Nm
1 . Then, we have the following continuous Chebyshev-

type inequality:

f1 f2 . . . fm ≡ ⟨ f1, f2, . . . , fm⟩Π ≥ [ f1, f2, . . . , fm]Π ≡ f1 × f2 × · · · × fm, (62)

and

f1 f2 . . . fm = f1 × f2 × · · · × fm ⇔ fs(t) ≡ fs(0), ∃k ∈ Nm
1 ∧ ∀s ∈ Nm

1 \ {k}. (63)

5. Applications in Probability Theory

Let µ ≜ (µ1, µ2, . . . , µm) ∈ Im be an m-dimensional random variable, where

Ir ≜ (ar, br), − ∞ ≤ ar < br ≤ ∞, ∀r ∈ Nm
1 ,

and let its probability density function [24–30] p : Im → R++ be continuous with p ≜ p(µ).
Then, the probability distribution function [24] of the random variable µ is

χ : Im → R, χ(T) =
∫ t1

a1

∫ t2

a2

· · ·
∫ tm

am
pdµ1dµ2 · · ·dµm, (64)

which is also continuous, where χ(b1, b2, . . . , bm) = 1, and P(R) ≜ χ(T) ∈ [0, 1] is the
probability [27–30] of the random event

R ≜: a1 < µ1 ≤ t1 ∧ a2 < µ2 ≤ t2 ∧ · · · ∧ ar < µr ≤ tr ∧ · · · ∧ am < µm ≤ tm. (65)

Let
(
X1, X2, . . . , Xm) ∈ In

1 × In
2 × · · · × In

m. Then, P(Ri) and P(Ri1,...,im) are the proba-
bilities of the random events

Ri ≜: a1 < µ1 ≤ x1
i ∧ a2 < µ2 ≤ x2

i ∧ · · · ∧ ar < µr ≤ xr
i ∧ · · · ∧ am < µm ≤ xm

i (66)

and

Ri1,...,im ≜: a1 < µ1 ≤ x1
i1 ∧ a2 < µ2 ≤ x2

i2 ∧ · · · ∧ ar < µr ≤ xr
ir ∧ · · · ∧ am < µm ≤ xm

im , (67)

respectively, where i ∈ Nn
1 and i1, . . . , im ∈ Nn

1 .
Let ( f1, . . . , fm) ∈ C1[0, 1] × · · · × Cm[0, 1]. Then P(R) ≜ P(R(t)) and P(R∗) ≜

P(R∗(T)) are the probabilities of the random events

R(t) ≜: a1 < µ1 ≤ f1(t) ∧ · · · ∧ ar < µr ≤ fr(t) ∧ · · · ∧ am < µm ≤ fm(t) (68)

and

R∗(T) ≜: a1 < µ1 ≤ f1(t1) ∧ · · · ∧ ar < µr ≤ fr(tr) ∧ · · · ∧ am < µm ≤ fm(tm), (69)

respectively.
We first demonstrate the applications of Theorem 1 in probability theory.
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Theorem 3 (Discrete probability inequalities). Let the probability density function p : Im →
R++ be continuous, and let

pr(µ) ≜
∂p(µ)

∂µr
> 0, ∀µ ∈ Im ∧ ∀r ∈ Nm

1 . (70)

If
(
X1, X2, . . . , Xm) ∈ In

1 × In
2 × · · · × In

m and (20) holds, then we have the following discrete
probability inequalities:

1
n

n

∑
i=1

P(Ri) ≥
1

nm ∑
1≤i1,...,im≤n

P(Ri1,...,im) ≥
∫ X1

a1

· · ·
∫ Xm

am
pdµ1 · · ·dµm. (71)

Proof. Let T ∈ Im and r, s ∈ Nm
1 . If r < s, then, based on the hypotheses of Theorem 3 and

the functional analysis theory, we have

∂2χ(T)
∂tr∂ts

=
∫ t1

a1

· · ·
∫ tk

ak

· · ·
∫ tm

am
p(µ1, . . . , tr, . . . , ts, . . . , µm)dµ1 · · ·dµk · · ·dµm > 0 ⇒ (19),

where k ∈ Nm
1 \{r, s}. Similarly, we can prove that (19) also holds when r > s. Assume that

r = s. Then, based on the functional analysis theory and (70), we have

∂2χ(T)
∂tr∂ts

=
∫ t1

a1

· · ·
∫ tk

ak

· · ·
∫ tm

am
pr(µ1, . . . , tr, . . . , µm)dµ1 · · ·dµk · · ·dµm > 0 ⇒ (19),

where k ∈ Nm
1 \{r}. Thus, the inequalities in (19) hold.

By Definition 2 and (64), we have

⟨X1, X2, . . . , Xm⟩χ =
1
n

n

∑
i=1

P(Ri), (72)

which is the mean value [35,36] of the probabilities P(Ri), ∀i ∈ Nn
1 , and[

X1, X2, . . . , Xm
]

χ
=

1
nm ∑

1≤i1,...,im≤n
P(Ri1,...,im), (73)

which is the mean value of the probabilities P(Ri1,...,im), ∀i1, . . . , im ∈ Nn
1 .

Based on the hypotheses of Theorem 3, (19), and Theorem 1, the inequalities (21) hold.
By (72) and (73), we see that the inequalities (21) can be rewritten as (71). The proof of
Theorem 3 is completed.

Next, we demonstrate the applications of Theorem 2 in probability theory.

Theorem 4. (Continuous probability inequalities) Let the probability density function p : Im →
R++ be continuous and (70) hold, and let ( f1, . . . , fm) ∈ C1[0, 1]× · · · × Cm[0, 1] with (52) hold.
If f1, . . . , fm are convex functions, then we have the following continuous probability inequalities:

∫ 1

0
P(R)dt ≥

∫ 1

0
· · ·

∫ 1

0
P(R∗)dt1 · · ·dtm ≥

∫ f1( 1
2 )

a1

· · ·
∫ fm( 1

2 )

am
pdµ1 · · ·dµm. (74)

Proof. By Definition 3 and (64), we have

⟨ f1, f2, . . . , fm⟩χ =
∫ 1

0
P(R)dt, (75)
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which is the mean value of the probability P(R(t)), and

[ f1, f2, . . . , fm]χ =
∫ 1

0
· · ·

∫ 1

0
P(R∗)dt1 · · ·dtm, (76)

which is the mean value of the probability P(R∗(T)).
Since f1, . . . , fm are the convex functions [14,21–23], by Hadamard’s inequality [36],

we have

fr =
1

1 − 0

∫ 1

0
fr(t)dt ≥ fr

(
0 + 1

2

)
= fr

(
1
2

)
, ∀r ∈ Nm

1 . (77)

By the proof of Theorem 3, we see that (19) holds. Based on the hypotheses of
Theorem 4, (19), and Theorem 2, the inequalities in (53) hold. By (53), (75), (76), and (77),
we obtain ∫ 1

0
P(R)dt = ⟨ f1, f2, . . . , fm⟩χ

≥ [ f1, f2, . . . , fm]χ

=
∫ 1

0
· · ·

∫ 1

0
P(R∗)dt1 · · ·dtm

≥ χ
(

f1, f2, . . . , fm

)
=

∫ f1

a1

· · ·
∫ fm

am
pdt1 · · ·dtm

≥
∫ f1( 1

2 )

a1

· · ·
∫ fm( 1

2 )

am
pdt1 · · ·dtm

⇒ (74).

Hence, the inequalities in (74) are proved. This completes the proof of Theorem 4.

6. Conclusions

In this paper, we established Chebyshev–Jensen-type inequalities involving the χ-
products ⟨·⟩χ and [·]χ, and we proved that our main results are the generalizations of
the classical Chebyshev inequalities, as well as displaying the applications of our main
results in probability theory, and the discrete with continuous probability inequalities were
obtained. We also demonstrated the applications of mathematical induction, the reorder
method, and the dimension reduction method in establishing inequalities. The proofs of
our main results are novel, concise, and interesting.

The main contributions of this article are that we extended the special function Π in
the Chebyshev inequalities (11) and (13) to the general function χ, and we extended the
m = 2 in the Chebyshev inequalities (11) and (13) to the m ≥ 2.

Let
∂2χ(T)
∂tr∂ts

≡ 0, ∀T ∈ Im ∧ ∀r, s ∈ Nm
1 . (78)

Then, the function χ(T) is a constant. Hence, the inequalities (21) are the equalities.
If (20) does not hold, then, in general, (21) also does not hold. For example, if

m = 2, χ = Π and X1 ⋍ X2, then the inequalities in (21) are reversed.
There are a large number of functions χ : Im → R satisfying the conditions in (19). For

example, we define a function as follows [2]:

χ : Rm
++ → R, χ(T) ≜ per

(
tαi

j

)
m×m

= per


tα1
1 tα1

2 · · · tα1
m

tα2
1 tα2

2 · · · tα2
m

...
...

. . .
...

tαm
1 tαm

2 · · · tαm
m


m×m

, (79)

where (α1, α2, . . . , αm) ∈ (1, ∞)m. Then χ : Rm
++ → R satisfies the conditions in (19).
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There are a large number of probability density functions p : Im → R satisfying the
conditions in (70). For example, we define a probability density function as follows:

p : (0, 1)m → R++, p(µ) ≜
per
(

µ
αi
j

)
m×m∫ 1

0

∫ 1
0 · · ·

∫ 1
0 per

(
µ

αi
j

)
m×m

dµ1dµ2 · · ·dµm

, (80)

where (α1, α2, . . . , αm) ∈ Rm
++. Then p : (0, 1)m → R++ satisfies the conditions in (70).

It is worth pointing out that to find new Chebyshev-type inequalities is an important
research topic and how to improve or generalize the Chebyshev-type inequalities (21) is
also an important research topic. These research topics are of theoretical significance and
application value in probability theory.
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20. Bošnjak, M.; Krnić, M.; Pexcxarixcx, J. Jensen-type inequalities, Montgomery identity and higher-order convexity. Mediterr. J.
Math. 2022, 19, 230. [CrossRef]

21. Minculete, N. On several inequalities related to convex functions. J. Math. Inequal. 2023, 17, 1075–1086. [CrossRef]
22. Knoerr, J. The support of dually epi-translation invariant valuations on convex functions. J. Funct. Anal. 2021, 281, 109059.

[CrossRef]
23. Colesanti, A.; Ludwig, M.; Mussnig, F. A homogeneous decomposition theorem for valuations on convex functions. J. Funct. Anal.

2020, 279, 108573. [CrossRef]
24. Wen, J.J.; Huang, Y.; Cheng, S.S. Theory of ϕ-Jensen variance and its applications in higher education. J. Inequal. Appl. 2015,

2015, 270. [CrossRef]
25. Lu, M.; Wang, Y.; Jiang, D. Stationary distribution and probability density function analysis of a stochastic HIV model with

cell-to-cell infection. Appl. Math. Comput. 2021, 410, 126483. [CrossRef]
26. Gafel, H.S.; Rashid, S.; Elagan, S.K. Novel codynamics of the HIV-1/HTLV-I model involving humoral immune response and

cellular outbreak: A new approach to probability density functions and fractional operators. AIMS Math. 2023, 8, 28246–28279.
[CrossRef]

27. Jung, Y.M.; Whang, J.J.; Yun, S. Sparse probabilistic K-means. Appl. Math. Comput. 2020, 382, 125328. [CrossRef]
28. Ejsmont, W.; Lehner, F. Sums of commutators in free probability. J. Funct. Anal. 2021, 280, 108791. [CrossRef]
29. Gvalani, R.S.; Schlichting, A. Barriers of the McKean-Vlasov energy via a mountain pass theorem in the space of probability

measures. J. Funct. Anal. 2020, 279, 108720. [CrossRef]
30. Jekel, D. Operator-valued chordal Loewner chains and non-commutative probability. J. Funct. Anal. 2020, 278, 108452. [CrossRef]
31. Lu, G.; Sun, W.; Jin, Y.; Liu, Q. Ulam stability of Jensen functional inequality on a class of noncommutative groups. J. Funct. Spaces

2023, 2023, 6674969. [CrossRef]
32. Jankov, M.D.; Pogány, T.K. Functional bounds for Exton’s double hypergeometric X function. J. Math. Inequal. 2023, 17, 259–267.
33. Park, C.; Najati, A.; Moghimi, M.B.; Noori, B. Approximation of two general functional equations in 2-Banach spaces. J. Math.

Inequal. 2023, 17, 153–162. [CrossRef]
34. Dell’Accio, F.; Di Tommaso, F.; Guessab, A.; Nudo, F. A unified enrichment approach of the standard three-node triangular

element. Appl. Numer. Math. 2023, 187, 1–23. [CrossRef]
35. Liu, Y.; Iqbal, W.; Rehman, A.U.; Farid, G.; Nonlaopon, K. Giaccardi inequality for modified h-convex functions and mean value

theorems. J. Funct. Spaces 2022, 2022, 4364886. [CrossRef]
36. Wang, W.L. Approaches to Prove Inequalities; Harbin Institute of Technology: Harbin, China, 2011. (In Chinese)

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1155/2020/7061549
http://dx.doi.org/10.7153/jmi-2020-14-41
http://dx.doi.org/10.7153/jmi-2020-14-24
http://dx.doi.org/10.1186/s13660-021-02735-3
http://dx.doi.org/10.1016/j.jmaa.2023.127980
http://dx.doi.org/10.1007/s00009-022-02133-z
http://dx.doi.org/10.7153/jmi-2023-17-70
http://dx.doi.org/10.1016/j.jfa.2021.109059
http://dx.doi.org/10.1016/j.jfa.2020.108573
http://dx.doi.org/10.1186/s13660-015-0796-z
http://dx.doi.org/10.1016/j.amc.2021.126483
http://dx.doi.org/10.3934/math.20231446
http://dx.doi.org/10.1016/j.amc.2020.125328
http://dx.doi.org/10.1016/j.jfa.2020.108791
http://dx.doi.org/10.1016/j.jfa.2020.108720
http://dx.doi.org/10.1016/j.jfa.2019.108452
http://dx.doi.org/10.1155/2023/6674969
http://dx.doi.org/10.7153/jmi-2023-17-11
http://dx.doi.org/10.1016/j.apnum.2023.02.001
http://dx.doi.org/10.1155/2022/4364886

	Introduction
	Basic Concepts and Classical Results
	Discrete Chebyshev-Jensen-Type Inequalities
	Continuous Chebyshev–Jensen-Type Inequalities
	Applications in Probability Theory
	Conclusions
	References

