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Abstract: Let X be a Tychonoff topological space, B1(X,R) be the space of real-valued Baire 1 functions
on X and τUC be the topology of uniform convergence on compacta. The main purpose of this paper is
to study cardinal invariants of (B1(X,R), τUC). We prove that the following conditions are equivalent:
(1) (B1(X,R), τUC) is metrizable; (2) (B1(X,R), τUC) is completely metrizable; (3) (B1(X,R), τUC) is
Čech-complete; and (4) X is hemicompact. It is also proven that if X is a separable metric space with
a non isolated point, then the topology of uniform convergence on compacta on B1(X,R) is seen
to behave like a metric topology in the sense that the weight, netweight, density, Lindelof number
and cellularity are all equal for this topology and they are equal to c = |B1(X,R)|. We find further
conditions on X under which these cardinal invariants coincide on B1(X,R).

Keywords: Baire 1 function; quasicontinuous function; topology of uniform convergence on compacta;
density; weight; netweight; cellularity
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1. Introduction

Let X be a topological space, C(X,R) be the space of continuous functions on X with
values in R, B1(X,R) = { f ∈ RX : f is a pointwise limit of a sequence from C(X,R)} be
the space of Baire 1 functions on X with values in R. The research of Baire 1 functions
began with Baire’s paper [1] from 1899, which contains the results of their PhD thesis. Baire
themselves conducted a detailed study of real Baire 1 functions on X when X = R.

Let τUC be the topology of uniform convergence on compacta. We prove that the
following conditions are equivalent: (1) (B1(X,R), τUC) is metrizable; (2) (B1(X,R), τUC)
is completely metrizable; (3) (B1(X,R), τUC) is Čech-complete; and (4) X is hemicompact.

Thus, if X is hemicompact, all cardinal invariants’ cellularity, density, net weight,
spread, extent, Lindeloff number, π-weight and weight coincide on (B1(X,R), τUC). We
find further conditions on X under which these cardinal invariants coincide on (B1(X,R),
τUC). If X is a separable metric space with a non isolated point, then the topology of
uniform convergence on compacta on B1(X,R) is seen to behave like a metric topology in
the sense that the cellularity, density, net weight, spread, extent, Lindeloff number, π-weight
and weight are all equal for this topology and they are equal to c = |B1(X,R)|. If X is an
uncountable Polish space, then all these cardinal invariants coincide on (B1(X,R, τUC) and
the same result holds also for the space Q(X,R) of real-valued quasicontinuous functions.

2. Preliminaries

Denote by N the set of positive integers and by R the space of real numbers with the
usual metric. Let C(X, Y) be the space of all continuous functions from a topological space
X into a topological space Y. The following notation is used: B1(X, Y) = { f ∈ YX : f is a
pointwise limit of a sequence from C(X, Y)} and Fσ(X, Y) = { f ∈ YX : f−1(V) is an Fσ set
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for every open V ⊂ Y}. The elements of B1(X, Y) are called functions of the first Baire class,
and those of Fσ(X, Y) are called functions of the first Borel class or Fσ measurable functions.

It is known that B1(X, Y) ⊂ Fσ(X, Y) for any topological space X and any metric space
Y [2]. If Y = {0, 1}, then B1(R, Y) ̸= Fσ(R, Y). An overview of the results regarding the
equality B1(X, Y) = Fσ(X, Y) can be found in papers [2,3].

Baire in [1] proved that if X is an interval of reals R and Y = R, then Fσ(X, Y) =
B1(X, Y). Lebesgue in [4] proved that if X is a metric space and Y = R, then Fσ(X, Y) =
B1(X, Y).

The following result of Laczkowich will be useful in our paper.

Proposition 1. [5] Let X be a normal space and Y = R; then, Fσ(X, Y) = B1(X, Y).

The following Theorem was proven by Lebesgue for Y = R.

Theorem 1. (cf. (p. 375, [6]), [7]) Let X and Y be metric spaces. For f : X → Y, consider the
following conditions:

(1) A function f is Fσ measurable;
(2) For each ε > 0, there is a cover (Xi)i∈N of X consisting of closed sets such that diam f (Xi) ≤ ε,

for all i ∈ N.

Then, (2) ⇒ (1) holds. If Y is separable, then (1) ⇒ (2) is true.

Remark 1. It is easy to verify that Theorem 1 works for any topological space X.

Let X be a Hausdorff topological space. Denote by K(X) the family of all nonempty
compact subsets of X.

Denote by τUC the topology of uniform convergence on compact sets on RX. This
topology is induced by the uniformity UUC which has a base consisting of sets of the form

W(K, ε) = {( f , g) : ∀ x ∈ K | f (x)− g(x)| < ε},

where K ∈ K(X) and ε > 0. The general τUC-basic neighborhood of f ∈ RX will be denoted
by W( f , K, ε), where

W( f , K, ε) = {g : ∀ x ∈ K | f (x)− g(x)| < ε}.

Denote by τp the topology of pointwise convergence on RX . This topology is induced
by the uniformity Up which has a base consisting of sets of the form

W(A, ε) = {( f , g) : ∀ x ∈ A | f (x)− g(x)| < ε},

where A is a finite set and ε > 0. The general τp-basic neighborhood of f ∈ RX will be
denoted by W( f , A, ε), where

W( f , A, ε) = {g : ∀ x ∈ A | f (x)− g(x)| < ε}.

Of course, the topology τp of the pointwise convergence on RX is just the product
topology on RX .

3. Complete Metrizability of (B1(X, Y), τUC)

It is known [8] that if X is a k-space, then the space C(X,R) of continuous real-valued
functions defined on X is a closed set in (RX, τUC). However, if X is not a k-space, then
C(X,R) does not have to be closed in (B1(X,R), τUC) either.
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Example 1. Let N be equipped with the discrete topology and βN be the Čech–Stone compactification
of N. Choose q ∈ βN \N. Let X = N ∪ {q} and X has the topology inherited from βN. Every
compact set in X is finite. X is not a k-space, since the set N is not closed in X and N∩ K is closed
for every K ∈ K(X). For every n ∈ N, define fn : X → R as follows:

fn(x) =
{

1, x ∈ {1, 2, . . . , n};
0, otherwise.

Of course, fn is a continuous function for every n ∈ N. Let f : X → R be the function defined as:

f (x) =
{

0, x = q;
1, otherwise.

It is easy to verify that f is not continuous and the sequence { fn : n ∈ N} converges to f in
(RX , τUC). Thus, f ∈ B1(X,R) and C(X,R) is not closed in (B1(X,R), τUC).

A topological space X is hemicompact [9] if in the family of all compact subspaces of X
ordered by inclusion there exists a countable cofinal subfamily. Every hemicompact space is
σ-compact, but not vice versa. The space of rationals with the usual topology is a σ-compact
space which is not hemicompact. A locally compact σ-compact space is hemicompact.

A Hausdorff space X is of pointwise countable type [9] if for every point x ∈ X there
exists a compact set C ⊂ X such that x ∈ C and χ(C, X) ≤ ℵ0. Another one is the more
general property of being a q-space. This is a space such that for each point there is a
sequence {Un : n ∈ N} of neighbourhoods of that point, so that if xn ∈ Un for each n, then
{xn : n ∈ N} has a cluster point [10].

Since (B1(X,R), τUC) is a topological group, the equivalence 3 ⇔ 4 in the following
theorem is known [11].

Theorem 2. Let X be a Tychonoff topological space. Then, the following are equivalent:

1. The uniformity UUC on RX is induced by a metric;
2. The uniformity UUC on B1(X,R) is induced by a metric;
3. (B1(X,R), τUC) is metrizable;
4. (B1(X,R), τUC) is first countable;
5. (B1(X,R), τUC) is of pointwise countable type;
6. (B1(X,R), τUC) is a q-space;
7. X is hemicompact.

Proof. (7) ⇒ (1) Let {Kn : n ∈ N} be a countable cofinal subfamily in K(X) with respect
to the inclusion. The family {W(K, ε) : K ∈ K(X), ε > 0} is a base of UUC on RX . Since for
every K ∈ K(X) there is n ∈ N with K ⊂ Kn, the family

{W(Kn,
1
m
) : n, m ∈ N}

is a countable base of UUC. Thus, by the metrization theorem in [8], (RX ,UUC) is metrizable.
(1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (6) are obvious.
(6) ⇒ (7) Suppose that (B1(X,R), τUC) is a q-space. Let f be the zero function on X.

By assumption, there is a sequence {W( f , Kn, εn) : n ∈ N} such that if fn ∈ W( f , Kn, εn)
for each n ∈ N, then { fn : n ∈ N} has a cluster point in (B1(X,R), τUC). We claim that
X =

⋃{Kn : n ∈ N}. Suppose that there is x ∈ X \⋃{Kn : n ∈ N}. For each n ∈ N, define
a function fn ∈ C(X,R) as follows:

fn(z) =
{

n, z = x;
0, z ∈ Kn.

Then, fn ∈ W( f , Kn, ε) for every n ∈ N; however, { fn : n ∈ N} cannot have a cluster point
in B1(X,R).
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Now, for every n ∈ N, put Cn = ∪{Ki : i ≤ n}. We claim that {Cn : n ∈ N} is a cofinal
family in K(X) with respect to the inclusion. Suppose that this is not true. Thus, there is
K ∈ K(X) such that for each n ∈ N there is kn ∈ K \ Cn. For every n ∈ N, let gn ∈ C(X,R)
be such that gn(kn) = 1 and gn(z) = 0 for every z ∈ Cn.

Of course, for every n ∈ N, gn ∈ W( f , Cn, εn) ⊂ W( f , Kn, εn). By assumption, {gn :
n ∈ N} has a cluster point g ∈ (B1(X,R), τUC). Then, g(x) = 0 for every x ∈ X, which is a
contradiction since gn /∈ W(g, K, 1) for every n ∈ N.

Lemma 1. Let X be a Tychonoff topological space. If a family E in (B1(X,R), τUC) is totally
bounded, then for every compact set A in X and every ϵ > 0, there is a countable family B of Fσ

sets in X such that
⋃B = A and for every B ∈ B and for every f ∈ E , diam f (B) ≤ ϵ.

Proof. Since E in (B1(X,R), τUC) is totally bounded, there are functions f1, . . . , fn ∈ E
such that

E ⊂ W( f1, A,
ϵ

3
) ∪ · · · ∪ W( fn, A,

ϵ

3
).

Let V1, V2, . . . , Vm, . . . be a countable open cover of R, where the diameter of members
of this cover is less than ϵ

3 . For every i ∈ {1, 2, . . . , n}, j ∈ N, put Bi
j = f−1

i (Vj). Of course,

Bi
j is an Fσ set for every i ∈ {1, 2, . . . , n}, j ∈ N .

Let F be the family of all functions from {1, 2, . . . , n} to N. Of course, F is countable.
For every g ∈ F , put Bg = A ∩ B1

g(1) ∩ · · · ∩ Bn
g(n). For every g ∈ F , Bg is an Fσ set.

Now, put
B = {Bg : g ∈ F , Bg ̸= ∅}.

Of course,
⋃B = A. Let z ∈ A; then, there is g ∈ F such that fi(z) ∈ Vg(i) and thus

z ∈ Bi
g(i) for every i ∈ {1, 2, . . . , n}.

Finally, let f ∈ E and let B ∈ B. We show that diam f (B) ≤ ϵ. Let p, q ∈ B. There
is a g ∈ F such that B = A ∩ B1

g(1) ∩ · · · ∩ Bn
g(n). Since E is a subset of W( f1, A, ϵ

3 ) ∪ · · · ∪
W( fn, A, ϵ

3 ), there exists i ∈ {1, 2, . . . , n} such that f ∈ W( fi, A, ϵ
3 ). Thus, |( f (p)− fi(p)| <

ϵ
3 and | f (q)− fi(q)| < ϵ

3 . Because p, q ∈ Bi
g(i), we have that fi(p) ∈ Vg(i) and fi(q) ∈ Vg(i).

Then,

| f (p)− f (q)| ≤
≤| f (p)− fi(p)|+ | fi(p)− fi(q)|+ | fi(q))− f (q)| <

<
ε

3
+

ε

3
+

ε

3
= ε.

Proposition 2. Let X be a Tychonoff hemicompact topological space. Then, B1(X,R) is a closed
subset of (RX , τUC).

Proof. Let f be in the closure of B1(X,R) in (RX , τUC). By Theorem 2, (RX , τUC) is metriz-
able. Thus, there is a sequence { fn : n ∈ N} in B1(X,R) which converges to f in (RX , τUC).
Put E = { fn : n ∈ N}. Let {Kn : n ∈ N} be a countable cofinal subfamily in K(X). Let
ϵ > 0. Apply Lemma 1 on E and on every Kn and ϵ. For every n ∈ N, we obtain a countable
family Bn of Fσ sets in X such that

⋃Bn = Kn, and for every B ∈ Bn and for every g ∈ E ,
diamg(B) ≤ ϵ. Put B =

⋃
n∈N Bn. Then, X =

⋃B, B is a countable family of Fσ sets in X
and for every g ∈ E , diamg(B) ≤ ϵ for every B ∈ B. Since { fn : n ∈ N} converges to f in
(RX, τUC), diam f (B) ≤ ϵ for every B ∈ B. By Remark 1, the function f is Fσ measurable.
Since X is a normal space, by Proposition 1, f ∈ B1(X,R).
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Theorem 3. Let X be a Tychonoff topological space. Then, the following are equivalent:

1. (B1(X,R), τUC) is completely metrizable;
2. (B1(X,R), τUC) is Čech-complete;
3. X is hemicompact.

Proof. (1) ⇒ (2) is obvious. For (2) ⇒ (3), it is known that a Čech-complete space is a
q-space. By Theorem 2 (5) ⇒ (6), X is hemicompact.

For (3) ⇒ (1), by Proposition 2, B1(X,R) is a closed set in (RX , τUC). Since the unifor-
mity UUC on RX is complete [8], (RX , τUC) is completely metrizable. Thus, (B1(X,R), τUC)
is completely metrizable too.

4. Cardinal Invariants of (B1(X, Y), τuc)

We first recall the definitions of cardinal invariants of a topological space Z [9]. Define
the weight of Z as:

w(Z) = ℵ0 + min{|B| : B is a base in Z},

the density of Z as:

d(Z) = ℵ0 + min{|D| : D is a dense set in Z},

the cellularity of Z as:

c(Z) = ℵ0 + sup{|U | : U is a pairwise disjoint family of nonempty open sets in Z},

and the network weight of Z as:

nw(Z) = ℵ0 + min{|N | : N is a network in Z}.

They are in general related by the inequalities

c(Z) ≤ d(Z) ≤ nw(Z) ≤ w(Z).

The character of a point z in Z is defined as:

χ(Z, z) = ℵ0 + min{|O| : O is a base at z},

and the character of Z is defined as:

χ(Z) = sup{χ(Z, z) : z ∈ Z}.

To define the π-character of Z, we first need a notion of a local π-base. If z ∈ Z, a
collection V of nonempty open subsets of Z is called a local π-base at z provided that for
each open neighborhood U of z, there exists a V ∈ V which is contained in U.

The π-character of a point z in Z is defined as:

πχ(Z, z) = min{|V| : V is a local π-base at z},

and the π-character of Z is defined as:

πχ(Z) = ℵ0 + sup{πχ(Z, z) : z ∈ Z}.

To define the π-weight of a topological space Z, we first need a notion of a π-base. A
collection V of nonempty open subsets of Z is called a π-base [10] provided that for each
open set U in Z, there exists a V ∈ V which is contained in U. Define the π-weight of Z by:

πw(Z) = ℵ0 + min{|B| : B is a π − base in Z}.
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The k-cofinality of a topological space Z is defined as

kco f (Z) = min{|β| : β is a cofinal family in K(Z)}.

If kco f (Z) = ℵ0, the topological space Z is hemicompact.

In what follows, let X be a Tychonoff topological space. We will consider the cardinal
invariants of the space (B1(X,R), τUC). Because of simplicity, the specification of the
topology τUC will be omitted. Since (B1(X,R), τUC) is a topological group, the character
and the π-character of B1(X,R) and the weight and the π-weight of B1(X,R) coincide [11].

First we prove that the character of (B1(X,R), τUC) is equal to the k-cofinality of a
topological space X.

Theorem 4. Let X be a Tychonoff topological space. Then, χ(B1(X,R)) = kco f (X).

Proof. First, we show that kco f (X) ≤ χ(B1(X,R)). It is easy to verify that χ(C(X,R)) ≤
χ(B1(X,R)). It is known that kco f (X) ≤ χ(C(X,R)) [10].

To prove that χ(B1(X,R) ≤ kco f (X), let f ∈ B1(X,R) and let β be a cofinal subfamily
of K(X) with |β| = kco f (X). It is easy to verify that the family {W( f , K, 1/n) : K ∈ β, n ∈
N} is a local base at f .

For a Tychonoff space Z, define the uniform weight of Z [9]:

u(Z) = ℵ0 + min{m : there is a uniformity on Z of weight ≤ m}.

Remark 2. Is known (see [9]) that w(Z) = c(Z) · u(Z), w(Z) = e(Z) · u(Z), where e(Z) is the
extent of Z defined as follows:

e(Z) = ℵ0 + sup{|E| : E is a closed discrete set in Z}.

Theorem 5. Let X be a Tychonoff topological space. Then, u(B1(X,R)) = kco f (X).

Proof. Let β be a cofinal family in K(X) such that kco f (X) = |β|. It is easy to verify
that the family {W(K, 1/n) : K ∈ β, n ∈ N} is a base of the uniformity UUC. Thus,
u(B1(X,R)) ≤ kco f (X). For every Tychonoff space Z, χ(Z) ≤ u(Z). Since by Theorem 4
kco f (X) = χ(B1(X,R)), we have u(B1(X,R)) = kco f (X).

Theorem 6. If X is locally compact, then w(B1(X,R)) = nw(B1(X,R)).

Proof. By Remark 2

w(B1(X,R)) = c(B1(X,R)) · u(B1(X,R)) =
=nw(B1(X,R)) · u(B1(X,R)) = nw(B1(X,R)) · kco f (X).

It suffices to show that kco f (X) ≤ nw(B1(X,R)). Because X is locally compact, it has a
base B of relatively compact sets such that |B| = w(X). Then, the family of all finite unions
of members of {B : B ∈ B} is cofinal in K(X) and has cardinality w(X). So, kco f (X) ≤
w(X). It is known that w(X) = nw(C(X,R)) [10]. Since nw(C(X,R)) ≤ nw(B1(X,R)), we
have kco f (X) ≤ nw(B1(X,R)).

In the following lemma, the notion of the discrete cellularity introduced in [12] is used.
To define the discrete cellularity of a topological space Z, we need a notion of a discrete
family of subsets of Z. We say that a family U of subsets of a topological space Z is discrete
if each point z ∈ Z has a neighborhood that meets at most one set of the family U .
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The discrete cellularity of Z is defined as:

dc(Z) = ℵ0 + sup{|U | : U is a discrete family of nonempty open sets in Z}.

Remark 3. For every topological space Z, dc(Z) ≤ c(Z) and dc(Z) ≤ e(Z) [12].

Lemma 2. Let X be a Tychonoff topological space which contains an infinite compact set. Then,
dc(B1(X,R)) ≥ c.

Proof. Let K be an infinite compact set in X. There is a sequence of different points
{xn : n ∈ N} with a cluster point x ∈ K \ {xn : n ∈ N}.

Let U1, V1 be disjont open sets such that x1 ∈ U1 and x ∈ V1. There is xn2 ∈ {xn : n ∈
N} such that xn2 ∈ V1. Let U2, V2 be disjont open sets such that U2 ⊂ V1, V2 ⊂ V1, xn2 ∈ U2
and x ∈ V2. Continuing this way, we can show that there is a pairwise disjoint sequence
{Un : n ∈ N} of open sets such that Un ∩ K ̸= ∅ for every n ∈ N.

For every n ∈ N, choose a point an ∈ Un ∩ K. Let 2N denote the set of all functions
from N to {0, 1}. For every φ ∈ 2N, denote by Nφ the set of all n ∈ N where φ(n) = 1.

Let φ ∈ 2N be such that Nφ = {n}.
Let f{n} : X → [0, 1] be a continuous function defined as follows:

f{n}(x) =
{

1, x = an;
0, x ∈ X \ Un.

Let φ ∈ 2N be such that Nφ = {n1, n2, . . . , nk}. Define function f{n1,n2,...,nk} : X → R
as follows:

f{n1,n2,...,nk} = max{ f{n1}, f{n2}, . . . , f{nk}}.

Then, f{n1,n2,...,nk} is a continuous function.
Let φ ∈ 2N be such that Nφ is infinite and let Nφ = {nk}∞

k=1. For every x ∈ X, let
f{nk}∞

k=1
(x) = limk→∞ f{n1,n2,...,nk}(x).

For every φ ∈ 2N, define BNφ
= W( fNφ

, K, 1/4). Let g ∈ B1(X,R). Then, W(g, K, 1/4)
intersect at most one set of {BNφ

: φ ∈ 2N}. So, {IntBNφ
: φ ∈ 2N} is a discrete fam-

ily of open subsets of (B1(X,R), τUC), where by IntBNφ
we mean the interior of BNφ

in
(B1(X,R), τUC).

For a topological space Z, define the Lindelöf degree of Z as:

L(Z) = ℵ0 + min{κ : every open cover of Z has a subcover of cardinality at most κ}

and the spread of Z as:

s(Z) = ℵ0 + sup{|E| : E is a discrete set in Z}.

If X is hemicompact, then by Theorem 2, B1(X,R) is metrizable; thus, all cardinal
invariants c, d, nw, s, e, L, πw, w coincide on B1(X,R). The following theorem gives other
conditions on X under which the cardinal invariants coincide on B1(X,R).

Theorem 7. Let X be a Tychonoff topological space which contains an infinite compact set and let
kco f (X) ≤ c. Then,

c(B1(X,R)) = d(B1(X,R)) = e(B1(X,R)) = L(B1(X,R)) =
s(B1(X,R)) = nw(B1(X,R)) = πw(B1(X,R)) = w(B1(X,R)) ≥ c.

Proof. By Remark 2 and Theorem 5, kco f (X) · e(B1(X,R)) = w(B1(X,R)) = kco f (X)·
c(B1(X,R)). By Lemma 2 and Remark 3, e(B1(X,R)) = w(B1(X,R)) = c(B1(X,R)). Since
other cardinal invariants are between c, w and e, the proof is finished.
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Corollary 1. Let X be a separable metric space with a non isolated point. Then,

c(B1(X,R)) = d(B1(X,R)) = e(B1(X,R)) = L(B1(X,R)) =
s(B1(X,R)) = nw(B1(X,R)) = πw(B1(X,R)) = w(B1(X,R)) = |B1(X,R)| = c.

Proof. Let x0 be a non isolated point in X. Let {xn : n ∈ N} be a sequence of different
points in X which converges to x0. Then, the set K = {xn : n ∈ N} ∪ {x0} is an infinite
compact set in X. Since X is a separable metric space kco f (X) ≤ c. Thus, by Theorem 7

c(B1(X,R)) = d(B1(X,R)) = e(B1(X,R)) = L(B1(X,R)) =
s(B1(X,R)) = nw(B1(X,R)) = πw(B1(X,R)) = w(B1(X,R)) ≥ c.

Since |B1(X,R)| = c and nw(B1(X,R)) ≤ |B1(X,R)|, the proof is finished.

Corollary 2. For every a ∈ [0, 1], put Xa = R. Let X =
⊕

a∈[0,1] Xa be the topological sum of the
family {Xa : a ∈ [0, 1]}. Then,

c(B1(X,R)) = d(B1(X,R)) = e(B1(X,R)) = L(B1(X,R)) =
s(B1(X,R)) = nw(B1(X,R)) = πw(B1(X,R)) = w(B1(X,R)) ≥ c.

5. Comparison of Cardinal Invariants of B1(X,R), Q(X,R) and C(X,R) for an
Uncountable Polish Space X

Proposition 3. Let X be an uncountable Polish space. Then,

dc(B1(X,R)) = c(B1(X,R)) = d(B1(X,R)) = e(B1(X,R)) = L(B1(X,R)) =
s(B1(X,R)) = nw(B1(X,R)) = πw(B1(X,R)) = w(B1(X,R)) = c = |B1(X,R)|.

Proof. X is a separable metric space. By Corollary 6.5 in [13], X contains a homeomorphic
copy of the Cantor space 2N. Let C be a homeomorphic copy of 2N. Then, every point of C
is a non isolated point. We can apply Corollary 1.

Let X and Y be topological spaces. A function f : X → Y is quasicontinuous [14]
at x ∈ X if for every open set V ⊂ Y, f (x) ∈ V and every open set U ⊂ X, x ∈ U there
is a nonempty open set W ⊂ U such that f (W) ⊂ V. If f is quasicontinuous at every
point of X, we say that f is quasicontinuous. A survey on quasicontinuous functions
can be found in a recent monograph [15]. Denote by Q(X,R) the space of real-valued
quasicontinuous functions.

Proposition 4. Let X be an uncountable Polish space. Then, dc(Q(X,R)) = 2c.

Proof. If X is an uncountable Polish space, then by Corollary 6.5 in [13], X contains a
homeomorphic copy of the Cantor space 2N. Using some ideas from [16], put

F = {(x0, x0, x1, x1, x2, x2, . . . , xn, xn, . . . ) : (x0, x1, x2, . . . , xn, . . . ) ∈ 2N}

It is easy to verify that F is a closed nowhere dense set in 2N with the cardinality c.
Thus, X contains a compact nowhere dense set C with a cardinality c homeomorphic to
F. Using Lemma 6 in [17], if X is a pseudometrizable space and C is a closed nowhere
dense subset of X, there is a continuous function f : X \ C → [0, 1] such that in every
neighbourhood V of z ∈ C there are x, y ∈ V ∩ Cc with f (x) = 0 and f (y) = 1. For
every subset D of C, define a function gD : X → [0, 1] as follows: gD(x) = f (x) for every
x /∈ C, gD(x) = 1 for x ∈ D and gD(x) = 0 for x ∈ C \ D. It is easy to verify that gD is
a quasicontinuous function. For every subset D of C, define BD = W(gD, C, 1/4). Then,
{IntBD : D subset of C} is a discrete family of nonempty open sets in (Q(X,R), τUC) with
the cardinality 2c. Thus, dc(Q(X,R)) = 2c.
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Proposition 5. [18] Let X be a topological space which contains an infinite compact set and let
kco f (X) ≤ c. Then,

c(Q(X,R)) = d(Q(X,R)) = e(Q(X,R)) = L(Q(X,R)) =
s(Q(X,R)) = nw(Q(X,R)) = πw(Q(X,R)) = w(Q(X,R)) ≥ c.

Theorem 8. Let X be an uncountable Polish space. Then,

dc(Q(X,R)) = c(Q(X,R)) = d(Q(X,R)) = e(Q(X,R)) = L(Q(X,R)) =
s(Q(X,R)) = nw(Q(X,R)) = πw(Q(X,R)) = w(Q(X,R)) = 2c = |Q(X,R)|.

Proof. Use Propositions 4 and 5.

If X is a topological space with a countable base, then, by [10], nw(C(X,R)) = ℵ0.
Thus, for an uncountable Polish space X, we have

dc(C(X,R)) = c(C(X,R)) = d(C(X,R)) = e(C(X,R)) = L(C(X,R)) =
s(C(X,R)) = nw(C(X,R)) = ℵ0,

and by [10],
w(C(X,R)) = πw(C(X,R)) = kco f (X), |C(X,R)| = c.

If X is not hemicompact, then kco f (X) > ℵ0; thus, the topology τUC of uniform
convergence on compacta on C(X,R) may not behave like a metric topology. The space of
irrational numbers equipped with the usual Euclidean topology is an uncountable Polish
space, which is not hemicompact.

6. Conclusions and Future Work

The main purpose of this paper is to study cardinal invariants of real-valued Baire
1 functions B1(X,R) equipped with the topology τUC of uniform convergence on com-
pacta and compare them with the cardinal invariants of the space C(X,R) of continuous
real-valued functions equipped with the topology of uniform convergence on compacta,
which were studied in [10], and also compare them with the cardinal invariants of the space
Q(X,R) of quasicontinuous real-valued functions equipped with the topology of uniform
convergence on compacta, which were studied in [18]. We proved that the following con-
ditions are equivalent: (1) (B1(X,R), τUC) is metrizable; (2) (B1(X,R), τUC) is completely
metrizable; (3) (B1(X,R), τUC) is Čech-complete; and (4) X is hemicompact.

Thus, if X is hemicompact, all cardinal invariants’ cellularity, density, netweight,
spread, extent, Lindeloff number, π-weight and weight coincide on (B1(X,R), τUC). We
found further conditions for X under which these cardinal invariants coincide on (B1(X,R),
τUC). If X is a separable metric space with a non isolated point, then the topology of uniform
convergence on compacta on B1(X,R) is seen to behave like a metric topology in the sense
that the cellularity, density, netweight, spread, extent, Lindeloff number, π-weight and
weight are all equal for this topology and they are equal to c = |B1(X,R)|. If X is an
uncountable Polish space, then all these cardinal invariants coincide on (B1(X,R, τUC) and
the same result holds also for the space Q(X,R) of real-valued quasicontinuous functions.

We used the usual methods of topology and set theory in the proofs. The theory
developed in this paper could be of interest to mathematicians working in fields including
topology and functional analysis.

Concerning a future investigation of the space of Baire 1 functions, we plan to study
cardinal invariants of B1(X,R) equipped with the topology of pointwise convergence and
compare them with the cardinal invariants of the space C(X,R) of continuous real-valued
functions equipped with the topology of pointwise convergence, which were studied
in [10].
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