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Abstract: This article is dedicated to the derivation of a two-dimensional system of moment equations
depending on the velocity of movement and the surface temperature of a body submerged in fluid,
and macroscopic boundary conditions for the system of moment equations approximating the
Maxwell microscopic boundary condition for the particle distribution function. The initial-boundary
value problem for the Boltzmann equation with the Maxwell microscopic boundary condition is
approximated by a corresponding problem for the system of moment equations with macroscopic
boundary conditions. The number of moment equations and the number of macroscopic boundary
conditions are interconnected and depend on the parity of the approximation of the system of
moment equations. The setting of the initial-boundary value problem for a non-stationary, nonlinear
two-dimensional system of moment equations in the first approximation with macroscopic boundary
conditions is presented, and the solvability of the above-mentioned problem in the space of functions
continuous in time and square-integrable in spatial variables is proven.

Keywords: Boltzmann equation; two-dimensional system of moment equations; Maxwell microscopic
boundary condition; macroscopic boundary conditions

MSC: 35Q20

1. Introduction

One of the most important tasks in hydrodynamics is studying the movement of solid
bodies in fluids, particularly the forces that the medium exerts on the moving body. This
problem has become increasingly significant due to the increasing speed of sea vessels
and submarines. Determining the speed, surface temperature, density, flow velocity, and
pressure of a body moving in a fluid flow is a crucial hydrodynamic task. Hydrody-
namic characteristics serve as the foundation for predicting the navigability, seaworthiness,
and maneuverability of marine objects. Unfortunately, there are no currently universally
accepted calculation methods for assessing hydrodynamic characteristics. The primary
method for determining them is still model experimentation, which can be costly. An
increasingly popular alternative is numerical modeling methods. Utilizing computer mod-
eling in the early stages of design enables the exploration of various design solutions and
the assessment of control effectiveness and maneuvering capabilities. Therefore, the de-
velopment and enhancement of reliable numerical methods for predicting hydrodynamic
characteristics is a pressing and important issue in fluid mechanics.

The primary tool for describing the movement of gases and fluids is the single-particle
distribution function, which satisfies the Boltzmann equation [1]. Applying the Boltzmann
equation to calculate rarefied gas flows around aircraft or fluid flows around a solid
body moving in a fluid flow involves solving this equation under appropriate boundary
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conditions. Defining boundary conditions on surfaces swept by rarefied gas is one of the
most crucial issues in kinetic gas theory. In high-altitude aerodynamics, the interaction of
gas with the surface of the swept body plays a significant role [2]. The aerothermodynamic
characteristics of bodies in a gas flow are determined by the transfer of momentum and
energy to the surface of the body, which involves the connection between the velocities
and energies of molecules falling on the surface and molecules reflected from it. This
connection is the essence of kinetic boundary conditions on the surface. In the case of
gas or fluid flow around a moving solid body, boundary conditions are established in the
form of a relationship between particles falling on the boundary and particles reflected
from the boundary. The Maxwell boundary condition more accurately describes the
interaction of gas molecules with the surface when solving specific tasks. It is worth
nothing that in Ref. [3], two new models of boundary conditions were proposed: diffusive-
moment and specular-moment, which generalize the well-known boundary conditions of
Cercignani. Additionally, aerodynamic characteristics of spacecraft were studied using
the direct statistical simulation method (Monte Carlo method), and various models of gas
interaction with the surface and their impact on aerodynamic characteristics were analyzed
in Ref. [4].

The conservation laws of mass, momentum, and energy are satisfied by the Boltzmann
equation, resulting in five equations related to thirteen hydrodynamic parameters. To close
the system of equations, the stress tensor and heat flux are expressed in terms of velocity
components, density, temperature, and their derivatives. The heat flux is proportional to the
temperature gradient, while the stress tensor is defined by the deformation velocity tensor.
This approach leads to the derivation of Euler, Navier–Stokes, and Fourier equations.
However, the linear relationship between the stress tensor, heat flux, and gradients of
hydrodynamic quantities is only valid for flows with small Knudsen numbers. In more
general cases, the flow cannot be fully described using only hydrodynamic quantities, and
the system of five equations cannot be closed. Therefore, additional functions must be
introduced to describe the flow and derive equations that meet the required conditions.
One method that allows for obtaining a closed system of macroscopic equations at any
Knudsen number is the moment method. The objective of this work is to derive a new two-
dimensional nonstationary nonlinear system of moment equations that depend on the speed
and temperature of a moving body’s surface, along with macroscopic boundary conditions
on the moving boundary, considering the temperature of the surface of the moving body.
The new two-dimensional system of moment equations under appropriate macroscopic
boundary conditions, will be used to determine the velocity, surface temperature of a body
moving in a fluid flow, and fluid parameters. This process of determining fluid parameters
such as density, fluid flow velocity, pressure, speed of movement, and surface temperature
of a body moving in a fluid flow represents an inverse problem. To solve this inverse
problem, a numerical experiment will be conducted.

Moment methods differ from each other based on the choice of different systems of
basis functions. For example, Grad [5,6], in obtaining a moment system for the Boltzmann
equation, decomposed the particle distribution function in terms of Hermite polynomials
around the local Maxwell distribution. Grad used Cartesian velocity coordinates, and his
moment system included unknown hydrodynamic characteristics of the gas such as density,
temperature, and average velocity. These boundary conditions are dependent on the type
and nature of the boundary conditions for the Boltzmann equation, making them a global
problem in rarefied gas dynamics. For instance, the boundary conditions for Grad’s 13
and 20 moment equations have not yet been definitively resolved. The properties of these
systems depend on unknown parameters like gas density and average gas velocity, making
formulating boundary conditions a complex task. In a different approach, in [7,8], we
derived a moment system distinct from Grad’s system of equations. We utilized spherical
velocity coordinates and decomposed the distribution function into a series using the
eigenfunctions of the linearized collision operator [1–9], a product of Sonine polynomials
and spherical functions. The coefficients of decomposition, which are the moments of
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the distribution function, were defined differently than Grad’s method. The resulting
equation system, known as the Boltzmann moment equation system, corresponding to a
partial sum of the series, is a nonlinear hyperbolic system concerning the moments of the
particle distribution function. The differential part of this system is linear, with nonlinearity
introduced as quadratic forms of the distribution function moments. The quadratic forms
representing moments of the nonlinear collision integral were computed in Ref. [10] and
are expressed through Talmi coefficients [11] and Clebsch–Gordan coefficients [12]. It is
assumed in [5–7] that gas movement takes place within a bounded region with a stationary
boundary.

In [13,14], moment systems for the spatially homogeneous Boltzmann equation and
conditions for the representability of the solution of the spatially homogeneous Boltzmann
equation in the form of a Poincaré series were obtained. It is worth noting that the method
proposed in [13] (applying the Fourier transform to the velocity variable in the isotropic
case) greatly simplified the collision integral and therefore the calculation of moments
from the collision integral. Ref. [14] generalized the result of Ref. [13] for the case of
anisotropic scattering. In the case of a spatially homogeneous Boltzmann equation, the
moment equations are represented by a system of ordinary differential equations and the
problem of boundary conditions does not arise.

In [15], the derivation of a systematic unperturbed hierarchy of a closed system of
moment equations corresponding to classical theory is presented. The first member of the
hierarchy is the Euler system of equations, which is based on Maxwellian distributions
of velocities, while the second closure is based on non-isotropic Gaussian distributions
of velocities. The closure procedure consists of two stages. The first stage ensures that
each member of the hierarchy is hyperbolic, has entropy, and possesses realizability of its
predicted moments. The second step involves modifying the collisional members, which
is a nonlinear generalization of Grad’s “diagonal approximation” and guarantees that
members of the hierarchy beyond Gaussian closure recover the correct behavior of the
Navier–Stokes equations. This article is a fundamental work describing a closed system of
moment equations in the transitional regime.

Ref. [16] is dedicated to approximations of the Boltzmann equation using the moment
method. The problem setting of moment closure with relative entropy is generalized to
φφ-divergence and the corresponding closure is based on minimizing φφ-divergences.
The proposed description includes, as particular cases, the classical Grad closure based on
Hermite polynomial decomposition and Levermore’s closure based on entropy. It has been
established that generalizing closures based on divergence allows for the construction of
extended thermodynamic theories that avoid significant limitations of standard moment
closure formulations, such as the inadmissibility of the approximated distribution in phase
space, potential loss of hyperbolicity, and singularity of flow functions in local equilibrium.
Closure based on divergence leads to a hierarchy of treatable symmetric hyperbolic systems
that preserve the fundamental structural properties of the Boltzmann equation.

In Ref. [17], a new and improved computational algorithm is developed, playing a
crucial role in the moment method for solving the Boltzmann equation. This algorithm is
founded on the principle of the collision integral’s invariance concerning the selected base
system of functions utilized for decomposing the distribution function. The relationships
among matrix elements of the interaction matrix are methodically explored and analyzed.
Additionally, recurrent relationships for matrix elements in the axially symmetric scenario
are derived.

Ref. [18] aims to enhance the convergence of the moment method by introducing fil-
tered moments of hyperbolic equations. These filtered moments do not result in additional
computational costs while effectively reducing errors. The filter approach is developed
through a thorough examination of averaged solutions from two neighboring moment
systems. This averaging is reformulated using the artificial collision method, leading to the
creation of a filter. The authors analyze the properties of the filter and provide numerical
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examples of one-dimensional tasks to demonstrate the improved quality of the new filtered
moment method.

In Ref. [19], the development of continuum models for describing processes in gases
where particle collisions cannot maintain thermal equilibrium is discussed. Such a situation
typically occurs in rarefied or diluted gases for flows in microscopic conditions or whenever
the Knudsen number becomes significant. Continuum models are based on a stochastic
description of gas by the Boltzmann equation in kinetic gas theory. With moment approxi-
mations, extended hydrodynamics equations such as the regularized 13-moment equations
can be obtained. The moment equations are detailed, and typical results for channel flow,
cavity flow, and sphere flow under low Mach conditions, for which evolutionary equa-
tions and boundary conditions are well established, are considered. Conversely, nonlinear
high-speed processes require special closures that are still under development. Modern
approaches are considered, as well as the problem of calculating shock wave profiles based
on continuum equations.

In Ref. [20], a globally hyperbolic regularization of the general Grad moment system
in multidimensional spaces is proposed. Systems with moments up to an arbitrary order
are studied. Characteristic velocities of the regularized moment system can be analyti-
cally determined and depend only on macroscopic velocity and temperature. The fully
detailed structure of eigenvalues and eigenvectors of the coefficient matrix is elucidated.
Furthermore, it is demonstrated that all characteristic waves are either nonlinear or linearly
degenerate. The study also includes an analysis of the properties of rarefaction waves,
contact discontinuities, and shock waves.

Grad proposed the Hermite series decomposition for approximating solutions to ki-
netic equations that have an unbounded velocity space [5]. However, for initial-boundary
value problems, ill-posed boundary conditions lead to instability in the Hermite decom-
position, resulting in non-convergent solutions. For linear kinetic equations, a method
for establishing stable boundary conditions for (formally) Hermite approximations of any
order was recently introduced. In [21], the L2-convergence of these stable Hermite approxi-
mations is examined, and explicit convergence rates are demonstrated under appropriate
assumptions regarding the regularity of the exact solution. The convergence rates pre-
sented are validated through numerical experiments using the linearized BGK equation for
rarefied gas dynamics.

Fluid dynamic modeling is often carried out using inexpensive macroscopic models
such as the Euler equations. However, for rarefied gases in conditions close to equilibrium,
macroscopic models are not accurate enough, and modeling using more precise microscopic
models can be costly. In [22], a hierarchical micro–macro acceleration based on moment
models is introduced, combining the speed of macroscopic models with the precision of
microscopic models. The hierarchical micro–macro acceleration follows a flexible four-
step procedure including a micro step, a restriction step, a macro step, and a matching
stage. Several new micro–macro methods are developed from this and compared with
existing methods. In test cases for 1D and 2D scenarios, the new methods demonstrate
high accuracy and significant acceleration.

In [23], a foundation is presented for building interpretable and truly reliable reduced
models for multiscale tasks in situations without scale separation. The hydrodynamic
approximation of the kinetic equation is used as an example to illustrate the main stages and
arising challenges. For this purpose, a set of generalized moments that optimally represent
the main velocity distribution is first constructed. Then, the well-known closure problem is
solved with the goal of best reflecting the dynamics associated with the kinetic equation.
The problem of physical constraints, such as Galilean invariance, is addressed, and an
active learning procedure is introduced to help ensure that the dataset used is sufficiently
representative. The resulting system takes the form of a usual system of moments and
operates independently of the numerical discretization used. Numerical results for the BGK
(Bhatnagar–Gross–Krook) model and binary collision of Maxwell molecules are presented.



Mathematics 2024, 12, 1491 5 of 28

It is shown that the reduced model provides consistent accuracy across a wide range of
Knudsen numbers from the hydrodynamic limit to free molecular flow.

Ref. [24] is dedicated to boundary conditions for the linearized hyperbolic system
of moment equations of the one-dimensional Boltzmann equation. It is shown that even
when the usual conditions of relaxation stability and the Kreiss condition are met, there
exists an exponentially growing solution to the initial-boundary value problem for the
moment system of equations. To clarify this issue, the generalized Kreiss condition for
hyperbolic relaxation systems was checked. Using energy estimates, the stability of the
moment system is proven when the generalized Kreiss condition is met. Furthermore,
within the framework of the generalized Kreiss condition, reduced boundary conditions
for the corresponding equilibrium system are derived. Numerical results confirm the
convergence of the moment system solution to the solution of the equilibrium system with
the obtained boundary conditions in the relaxation limit. Special attention should be paid
to imposing boundary conditions for moment systems to observe the generalized Kreiss
condition to ensure the relaxation limit of the initial-boundary value problem.

This paper presents the formulation of the initial-boundary value problem for the
two-dimensional Boltzmann equation under microscopic Maxwell conditions. The appli-
cation of the two-dimensional Boltzmann equation to calculate fluid flows around a solid
body moving in a fluid flow under microscopic Maxwell conditions is studied for the first
time. We will approximate the initial-boundary value problem for the two-dimensional
nonstationary Boltzmann equation, considering the speed of the bodies moving in a fluid
under Maxwell conditions on a moving boundary by the corresponding problem for a
system of moment equations. We present the derivation of a new two-dimensional nonsta-
tionary nonlinear system of moment equations, dependent on the speed of movement, the
temperature of the surface of a moving body, and the approximation of the microscopic
Maxwell condition on the moving boundary. We show that the number of moment equa-
tions and macroscopic boundary conditions depend on the oddness and evenness of the
approximation of the number of moment equations. We provide a method for closing the
finite system of moment equations, resolving the closure of the moment system of equa-
tions individually for each specific approximation of the moment system of equations. In
Section 2, we state the initial-boundary value problem for the system of moment equations
in the first and second approximations under the macroscopic boundary conditions. We
demonstrate the correctness of the initial-boundary value problem for a system of moment
equations in the first approximation under the derived macroscopic boundary conditions.

The derived system depends on the speed of movement and the surface temperature
of the moving body. Macroscopic boundary conditions for the moment system depend on
the body’s surface temperature. Thus, the system of moment equations under macroscopic
boundary conditions allows us to determine the speed and surface temperature of a body
moving in a fluid flow, as well as fluid parameters.

2. Materials and Methods

In the first section of this work, the formulation of the initial-boundary value problem
for the two-dimensional Boltzmann equation under Maxwell’s microscopic conditions is
presented. The Boltzmann equation includes a term dependent on the velocity of a body
moving in a fluid, and the Maxwell condition incorporates a parameter dependent on
the body’s surface temperature. The moment method is used to obtain an approximate
solution of the initial-boundary value problem for the two-dimensional Boltzmann equation
under Maxwell’s microscopic conditions. A new two-dimensional non-stationary nonlinear
system of moment equations, dependent on the velocity and surface temperature of the
moving body, and an approximation of Maxwell’s microscopic boundary condition on the
moving boundary, are derived. This approximation considers some molecules reflecting off
the boundary specularly and others diffusely with a Maxwellian distribution. Macroscopic
boundary conditions for the system of moment equations establish a connection between
the moments of the particle distribution function falling on the boundary and those reflected
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from it. The number of moment equations and the quantity of macroscopic boundary
conditions depend on the oddness and evenness of the approximation of the moment
equations system. In the second section, the setting of the initial-boundary value problem
for the system of moment equations in the first and second approximations under new
macroscopic boundary conditions is provided. The difference in the boundary condition
settings for the system of equations in the first and second approximations is demonstrated.
The correctness of the initial-boundary value problem for the system of moment equations
in the first approximation with the derived macroscopic boundary conditions is proven
more precisely, demonstrating the existence of a unique solution to the aforementioned
problem in the space of functions C

(
[0, T]; L2(G)

)
, where G is a rectangle. The method of a

priori estimation is used to prove the existence and uniqueness of the solution of the initial-
boundary value problem for the system of moment equations in the first approximation.

3. Results
3.1. Derivation of the Non-Stationary Two-Dimensional System of Moment Equations and
Approximation of Maxwell’s Microscopic Boundary Condition

Accurate modeling and simulation of nonequilibrium processes in rarefied fluids or
microflows represents one of the main challenges in modern fluid mechanics. Traditional
models, developed centuries ago, lose their applicability in extreme physical situations.
In these classical models, nonequilibrium variables such as the stress tensor and heat flux
are combined with gradients of velocity and temperature as defined in the Navier–Stokes
and Fourier (NSF) relations. These relations are valid and close to equilibrium; however, in
rarefied fluids or microflows, particle collisions are insufficient to maintain equilibrium.
Far from equilibrium, inertia and multiscale relaxation of higher orders in fluids becomes
dominant and significant.

The main scaling parameter in kinetic theory is the Knudsen number, Kn, calculated
as the ratio of the mean free path between collisions, λ, and a macroscopic length, L, such
that Kn = λ/L. At Kn = 0, full equilibrium described by the non-dissipative Euler equa-
tions is assumed. In many processes, the Navier–Stokes and Fourier gas dynamics fail at
Kn ≈ 0.01 and sometimes at even smaller values [25].

At weak nonequilibrium, i.e., in the regime of gas flow as a continuum, it is possible
to describe the flow using macroscopic equations that properly reflect the dynamic regime
of the fluid when the mean free path is much smaller than the macroscopic length scales.
These macroscopic equations are consequences of solving the Boltzmann equation outside
thin Knudsen boundary layers and initial layers, i.e., as a result of solving the Boltzmann
equation in the form of a normal Hilbert series (Chapman–Enskog method).

The Boltzmann equation describes gas flow at any value of the Knudsen number,
particularly at values of the Knudsen number 10−3 < Kn < 10−1, where the gas flow
can be considered a continuum, i.e., a flow of a continuous medium. When calculating
the hydrodynamic characteristics of a body submerged in fluid, a term dependent on the
velocity of the moving body must be introduced into the Boltzmann equation. Addition-
ally, the condition on the moving boundary must contain a parameter dependent on the
temperature of the moving body’s surface. To calculate the flow of a continuous medium
around a submerged body one must solve the Boltzmann equation under appropriate
boundary conditions.

Hydrodynamic characteristics form the basis for predicting the navigability, seawor-
thiness, and maneuverability of marine vessels. Unfortunately, there are currently no
universally accepted calculation methods for assessing these characteristics. The primary
method for determining them is through model experimentation, which can be costly.
An increasingly popular alternative is the use of numerical modeling methods. Utilizing
computer modeling in the early stages of design enables the exploration of variable design
solutions and the assessment of actors such as the effectiveness of control mechanisms
and maneuvering capabilities. Therefore, the development and enhancement of reliable
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numerical methods for predicting hydrodynamic characteristics is a crucial and current
challenge in fluid mechanics.

When calculating the hydrodynamic characteristics of a body moving in fluid or the
aerodynamic characteristics of an aircraft in a high-speed flow of rarefied gas, a term
dependent on the velocity of the body or aircraft movement must be introduced into the
Boltzmann equation. Additionally, the condition on the moving boundary must include
a parameter dependent on the surface temperature of the body or aircraft. To analyze
the hydrodynamic characteristics of the fluid and the velocity of movement of the body
submerged in it, one can use the complete integro-differential Boltzmann equation:

∂ f
∂t

+

(
c,

∂ f
∂x

)
+

(
U,

∂ f
∂x

)
= J( f , f ) (1)

where f = f (t, x, c) is the particle distribution function in space over time and velocities,
c = v − U is the relative speed, U = (U1, U2, U3) is the velocity of the body moving in the
fluid, and J( f , f ) is the collision integral. Assuming the particle distribution function is even
in c2, i.e., f (t, x, c1,−c2, c3) = f (t, x, c1, c2, c3), Equation (1) becomes the following equation:

∂ f
∂t

+ c1
∂ f
∂x1

+ c3
∂ f
∂x3

+ U1
∂ f
∂x1

+ U3
∂ f
∂x3

= J( f , f ),c = (c1, c2, c3) ∈ Rc
3

Problem 1. Find a solution to the following initial-boundary value problem for the Boltzmann
equation [1,9]:

∂ f
∂t + c1

∂ f
∂x1

+ c3
∂ f
∂x3

+ U1
∂ f
∂x1

+ U3
∂ f
∂x3

= J( f , f ),t ∈ (0, T],
x = (x1, x3) ∈ G, c ∈ Rc

3,
(2)

f |t=0 = f 0(x, c), (x, c) ∈ G × Rc
3, (3)

f (t, x∂G, c) = β f (t, x∂G, c − 2(c, n∂G)n∂G) + (1 − β)exp
(
−c2/(2R)

)
,

(n∂G, c) > 0, x∂G ∈ ∂G,
(4)

where f ≡ f (t, x, c) is the particle distribution function in space by velocity and time,
f 0 ≡ f 0(x, c) is the particle distribution at the initial moment in time (a given function), J( f , f ) ≡∫ [

f (c′) f
(
c′1
)
− f (c) f (c1)

]
σ(cosχ)dc1dn is a nonlinear collision operator written for Maxwellian

molecules, G isa bounded area in two-dimensional space, n∂G is the external unit normal vector of
the boundary ∂G of area G, and c = v − U.

Condition (4) is the microscopic boundary condition of Maxwell for the Boltzmann
equation. According to Condition (4), a certain part of the incoming particles is specularly
reflected, while the other particles are absorbed by the wall and then emitted with a
Maxwellian distribution corresponding to the wall temperature Θ. α2 = 1

RΘ is also a
function of time and coordinates, and R is the Boltzmann constant. The parameter β
belongs to the interval (0, 1), where β = 1 corresponds to purely specular reflection from
the boundary.

Formula (4) is written under the assumption that the boundary (wall or surface)
moves at a speed U = (U1, U3). The Equations (2)–(4) are written in the coordinate
system associated with the moving wall, where the speed of movement is a function of
time and coordinates, i.e., U = U(t, x). The Boltzmann equation is a complex nonlinear
integro-differential equation for which it is impossible to construct an exact analytical
solution. Various methods are therefore applied to construct an approximate solution to
the Boltzmann equation. By expanding the particle distribution function in a Fourier series
around the Maxwellian distribution over a complete orthogonal system of functions in the
space Rc

3 and substituting it into the Boltzmann equation and then integrating over the
velocity space, the Boltzmann equation can be transformed into an infinite system of partial
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differential equations with respect to the expansion coefficients. In practice, the study is
limited to a finite system of differential equations, leading to the following interrelated
questions: (1) How should the infinite system of differential equations be truncated?
(2) How can the microscopic boundary condition for the particle distribution function be
approximated? (3) Is the obtained problem for the finite system of equations correct, i.e.,
does a solution exist for the new problem, and if so, to what space does it belong? This
work aims to provide answers these questions by proposing one method of truncating the
infinite system of differential equations, approximating Maxwell’s microscopic boundary
condition, and proving the correctness of the initial-boundary value problem for the finite
system of partial differential equations.

The approximate solution to Equations (2)–(4) can be found using the moment method.

fk(t, x, c) = f0(α|c|)∑k
2n+l=0

(
∑l

m=0 f (m)
nl (t, x)Φ(c)

nlm(αc)
)

, (5)

∫
Rc

3

[
∂ fk
∂t + U1

∂ fk
∂x1

+ U3
∂ fk
∂x3

+ c1
∂ fk
∂x1

+ c3
∂ fk
∂x3

− J( fk, fk)
]
Φ(c)

nlm(αc)dc = 0,
2n + l = 0, 1, . . . , k, m = 0, 1, . . . , l,

(6)

∫
Rc

3

(
fk(0, x, c)− f 0(x, c)

)
Φ(c)

nlm(αc)dc = 0,
2n + l = 0, 1, . . . , k, m = 0, 1, . . . , l,

(7)

∫
(n∂G ,c)>0 (n∂G, c) f+(t,x∂G ,c)

2N+1 Φ(c)
n,2l,m(αc)dc−

β
∫
(n∂G ,c)<0 (n∂G,−c) f−(t,x∂G ,c)

2N+1 Φ(c)
n,2l,m(αc)dc−

(1 − β)
∫
(n∂G ,c)<0 (n∂G,−c)exp

(
−|c|2
2RΘ

)
Φ(c)

n,2l,m(αc)dc = 0,

2(n + l) = 0, 2, . . . , 2N, m = 0, 1, . . . , 2l,

(8)

when k = 2N + 1, ∫
(n∂G ,c)>0 (n∂G, c) f+(t,x∂G ,c)

2N Φ(c)
n,2l+1,m(αc)dc−

β
∫
(n∂G ,c)<0 (n∂G,−c) f−(t,x∂G ,c)

2N Φ(c)
n,2l+1,m(αc)dc−

(1 − β)
∫
(n∂G ,c)<0 (n∂G,−c)exp

(
−|c|2
2RΘ

)
Φ(c)

n,2l+1,m(αc)dc = 0,

2(n + l) + 1 = 1, 3, . . . , 2N − 1, m = 0, 1, . . . , 2l + 1,

(9)

when k = 2N, where
f (m)
nl (t, x) =

∫
Rc

3

fk(t, x, c)Φ(c)
nlm(αc)dc, (10)

f 0
k (x, c) = f0(α|c|)∑k

2n+l=0

(
∑l

m=0 f 0(m)
nl (t, x)Φ(c)

nlm(αc)
)

, (11)

f 0(m)
nl (t, x) =

∫
Rc

3

f 0
k (x, c)Φ(c)

nlm(αc)dc, (12)

Φ(c)
nlm(αc) = γ

(m)
nl

(
α|c|√

2

)l
Sl+1/2

n

(
α2|c|2

2

)
P(m)

l (cosθ)cosmψ are the eigenfunctions of the

linearized collision operator [1,8], Sl+1/2
n

(
α2|c|2

2

)
are the Sonine polynomials, P(m)

l (cosθ)

are the associated Legendre functions, γ
(m)
nl =

√ √
πn!(2l+1)(l−m)!

2Γ(n+l+3/2)(l+m)! —is the normalization

coefficient, Γ is the gamma function, |c|, θ, ψ are the polar coordinates in velocity space, and
f0(α|c|) =

(
α2/2π

)3/2exp
(
−α2c2/2

)
is the local Maxwellian distribution.

Representing f as in Equation (5) can be viewed as an attempt to approximate the
solution of the Boltzmann equation, comprising a partial sum of the particle distribution
function’s Fourier series expansion in eigenfunctions of the linearized collision operator.
The system of Equation (6), corresponding to the partial sum of Equation (5), will be
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referred to as the system of moment equations in the k-th approximation. The finite system
of moment equations for a specific problem replaces the Boltzmann equation with a certain
degree of accuracy [1,9]. It also presents the task of setting boundary conditions for the finite
system of equations approximating the microscopic boundary conditions for the Boltzmann
equation, meaning it is necessary to approximately replace the boundary conditions for
the particle distribution function with a certain number of macroscopic conditions for the
moments. Choosing boundary conditions that the solutions of the moment equations must
satisfy is a significant issue for the system of moment equations.

Equations (8) and (9) serve as approximations of the microscopic Maxwell condition
depending on the oddness and evenness of the approximation of the system of moment
equations, providing macroscopic boundary conditions for the system of moment equations
at k = 2N + 1 and k = 2N, respectively. At k = 2N + 1 (k = 2N), even (odd) moments of
the second index of the Maxwell condition’s discrepancy are set to zero, i.e., for k = 2N + 1
(k = 2N), both sides of the Maxwell condition’s discrepancy are multiplied by Φ(c)

n,2l,m(αc)

(Φ(c)
n,2l+1,m(αc)) and integrated over the velocity half-space. The number of macroscopic

boundary conditions also depends on the oddness and evenness of the approximation
of the system of moment equations. The number of equations in Equation (6) depends
on the chosen approximation and moments. Through calculation, it is found that the
number of moment equations at k = 2N + 1 equals to 1

24 (k + 1)(k + 3)(2k + 7), and the
number of macroscopic boundary conditions equals to 1

6 (N + 1)(N + 2)(2N + 3), while
the number of moment equations at k = 2N equals to 1

24 (k + 2)(k + 4)(2k + 3), and the
number of macroscopic boundary conditions equals to 1

3 N(N + 1)(N + 2). This shows
that the number of moment equations and macroscopic boundary conditions depends on
the oddness and evenness of the approximation of the number of moment equations. At
k = 1(k = 2), the number of moment equations equals 3 in Equation (7), and the number of
macroscopic boundary conditions equals 1 in Equation (2). For the one-dimensional system
of Boltzmann moment equations, the approximation of the microscopic Maxwell boundary
condition at a constant α is given in [26]. In [27], a new one-dimensional system of moment
equations depending on the flight speed and surface temperature of the aircraft was derived,
and the microscopic Maxwell boundary condition was approximated at α = α(t, x). This
work presents for the first time the derivation of a two-dimensional system of moment
equations and the approximation of the microscopic Maxwell Condition (4) for the particle
distribution function in the case of a two-dimensional Boltzmann equation.

Let us introduce the notation d
dt ≡

∂
∂t + U1

∂
∂x1

+ ∂
∂x3

and rewrite Equality (6) as∫
Rc

3

[
∂ fk
∂t + U1

∂ fk
∂x1

+ U3
∂ fk
∂x3

+ c1
∂ fk
∂x1

+ c3
∂ fk
∂x3

− J( fk, fk)
]
Φ(c)

nlm(αc)dc =∫
Rc

3
{ d

dt

(
fkΦ(c)

nlm

)
+ ∂

∂x1

(
c1 fkΦ(c)

nlm

)
+ ∂

∂x3

(
c3 fkΦ(c)

nlm

)
− fk

[
d
dt

(
Φ(c)

nlm

)
+ ∂

∂x1

(
c1Φ(c)

nlm

)
+ ∂

∂x3

(
c3Φ(c)

nlm

)]
−J( fk, fk)Φ

(c)
nlm}dc = 0.

(13)

By definition of the coefficients f (m)
nl we have

∫
Rc

3

d
dt

(
fkΦ(c)

nlm

)
dc =

d
dt

∫
Rc

3

(
fkΦ(c)

nlm

)
dc =

d f (m)
nl
dt

≡
∂ f (m)

nl
∂t

+ U1
∂ f (m)

nl
∂x1

+ U3
∂ f (m)

nl
∂x3

(14)

Let us calculate the following integral:

∫
Rc

3

[
∂

∂x1

(
c1 fkΦ(c)

nlm

)
+

∂

∂x3

(
c3 fkΦ(c)

nlm

)]
dc =

∂

∂x1

∫
Rc

3

c1 fkΦ(c)
nlmdc +

∂

∂x3

∫
Rc

3

c3 fkΦ(c)
nlmdc. (15)

On the right-hand side of the last equation, we will express c1 and c3 in spherical
coordinates and replace Φ(c)

nlm with its value
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∫
Rc

3
c1 fkΦ(c)

nlmdc + ∂
∂x3

∫
Rc

3
c3 fkΦ(c)

nlmdc = γ
(m)
nl

∂
∂x1

∫
Rc

3
|c|sin(Θ)cos(ψ) f kcosmψ

(
α|c|√

2

)l

×Sl+ 1
2

n

(
α2|c|2

2

)
P(m)

l cosΘ|c|2d|c|sinΘdΘdψ

+γ
(m)
nl

∂
∂x3

∫
Rc

3
|c|cos(Θ) f kcosmψ

(
α|c|√

2

)l
Sl+ 1

2
n

(
α2|c|2

2

)
P(m)

l cosΘ|c|2d|c|sinΘdΘdψ =

γ
(m)
nl

∂
∂x1

∫ ∞
0 fk

√
2

α

(
α|c|√

2

)l+1
Sl+1/2

n

(
α2c2

2

)
|c|2d|c|

∫ 1
−1

∫ 2π
0

√
1 − µ2P(m)

l (µ)cosψcosmψdµdψ

+γ
(m)
nl

∂
∂x3

∫ ∞
0 fk

√
2

α

(
α|c|√

2

)l+1
Sl+1/2

n

(
α2c2

2

)
|c|2d|c|

∫ 1
−1

∫ 2π
0 µP(m)

l (µ)cosmψdµdψ =

γ
(m)
nl

∂
∂x1

∫ ∞
0 fk

√
2

α

(
α|c|√

2

)l+1
Sl+1/2

n

(
α2c2

2

)
|c|2d|c|

∫ 1
−1

∫ 2π
0

√
1 − µ2P(m)

l (µ)

×[cos(m + 1)ψcos(m − 1)ψ]dµdψ

+γ
(m)
nl

∂
∂x3

∫ ∞
0 fk

√
2

α

(
α|c|√

2

)l+1
Sl+1/2

n

(
α2c2

2

)
|c|2d|c|

∫ 1
−1

∫ 2π
0 µP(m)

l (µ)cosmψdµdψ

(16)

Hence, using the relations [28]

√
1 − µ2P(m)

l (µ) =


(

P(m+1)
l+1 (µ)− P(m+1)

l−1 (µ)
)

/(2l + 1)(
(l + m)(l + m − 1)P(m−1)

l−1 (µ)− (l − m + 1)(l − m + 2)P(m−1)
l+1 (µ)

)
/(2l + 1)

(2l + 1)µP(m)
l (µ) = (l − m + 1)P(m)

l+1 (µ) + (l + m)P(m)
l−1 (µ)

(17)

rewrite Equality (16) as

∂
∂x1

∫
Rc

3
c1 fkΦ(c)

nlmdc + ∂
∂x3

∫
Rc

3
c3 fkΦ(c)

nlmdc = γ
(m)
nl

2l+1
∂

∂x1

∫ ∞
0 fk

√
2

α

(
α|c|√

2

)l+1
Sl+1/2

n

(
α2c2

2

)
|c|2d|c|∗∫ 1

−1

∫ 2π
0

{(
P(m+1)

l+1 (µ)− P(m+1)
l−1 (µ)

)
cos(m + 1)ψ +

(
(l + m)(l + m − 1)P(m−1)

l−1 (µ)

−(l − m + 1)(l − m + 2)P(m−1)
l+1 (µ)

)
cos(m − 1)ψ

}
dµdψ+

+γ
(m)
nl

2l+1
∂

∂x3

∫ ∞
0 fk

√
2

α

(
α|c|√

2

)l+1
Sl+1/2

n

(
α2c2

2

)
|c|2d|c|

×
∫ 1
−1

∫ 2π
0

[
(l − m + 1)P(m)

l+1 (µ) + (l + m)P(m)
l−1 (µ)

]
cosmψdµdψ

(18)

Furthermore, the following relationships for Sonine polynomials [28] are known:

ySβ+1
n (y) = (n + β + 1)Sβ

n(y)− (n + 1)Sβ
n+1,

Sβ−1
n (y) = Sβ

n(y)− Sβ
n−1(y)

(19)

Using the Equation (19), we transform Equality (18) into the following:

∂
∂x1

∫
Rc

3

c1 fkΦ(c)
nlmdc + ∂

∂x3

∫
Rc

3

c3 fkΦ(c)
nlmdc = γ

(m)
nl

2l+1
∂

∂x1

∫
Rc

3
fk

√
2

α

∗
{(

α|c|√
2

)l+1[
Sl+3/2

n − Sl+3/2
n−1

]
[P (m+1)

l+1 (µ)cos(m + 1)ψ

−(l − m + 1)(l − m + 2)P(m−1)
l+1 (µ)cos(m − 1)ψ]

−
(

α|c|√
2

)l−1[
(n + l + 1/2)Sl−1/2

n − (n + 1)Sl−1/2
n+1

][
P(m+1)

l−1 cos(m + 1)ψ

−(l + m)(l + m − 1)P(m−1)
l−1 cos(m − 1)ψ

]}
dc

+
γ
(m)
nl

2l+1
∂

∂x3

∫
Rc

3

fk

√
2

α {
(

α|c|√
2

)l+1[
Sl+3/2

n − Sl+3/2
n−1

]
(l − m

+1)P(m)
l+1 cosmψ+

(
α|c|√

2

)l−1[
(n + l + 1/2)Sl−1/2

n − (n + 1)Sl−1/2
n+1

]
(l

+m)P(m)
l−1 cosmψ}dc.

From here, considering the notation in Equation (10), we write Equation (16) as
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∫
Rc

3

[
∂

∂x1

(
c1 fkΦ(c)

nlm

)
+ ∂

∂x3

(
c3 fkΦ(c)

nlm

)]
dc = γ

(m)
nl

2l+1
∂

∂x1

√
2

α

·
{

f (m+1)
n,l+1

γ
(m+1)
n,l+1

− f (m+1)
n−1,l+1

γ
(m+1)
n−1,l+1

− (l − m + 1)(l − m + 2)

(
f (m−1)
n,l+1

γ
(m−1)
n,l+1

− f (m−1)
n−1,l+1

γ
(m−1)
n−1,l+1

)
− n+l+1/2

γ
(m+1)
n,l−1

f (m+1)
n,l−1 + n+1

γ
(m+1)
n+1,l−1

f (m+1)
n+1,l−1

+(l + m)(l + m − 1)

(
n+l+1/2

γ
(m−1)
n,l−1

f (m−1)
n,l−1 − n+1

γ
(m−1)
n+1,l−1

f (m−1)
n+1,l−1

)}

+
γ
(m)
nl

2l+1
∂

∂x3

√
2

α

[
(l − m + 1)

(
f (m)
n,l+1

γ
(m)
n,l+1

− f (m)
n−1,l+1

γ
(m)
n−1,l+1

)

+(l + m)

(
n+l+1/2

γ
(m)
n,l−1

f (m)
n,l−1 −

n+1
γ
(m)
n+1,l−1

f (m)
n+1,l−1

)]
.

(20)

On the right-hand side of Equality (20), instead of γ
(m)
nl , γ

(m+1)
n,l+1 ,... we substitute the

values of the normalization coefficients:∫
Rc

3

[
∂

∂x1

(
c1 fkΦ(c)

nlm

)
+ ∂

∂x3

(
c3 fkΦ(c)

nlm

)]
dc = ∂

∂x1

√
2

α ×[√
(l+m+1)(l+m+2)

(2l+1)(2l+3)

(√
n + l + 3/2 f (m+1)

n,l+1 −
√

n f (m+1)
n−1,l+1

)
−
√

(l−m+1)(l−m+2)
(2l+1)(2l+3)

(√
n + l + 3/2 f (m−1)

n,l+1 −
√

n f (m−1)
n−1,l+1

)
−
√

(l−m−1)(l−m)
(2l−1)(2l+1)

(√
n + l + 1/2 f (m+1)

n,l−1 −
√

n + 1 f (m+1)
n+1,l−1

)
+
√

(l+m−1)(l+m)
(2l−1)(2l+1)

(√
n + l + 1/2 f (m−1)

n,l−1 −
√

n + 1 f (m−1)
n+1,l−1

)]
+

+∂
∂x3

√
2

α

[√
(l+m+1)(l−m+1)

(2l+1)(2l+3)

(√
n + l + 3/2 f (m)

n,l+1 −
√

n f (m)
n−1,l+1

)
+
√

(l−m)(l+m)
(2l−1)(2l+1)

(√
n + l + 1/2 f (m)

n,l−1 −
√

n + 1 f (m)
n+1,l−1

)]
(21)

We write the result of calculating the integral from the fourth term in Equation (13) as
(due to the complexity, we omitted the calculations of the integrals)

−
∫

Rc
3

fk

[
d
dt

(
Φ(c)

nlm

)
+ ∂

∂x1

(
c1Φ(c)

nlm

)
+ ∂

∂x3

(
c3Φ(c)

nlm

)]
dc

= dlnα
dt a1

(
f (m)
nl

)
+ α dU1

dt a2

(
f (m)
nl

)
+ α dU3

dt a3

(
f (m)
nl

)
+

√
2

α2
∂lnα
∂x1

b1

(
f (m)
nl

)
+ ∂U1

∂x1
b2

(
f (m)
nl

)
+ ∂U3

∂x1
b3

(
f (m)
nl

)
+

√
2

α
∂lnα
∂x3

c1

(
f (m)
nl

)
+ ∂U1

∂x3
c2

(
f (m)
nl

)
+ ∂U3

∂x3
c3

(
f (m)
nl

)
,

(22)

where the coefficient values are a1

(
f (m)
nl

)
, a2

(
f (m)
nl

)
, a3

(
f (m)
nl

)
, b1

(
f (m)
nl

)
, b2

(
f (m)
nl

)
, b3

(
f (m)
nl

)
,

c1

(
f (m)
nl

)
, c2

(
f (m)
nl

)
, and c3

(
f (m)
nl

)
(references are provided at the end of the article (see

Appendix A)).
By substituting the values of the integrals from Equations (15), (21), and (22) into

Equation (13), we obtain the following two-dimensional system of moment equations:

d f (m)
nl
dt + ∂

∂x1

−
√

(l−m+1)(l−m+2)
(2l+1)(2l+3)

(√
n + l + 3/2 f (m−1)

n,l+1 −
√

n f (m−1)
n−1,l+1

)
−
√

(l−m−1)(l−m)
(2l−1)(2l+1)

(√
n + l + 1/2 f (m+1)

n,l−1 −
√

n + 1 f (m+1)
n+1,l−1

)
+
√

(l+m−1)(l+m)
(2l−1)(2l+1)

(√
n + l + 1/2 f (m−1)

n,l−1 −
√

n + 1 f (m−1)
n+1,l−1

)}
+

+∂
∂x3

{√
2

α

[√
(l+m+1)(l−m+1)

(2l+1)(2l+3)

(√
n + l + 3/2 f (m)

n,l+1 −
√

n f (m)
n−1,l+1

)
+
√

(l−m)(l+m)
(2l−1)(2l+1)

(√
n + l + 1/2 f (m)

n,l−1 −
√

n + 1 f (m)
n+1,l−1

)]
}+

dlnα
dt a1

(
f (m)
nl

)
+ α dU1

dt a2

(
f (m)
nl

)
+ α dU3

dt a3

(
f (m)
nl

)
+

√
2

α2
∂lnα
∂x1

b1

(
f (m)
nl

)
+ ∂U1

∂x1
b2

(
f (m)
nl

)
+ ∂U3

∂x1
b3

(
f (m)
nl

)
+

√
2

α
∂lnα
∂x3

c1

(
f (m)
nl

)
+ ∂U1

∂x3
c2

(
f (m)
nl

)
+ ∂U3

∂x3
c3

(
f (m)
nl

)
= J(m)

nl ,
2n + l = 0, 1, . . . , k; m = 0, 1, . . . , l, t ∈ (0, T],x = (x1, x3) ∈ G,

(23)
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where d
dt ≡

∂
∂t + U1

∂
∂x1

+ U3
∂

∂x3
,

J(m)
nl = ∑

(
N3L3M3 ↓ nlm
n3l3m3 ↑ 000

)(
N3L3M3 ↓ n1l1m1
n3l3m3 ↑ n2l2m2

)
V(l3) f (m1)

n1l1
f (m2)
n2l2

, (24)

V(l3) = σl3 − σ0,
(

N3L3M3 ↓ n1l1m1
n3l3m3 ↑ n2l2m2

)
− Talmic oefficients.

Equation (23) represents a nonlinear system of partial differential equations concerning
the moments of the particle distribution function. The differential part of this system
includes coefficients such as the velocity of movement and the surface temperature of a
body moving in a fluid. Additionally, the lower terms of the Equation (23) also include
derivatives of the velocity of movement and surface temperature as coefficients. For
the Equation (23), it is necessary to formulate an initial-boundary value problem and
demonstrate the correctness of the new problem concerning the moments of the distribution
function. Establishing boundary conditions for the finite system of moment equations
remains a complex and unresolved issue, comparable in difficulty to the boundary condition
problem for Grad’s equation system, which is a global issue in the dynamics of rarefied
gas. From the microscopic boundary conditions for the Boltzmann equation, an infinite
number of boundary conditions can be derived for any type of decomposition. However,
the number of boundary conditions is not determined by the number of moment equations,
and the number of moment equations does influence the amount of boundary conditions.
Moreover, the boundary conditions must be consistent with the moment equations. The
differential part of the Equation (23) contains three unknown parameters, U1, U3 and α,
which depend on time and spatial variables (x1, x2). Therefore, the characteristics of the
finite equation system derived from Equation (23) depend on the velocity of movement and
the surface temperature of a body moving in a fluid, which are functions of time and spatial
variables. The microscopic Maxwell condition is approximated using Equations (8) and
(9). The next section will present the derivation of macroscopic boundary conditions for
the system of moment equations in the first and second approximations and demonstrate
the correctness of the initial-boundary value problem for the two-dimensional system of
moment equations in the first approximation. The Equation (23) system differs from Grad’s
equation system, as the moments of the distribution function are defined differently than
by Grad and the Boltzmann moment equation systems introduced in Refs. [7,8] by one of
the authors of this work.

Grad expanded the particle distribution function in Hermite polynomials around the
local Maxwell function, with the expansion coefficients determined by the formula:

aN =
1
n

∫
f H(N)(v)dξ,

where

v =

√
m
kT

c =
√

m
kT

(ξ − u)

is the relative velocity (relative to the average velocity). The coefficients of the particle dis-
tribution function’s expansion in Hermite polynomials depend on an unknown parameter
n =

∫
f dξ—the zeroth-order moment. In case of the Equation (23) system, the moments

f (m)
nl are determined using Equation (10) with c = v − U, where U = (U1, U3) is the veloc-

ity of the body moving in the fluid. Therefore, the coefficients of the particle distribution
function’s expansion in Hermite polynomials and the moments f (m)

nl (coefficients of the
particle distribution function’s expansion around the local Maxwellian distribution using
the eigenfunctions of the linearized collision operator) differ. Additionally, the structures
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of the Grad equation system and Equation (23) are different. Indeed, let us write down the
differential equation for a(2) from the Grad equation system [5]:

∂a(2)ij
∂t + ur

∂a(2)ij
∂xr

+ a(2)ir
∂uj
∂xr

+ (a(2)ij + δij)
1

RT
dRT
dt +

√
RT

∂a(3)ijr
∂xr

+
√

RT
ρ a(3)ijr

∂ρ
∂xr

+ 3
2RT a(3)ijr

∂RT
∂xr

+ ∂ui
∂xj

+
∂uj
∂xi

= J(2)ij .
(25)

In Equation (25), ui, uj, ur are the components representing the average velocity of

the gas, and T is the gas temperature, i.e., the coefficients at a(2)ij , a(3)ijr and their deriva-
tives depend on the macroscopic characteristics of the gas. Now, let us write down the
differential equation for f (0)02 from the system of Equation (23), corresponding to the values

2n + l = 2, n = 0, and l = 2 (the moments f (m)
nl at 2n + l > 3 are set to zero)

∂ f (0)02
∂t + U1

∂ f (0)02
∂x1

+ U3
∂ f (0)02
∂x3

+ ∂
∂x1

(
1
α (−

√
2
3 f (1)01 )

)
+ ∂

∂x3

(
1
α (

2√
3

f (0)01 )
)
+ dlnα

dt (−2 f (0)02 )

+
√

2
α2

∂lnα
∂x1

( 2√
3

f (1)01 )

+ ∂U1
∂x1

(
− 5

7 f (0)02

)
+

√
2

α
∂lnα
∂x3

(
2
√

2
3 f (0)01

)
+ ∂U3

∂x3

(
− 11

7 f (0)02

)
= J(0)02 ,

(26)

In Equation (26), (U1, U3) represents the velocity of the body’s movement, and

α =
√

1
RΘ , where Θ is the surface temperature of the body. The derivatives of f (0)02 with

respect to x1 and x3 include coefficients U1 ∧ U3, and the derivatives ∂
∂x1

contain 1
α as a

coefficient. Additionally, derivatives with respect to time and the spatial variable from the
movement velocity) and α also enter Equation (26) as coefficients for the lower order terms.
Thus, the Grad equation system and the moment system of Equation (23) differ. Using
the corresponding problem for the Grad equation system, one can determine the macro-
scopic characteristics of the gas, provided boundary conditions can be set, and with the
initial-boundary value problem for the moment system of Equation (23), one can determine
the macroscopic characteristics of the fluid, as well as the movement velocity and surface
temperature of the body. Determining the movement velocity and surface temperature
of the body using Equations (23)–(26) is an inverse problem for the nonlinear hyperbolic
equation system.

In deriving the Boltzmann moment equation system, the particle distribution function
was decomposed using the eigenfunctions of the linearized collision operator around

the global Maxwellian distribution, meaning it relied on a constant value α =
√

1
RΘ and

the Boltzmann moment equation system depended only on one parameter. However,
in the case of the Equation (23) system, both quantities (U1, U3) and α are functions of
time and coordinates, leading to different structures for the Equation (23) system and the
Boltzmann moment equation system. If, in Equation (23), the parameter α is constant and
U1 = 0 ∧ U3 = 0, then the Boltzmann moment equation system is obtained [7,8].

∂ f (m)
nl
∂t +

√
2

α
∂

∂x1

{[√
(l+m+1)(l+m+2)

(2l+1)(2l+3)

(√
n + l + 3/2 f (m+1)

n,l+1 −
√

n f (m+1)
n−1,l+1

)
−

−
√

(l−m+1)(l−m+2)
(2l+1)(2l+3)

(√
n + l + 3/2 f (m−1)

n,l+1 −
√

n f (m−1)
n−1,l+1

)
−

−
√

(l−m−1)(l−m)
(2l−1)(2l+1)

(√
n + l + 1/2 f (m+1)

n,l−1 −
√

n + 1 f (m+1)
n+1,l−1

)
+

+
√

(l+m−1)(l+m)
(2l−1)(2l+1)

(√
n + l + 1/2 f (m−1)

n,l−1 −
√

n + 1 f (m−1)
n+1,l−1

)}
+

+
√

2
α

∂
∂x3

{[√
(l+m+1)(l−m+1)

(2l+1)(2l+3)

(√
n + l + 3/2 f (m)

n,l+1 −
√

n f (m)
n−1,l+1

)
+
√

(l−m)(l+m)
(2l−1)(2l+1)

(√
n + l + 1/2 f (m)

n,l−1 −
√

n + 1 f (m)
n+1,l−1

)]
} = J(m)

nl ,
2n + l = 0, 1, . . . , k; m = 0, 1, . . . , l.
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The Boltzmann moment equation system is a special case of the Equation (23) system.
The moment Equation (23) system represents a finite system of equations. This raises the
issue of closing the finite system of equations, as for values of 2n + l = 0, 1, . . . , k ∧ m =
0, 1, . . . , l(n = 0) (with n = 0) moments of the distribution function with negative indices
appear. Furthermore, the left side of the moment system of Equation (23) contains moments
not included in the sum in Equation (5), i.e., the number of unknowns exceeds the number
of equations. The partial sum in Equation (5) can be considered a method for closing the
finite system of moment equations. The closure of the Equation (23) system is resolved
individually for each specific approximation of the moment equation system.

3.2. Correctness of the Initial-Boundary Value Problem for a Two-Dimensional Moment System of
Equations in the First Approximation

Let us present the formulation of the initial-boundary value problem for a two-
dimensional moment system of equations in the first approximation (k = 1) under macro-
scopic boundary conditions. If in the system of Equation (23), the index 2n + l takes values
0 and 1, and m also takes values 0 and 1, so we obtain the following equations:

d f (0)00
dt + ∂

∂x1

(√
2

α f (1)01

)
+ ∂

∂x3

(
1
α f (0)01

)
+ ∂U1

∂x1

(
− 1

3 f (0)00

)
+ ∂U3

∂x3

(
− 1

3 f (0)00

)
= 0,

d f (0)01
dt + ∂

∂x3

(
1
α f (0)00

)
+ dlnα

dt (− f (0)01

)
+ ∂U1

∂x1

(
− 1

5 f (0)01

)
+ ∂U3

∂x3

(
− 6

5 f (0)01

)
= 0,

d f (1)01
dt + ∂

∂x1

(√
2

α f (0)00

)
+ dlnα

dt (− f (1)01

)
+

√
2

α2
∂lnα
∂x1

(
− f (0)00

)
+ ∂U1

∂x1

(
− 2

5 f (1)01

)
+ ∂U3

∂x3

(
− 2

5 f (1)01

)
= 0, t

∈ (0, T], (x1, x3) ∈ G.

(27)

The two-dimensional moment system of equations in the first approximation in
Equation (27) includes three equations. Now, let us derive the macroscopic boundary
conditions for k = 1.

In Equation (8), we set N = 0, 2(n + l) = 0, and m = 0, which gives us the following
boundary conditions for the first approximation of the two-dimensional moment system
of equations: ∫

(n∂G ,c)>0 (n∂G, c) f+(t,x∂G ,c)
1 Φ(c)

000(αc)dc−
β
∫
(n∂G ,c)<0 (n∂G,−c) f−(t,x∂G ,c)

1 Φ(c)
000(αc)dc−

(1 − β)
∫
(n∂G ,c)<0 (n∂G,−c)exp

(
−|c|2
2RΘ

)
Φ(c)

000(αc)dc = 0,

(28)

where Φ(c)
000(αc) = 1,

f1(t, x, c) = f0(α|c|)
1

∑
2n+l=0

(
l

∑
m=0

f (m)
nl (t, x)Φ(c)

nlm(αc)

)
(29)

Let the domain G =
{
−aj < xj < aj, j = 1, 3

}
be a rectangle. In Equation (28), we

substitute the value of f1(t, x, c) with Formula (29) and perform integration over half-spaces.
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Thus, for the system of Equation (27), we obtain the boundary conditions (the calculation
of integrals is omitted due to its complexity):(

1√
2α

(
f (1)01

)+
± 1

α
√

π

(
1

2
√

2

(
f (0)00

)+))
(t,±a1)

= β

(
1√
2α

(
f (1)01

)−
± 1

α
√

π

(
1

2
√

2

(
f (0)00

)−))
(t,±a1)± 1−β

α
√

π
F1,(

1√
2α

(
f (0)01

)+
± 1

α
√

π

(
1

2
√

2

(
f (0)00

)+))
(t,±a3)

= β

(
1√
2α

(
f (0)01

)−
± 1

α
√

π

(
1

2
√

2

(
f (0)00

)−))
(t,±a3)± 1−β

α
√

π
F3,

F1 = 1
8
√

2
, F2 = 1

4
√

2
, t ∈ (0, T].

(30)

(
f(1)01

)+
, . . .

((
f(1)01

)−
, . . .

)
corresponds to the moments of particles impacting the

boundary (reflected from the boundary) of the distribution function, indicating that the
positive sign (+) (negative sign (−)) is associated with the moments of particles impacting
the boundary (reflecting from the boundary) of the distribution function. The macroscopic
boundary conditions for the moment system of equations create a link between the moments
of particles impacting and reflecting off the boundary of the distribution function.

The expressions 1−β

α
√

π
F1 and 1−β

α
√

π
F3 are moments of the second term on the right-hand

side of Condition (4). From Equation (30), it is evident that one boundary condition is
applied at the ends of the interval

(
−aj, aj

)
, j = 1, 3. We introduce the following vectors

and matrices:

u = f (0)00 , w =
(

f (0)01 , f (1)01

)′
, A1 =

(
0,
√

2
)

, A3 = (1, 0), B1=
1

α
√

π

(
1

2
√

2

)
, B3 = 1

α
√

π

(
1√
2

)
,

D1 =

(
−1 0
0 −1

)
, C1 =

(
−1/5 0

0 −2/5

)
, C3 =

(
−5/6 0

0 −2/5

)
.

Then, the initial-boundary value problem for the system of Equation (27) under the
boundary in Condition (30) is formulated as follows:

du
dt +

∂
∂x1

(
1
α A1w

)
+ ∂

∂x3

(
1
α A3w

)
= 0,

dw
dt + ∂

∂x1

(
1
α A1

′u
)
+ ∂

∂x3

(
1
α A3

′u
)
+ dlnα

dt D1w + ∂U1
∂x1

C
1
w+∂U3

∂x3
C3w +

√
2

α2
∂lnα
∂x1

(
0
−1

)
u = 0, t ∈ (0, T], x = (x1, x3) ∈ G,

(31)

u(0, x) = u0(x), w(0, x) = w0(x), x = (x1, x3) ∈ G, (32)

(
1√
2α

Ajw+ ± Bju+
)(

t,±aj
)
= β

(
1√
2α

Ajw− ∓ Bju−
)(

t,±aj
)
± 1−β

α
√

π
Fj,

t ∈ (0, T], j = 1, 3,
(33)

where A′
j are the transposed matrices, u0 is a given function, and w0(x)—is a given vec-

tor function

A1 =

(
0 A1

A1
′ 0

)
=

 0 0
√

2
0 0 0√
2 0 0

, A3 =

(
0 A3

A3
′ 0

)
=

0 1 0
1 0 0
0 0 0

.

The goal is to find a solution to the system of Equation (31) that satisfies the initial
Condition (32) and boundary Condition (33). When U1 = U3 = 0 and α − const, the
system of Equation (31) is strictly hyperbolic [29]. Indeed, the matrices A1 and A3 are
symmetric, and the roots of the equation det

(
τ I − 1

α A1ξ1 − 1
α A2ξ3

)
= 0 are real and

distinct
(

τ1 = 0, τ2 = 1
α

√
2ξ2

1 + ξ2
3, τ3 = −1

α

√
2ξ2

1 + ξ2
3

)
. The matrix A = A1ξ1 + A3ξ3 can

be diagonalized for any ξ = (ξ1, ξ3)ϵR2. The eigenvalues of matrix A1 are denoted by
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λ1 = 0, λ2/3 = ±
√

2, while the eigenvalues of matrix A3 are such that λ1 = 0, λ2/3 = ±1.
The matrices Aj, j = 1, 3 have one positive, one negative, and one zero eigenvalue; therefore,
it is sufficient to set one boundary condition at the ends of the interval

(
−aj, aj

)
, j = 1, 3.

For Equations (31)–(33), the following theorem holds true:

Theorem 1. If W0(x) = (u0(x), w0(x))′ belongs to the space L2(G) and α = α(t, x) >
0, Uj = Uj(t, x), j = 1, 3 are continuously differentiable functions in the domain [0, T]× G , then
Equations (31)–(33) have a unique solution, W(t, x) = (u(t, x), w(t, x))′ , in the space [0, T]× G ,
and the following a priori estimate applies:

∥W∥C([0,T];L2(G)) ≤ C1∥W0∥L2(G) (34)

where C1 is a constant independent o f W(t, x), 0 < t < T, and T is any positive, f inite number.

Proof. Let W0(x) ∈ L2(G). We prove the validity of Estimate (34) by multiplying the first
equation of the system in Equation (31) by u and the second equation scalarly by w, then
integrating over the domain G:

s
G

[
1
2

d
dt
(
u2 + (w, w)

)
+
(

∂
∂x1

(
1
α A1w

)
+ ∂

∂x3

(
1
α A3w

))
u

+

((
∂

∂x1

(
1
α A1

′u
)
+ ∂

∂x3

(
1
α A3

′u
)
+ dlnα

dt D1w + ∂U1
∂x1

C1w+∂U3
∂x3

C3w +
√

2
α2

∂lnα
∂x1

(
0
−1

)
u
)

, w
)]

dx = 0.
(35)

Please provide the expressions you would like to transform.(
∂

∂x1

(
1
α

A1w
)
+

∂

∂x3

(
1
α

A3w
))

u =
∂

∂x1

(
1
α

A1wu
)
+

∂

∂x3

(
1
α

A3wu
)
− 1

α
A1w

∂u
∂x1

− 1
α

A3w
∂u
∂x3((

∂
∂x1

(
1
α A1

′u
)
+ ∂

∂x3

(
1
α A3

′u
)
+ dlnα

dt D1w + ∂U1
∂x1

C1w+∂U3
∂x3

C3w +
√

2
α2

∂lnα
∂x1

(
0
−1

)
u
)

, w
)

= ∂
∂x1

(
1
α A′

1u, w
)
+ ∂

∂x3

(
1
α A′

3u, w
)
−
(

1
α A′

1u, ∂w
∂x1

)
−
(

1
α A′

3u, ∂w
∂x3

)
+

dlnα
dt (D1w, w) + ∂U1

∂x1
(C1w, w) + ∂U3

∂x3
(C3w, w) +

√
2

α2
∂lnα
∂x1

((
0
−1

)
u, w

)
.

(36)

Considering Relation (36), we rewrite Equation (35) as:

s

G

1
2

d
dt
(
u2 + (w, w)

)
dx

+
s

G

[
∂

∂x1

(
1
α A1wu

)
+ ∂

∂x3

(
1
α A3wu

)
− 1

α A1w ∂u
∂x1

− 1
α A3w ∂u

∂x3
+ ∂

∂x1

(
1
α A′

1u, w
)

+ ∂
∂x3

(
1
α A′

3u, w
)
−
(

1
α A′

1u, ∂w
∂x1

)
−
(

1
α A′

3u, ∂w
∂x3

)
+ dlnα

dt (D1w, w)

+ ∂U1
∂x1

(C1w, w) + ∂U3
∂x3

(C3w, w) +
√

2
α2

∂lnα
∂x1

((
0
−1

)
u, w

)]
dx = 0

(37)

Using the boundary conditions in Equation (33), we transform the following expression:

s
G

[
∂

∂x1

(
1
α A1wu

)
+ ∂

∂x3

(
1
α A3wu

)
+ ∂

∂x1

(
1
α A′

1u, w
)
+ ∂

∂x3

(
1
α A′

3u, w
)]

dx =

2
√

2
s

G

[
∂

∂x1

(
1√
2α

A1wu
)
+ ∂

∂x3

(
1√
2α

A3wu
)]

= 2
√

2
∫ a3

a3

[
1√
2α

A1wu
]x1=a1

x1=−a1
dx3+

2
√

2
∫ a1
−a1

[
1√
2α

A3wu
]x3=a3

x3=−a3
dx1 = 2

√
2
∫ a3
−a3

{[
β
(

1√
2α

A1w− − B1u−
)

u+ + 1−β

α
√

π
F1u+ − B1(u+)

2
]

x1=a1
+[

β
(

1√
2α

A1w− + B1u−
)

u+ − 1−β

α
√

π
F1u+ + B1(u+)

2
]

x1=−a1

}
dx3

+2
√

2
∫ a1
−a1

{[
β
(

1√
2α

A3w− − B3u−
)

u+ + 1−β

α
√

π
F3u+ − B3(u+)

2
]

x3=a3
+
[

β
(

1√
2α

A3w− + B3u−
)

u+ − 1−β

α
√

π
F3u++

B3(u+)
2
]

x3 = −a3}dx1.

(38)
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We substitute the value of the integral from Relation (38) into Equation (37):

s
G

1
2

d
dt
(
u2 + (w, w)

)
dx +

s
G

[
− 1

α A1w ∂u
∂x1

− 1
α A3w ∂u

∂x3
−
(

1
α A′

1u, ∂w
∂x1

)
−
(

1
α A′

3u, ∂w
∂x3

)
+ dlnα

dt (D1w, w)+

∂U1
∂x1

(C1w, w) + ∂U3
∂x3

(C3w, w) +
√

2
α2

∂lnα
∂x1

((
0
−1

)
u, w

)]
dx + 2

√
2
∫ a3
−a3

{[
β
(

1√
2α

A1w− − B1u−
)

u+ + 1−β

α
√

π
F1u+−

B1(u+)
2
]

x1 = a1 +
[

β
(

1√
2α

A1w− + B1u−
)

u+ − 1−β

α
√

π
F1u+ + B1(u+)

2
]

x1=−a1

}
dx3 + 2

√
2
∫ a1
−a1

{[
β
(

1√
2α

A3w−−

B3u−)u+ + 1−β

α
√

π
F3u+ − B3(u+)

2
]

x3 = a3 +
[

β
(

1√
2α

A3w− + B3u−
)

u+ − 1−β

α
√

π
F3u+ + B3(u+)

2
]

x3=−a3

}
dx1 = 0

(39)

Consider the derivative:

1
2

d
dt
(
u2 + (w, w)

)
= 1

2

(
∂
∂t + U1

∂
∂x1

+ U3
∂

∂x3

)(
u2 + (w, w)

)
= 1

2
∂
∂t
(
u2 + (w, w)

)
+ 1

2
∂

∂x1

[
U1
(
u2 + (w, w)

)]
+ 1

2
∂

∂x3

[
U3
(
u2 + (w, w)

)]
− 1

2
(
u2 + (w, w)

) ∂U1
∂x1

− 1
2
(
u2 + (w, w)

) ∂U3
∂x3

(40)

The value of the derivative from Equation (40) is substituted into Relation (39):
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+ 𝑈 𝑢 + (𝑤, 𝑤) + 𝑈 𝑢 + (𝑤, 𝑤) 𝑑𝑥 = 0.   

(41)

To obtain an a priori estimate, we use the spherical representation of u and w [30]: 𝑢 = 𝑦(𝑡)𝜔 (𝑡, 𝑥)  and 𝑤 = 𝑦(𝑡)𝜔 (𝑡, 𝑥), where ‖𝜔‖ [ , ] = 1, 𝜔(𝑡, 𝑥) = 𝜔 (𝑡, 𝑥), 𝜔 (𝑡, 𝑥)  

Hence,
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√ 𝐹 𝑢 + 𝐵 (𝑢 ) 𝑑𝑥   +2√2 𝛽 √ �̅� 𝑤 − 𝐵 𝑢 𝑢 + √ 𝐹 𝑢 − 𝐵 (𝑢 ) + 𝛽 √ �̅� 𝑤 + 𝐵 𝑢 𝑢 −
√ 𝐹 𝑢 + 𝐵 (𝑢 ) 𝑑𝑥 = 0.  
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+ 𝑈 𝑢 + (𝑤, 𝑤) + 𝑈 𝑢 + (𝑤, 𝑤) 𝑑𝑥 = 0.   

(41)

To obtain an a priori estimate, we use the spherical representation of u and w [30]: 𝑢 = 𝑦(𝑡)𝜔 (𝑡, 𝑥)  and 𝑤 = 𝑦(𝑡)𝜔 (𝑡, 𝑥), where ‖𝜔‖ [ , ] = 1, 𝜔(𝑡, 𝑥) = 𝜔 (𝑡, 𝑥), 𝜔 (𝑡, 𝑥)  
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To obtain an a priori estimate, we use the spherical representation of u and w [30]:
u = y(t)ω1(t, x) and w = y(t)ω2(t, x), where ∥ω∥ L2[−a,a] = 1, ω(t, x) = (ω1(t, x), ω2(t, x))′

is a unit vector. We substitute the values u = y(t)ω1(t, x) and w = y(t)ω2(t, x) into
Equation (41). Then we will have an ordinary differential equation:

dy
dt

+ yp(t) = f (t), (42)

where
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arbitrary positive finite number. Hence, for all ∀𝑡 ∈ [0, 𝑇], the a priori estimate in Equation 
(34) holds. The existence of a solution to Equations (31)–(33) can be demonstrated using 
the Galerkin method. The uniqueness of the solution to Equations (31)–(33) follows from 
the a priori estimate of Equation (34). □ 

For comparison, let us consider the formulation of the initial-boundary value 
problem for the two-dimensional moment equation system in the second approximation 
under macroscopic boundary conditions. If in the system of Equation (24), the index 2𝑛 +𝑙 takes values 0, 1, and 2, and m also takes values from 0 to l, then we obtain the following 
equations: 

Equation (42) is studied under the initial condition:

y(0) = ∥W0∥ = ∥W0∥ L2[−a,a]. (43)

The solution to Equations (42) and (43) takes the form:

y(t) = exp
(
−
∫ t

0
p(τ)dτ

)[
∥W0∥+

∫ t

0
f (τ)exp

(∫ τ

0
p(ξ)dξ

)]
. (44)

From Equation (44) it follows that y(t) is bounded by ∀t : 0 < t < T, where T is any
arbitrary positive finite number. Hence, for all ∀t ∈ [0, T], the a priori estimate in Equation
(34) holds. The existence of a solution to Equations (31)–(33) can be demonstrated using the
Galerkin method. The uniqueness of the solution to Equations (31)–(33) follows from the a
priori estimate of Equation (34). □

For comparison, let us consider the formulation of the initial-boundary value problem
for the two-dimensional moment equation system in the second approximation under
macroscopic boundary conditions. If in the system of Equation (24), the index 2n + l takes
values 0, 1, and 2, and m also takes values from 0 to l, then we obtain the following equations:
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d f (0)01
dt + ∂

∂x1

(
1
α

√
2 f (1)02

)
+ ∂

∂x3

(
1
α

[
2√
3

f (0)02 + f (0)00 −
√

2
3 f (0)10

])
+ dlnα

dt (− f (0)01

)
+

√
2

α2
∂lnα
∂x1

(− f (1)02

)
+ ∂U1

∂x1

(
− 1

5 f (0)01

)
+

√
2

α
∂lnα
∂x3

[√
2
3 f (0)02 + 1√

2

(
f (0)00 − f (0)10

)]
+ ∂U3

∂x3

(
− 6

5 f (0)01

)
= 0,

d f (1)01
dt + ∂

∂x1

{
1
α

[
2 f (2)02 −

√
2
3 f (0)02 +

√
2 f (0)00 − 2√

3
f (0)10

]}
+ ∂

∂x3

(
1
α f (1)02

)
+ dlnα

dt (− f (1)01

)
+

√
2

α2
∂lnα
∂x1

(
−
√

2 f (2)02 + 1√
3

f (0)02 − f (0)00 +
√

2
3 f (0)10

)
+ ∂U1

∂x1

(
− 4

5 f (1)01

)
+

√
2

α
∂lnα
∂x3

(
1√
2

f (1)02

)
+

∂U3
∂x3

(
− 2

5 f (1)01

)
= 0,

d f (0)00
dt + ∂

∂x1

(
1
α

√
2 f (1)01

)
+ ∂

∂x3

(
1
α f (0)01

)
+ ∂U1

∂x1

(
− 1

3 f (0)00

)
+ ∂U3

∂x3

(
− 1

3 f (0)00

)
= 0,

d f (0)02
dt + ∂

∂x1

(
1
α

(
−
√

2
3 f (1)01

))
+ ∂

∂x3

(
1
α

(
2√
3

f (0)01

))
+ dlnα

dt (−2 f (0)02

)
+

√
2

α2
∂lnα
∂x1

(
2√
3

f (1)01

)
+ ∂U1

∂x1

(
− 5

7 f (0)02

)
+

√
2

α
∂lnα
∂x3

(
2
√

2
3 f (0)01

)
+ ∂U3

∂x3

(
− 11

7 f (0)02

)
= J(0)02 ,

d f (1)02
dt + ∂

∂x1

(
1
α

√
2 f (0)01

)
+ ∂

∂x3

(
1
α f (1)01

)
+ dlnα

dt (−2 f (1)02

)
+

√
2

α2
∂lnα
∂x1

(−2 f (0)01

)
+

∂U1
∂x1

(
− 6

7 f (1)02

)
+

√
2

α
∂lnα
∂x3

(√
2 f (1)01

)
+ ∂U3

∂x3

(
− 9

7 f (1)02

)
= J(1)02 ,

d f (2)02
dt + ∂

∂x1

(
1
α (2 f (1)01

))
+ dlnα

dt (−2 f (2)02

)
+

√
2

α2
∂lnα
∂x1

(
−2

√
2 f (1)01

)
+

∂U1
∂x1

(
− 9

7 f (2)02

)
+ ∂U3

∂x3

(
− 3

7 f (2)02

)
= J(2)02 ,

d f (0)10
dt + ∂

∂x1

(
1
α

(
− 2√

3
f (1)01

))
+ ∂

∂x3

(
1
α

(
−
√

2
3 f (0)01

))
+ dlnα

dt (−2 f (0)10 +
√

6 f (0)00

)
+

α dU1
dt

(
1√
3

f (1)01

)
+ α dU3

dt

(√
2
3 f (0)01

)
+

√
2

α2
∂lnα
∂x1

(
5
√

2
3 f (1)01

)
+ ∂U1

∂x1

(
− f (0)10 −

√
6

3 f (0)00

)
+

∂U3
∂x1

(√
3 f (1)02

)
+

√
2

α
∂lnα
∂x3

(
− 5√

3
f (0)01

)
+ ∂U1

∂x3

(
1√
3

f (1)02

)
+ ∂U3

∂x3

[
−
(

4
3
√

2
f (0)02 + f (0)10

)]
= 0.

(45)

The system of Equation (45) contains seven equations regarding the moments of
the particle distribution function, of which four equations correspond to the laws of
conservation of mass, momentum, and energy. J(0)02 , J(1)02 , and J(2)02 are moments of the
collision integral.

To derive a boundary condition for the system of Equation (45), we use Relation (10):∫
(n∂G ,c)>0 (n∂G, c) f+(t,x∂G ,c)

2 Φ(c)
n,2l+1,m(αc)dc−

β
∫
(n∂G ,c)<0 (n∂G,−c) f−(t,x∂G ,c)

2 Φ(c)
n,2l+1,m(αc)dc−

(1 − β)
∫
(n∂G ,c)<0 (n∂G,−c)exp

(
−|c|2
2RΘ

)
Φ(c)

n,2l+1,m(αc)dc = 0,

2(n + l) + 1 = 1, m = 0, 1, . . . , 2l + 1,

(46)

where

f2(t, x, c) = f0(α|c|)
2

∑
2n+l=0

(
l

∑
m=0

f (m)
nl (t, x)Φ(c)

nlm(αc)

)
. (47)

From the equation 2(n + l) + 1 = 1, it follows that 2 (n + l) = 0 → n = l = 0 , and
thus m = 0, 1. Note that Φ(c)

010(αc) = α|c|µ, Φ(c)
011(αc) =

(
α|c|√

2

)√
1 − µ2cosψ.

Let the area G =
{
−aj < xj < aj, j = 1, 3

}
be a rectangle. In Equation (46), instead of

f2(t, x, c), we substitute its value according to Formula (47) and perform integration over
half-spaces. Then, for the system of Equation (45), we have a boundary condition (the
calculation of integrals is omitted due to their complexity):
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𝐴  and 𝐴 - are symmetric square matrices of the seventh order. 

𝐴 = 0 𝒜𝒜 0 =
⎝⎜
⎜⎜⎜
⎛ 0 0 00 0 √20 √2 0 0 √2 0− 2 3⁄ 0 20 0 0 0− 2 √3⁄00 − 2 3⁄ 0√2 0 00 2 0 0 0 00 0 00 0 0 0000 − 2 √3⁄ 0 0 0 0 0 ⎠⎟

⎟⎟⎟
⎞

, 

𝐴 = 0 𝒜𝒜 0 =
⎝⎜
⎜⎜⎜
⎛ 0 0 10 0 01 0 0 2 √3⁄ 0 00 1 00 0 0 − 2 3⁄002 √3⁄ 0 00 1 00 0 0 0 0 00 0 00 0 0 000− 2 3⁄ 0 0 0 0 0 0 ⎠⎟
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Let us denote by ℱ = ℱ W, α, , α , α , , , , , ,  a 
vector consisting of the lower order terms of the system of equations (2.1). The initial-

The upper sign +(−) corresponds to the moments of particle distribution function
falling on the boundary (reflected from the boundary). From Equation (48), it is evident that
at the ends of the interval

(
−aj, aj

)
, j = 1, 3, two boundary conditions are set. Introducing

the following vectors and matrices:

w =
(

f (0)01 , f (1)01

)′
, u =

(
f (0)00 , f (0)02 , f (1)02 , f (2)02 , f (0)10

)′
, W = (w, u)′, A1 =

(
0 A1
A′

1 0

)
,

A3 =

(
0 A3
A′

3 0

)
,

A1 =

(
0 0

√
2√

2 −
√

2/3 0
0 0
2 −2/

√
3

)
, A3 =

(
1 2/

√
3 0

0 0 1
0 −

√
2/3

0 0

)
,

B1=
1

α
√

π

(
1

2
√

2

)
, B3=

1
α
√

π

(
1√
2

)
, J(W, W) =

(
0, 0, 0, J(0)02 , J(1)02 , J(2)02 , 0

)′
.

A1 and A3—are symmetric square matrices of the seventh order.

A1 =

(
0 A1
A′

1 0

)
=



0 0 0 0
√

2 0 0
0 0

√
2 −

√
2/3 0 2 −

√
2/3

0
√

2 0 0 0 0 0
0 −

√
2/3 0 0 0 0 0√

2 0 0 0 0 0 0
0 2 0 0 0 0 0
0 −

√
2/3 0 0 0 0 0


,

A3 =

(
0 A3
A′

3 0

)
=



0 0 1 2/
√

3 0 0 −
√

2/3
0 0 0 0 1 0 0
1 0 0 0 0 0 0

2/
√

3 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0

−
√

2/3 0 0 0 0 0 0


.

Let us denote by F = F
(

W,α, dlnα
dt ,αdU1

dt ,αdU3
dt , 1

α2
∂lnα
∂x1

, 1
α

∂lnα
∂x3

, ∂U1
∂x1

, ∂U1
∂x3

, ∂U3
∂x1

, ∂U3
∂x3

)
a

vector consisting of the lower order terms of the system of equations (2.1). The initial-
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boundary value problem for the system of Equation (45) under boundary conditions in
Equation (48) is written in vector–matrix form:

dW
dt

+
∂

∂x1

(
1
α

A1W
)
+

∂

∂x3

(
1
α

A3W
)
+F = J(W, W), t ∈ (0, T], x = (x1, x3) ∈ G, (49)

W(0, x) = W0(x), x ∈ G, (50)

(
1√
2α
Aju+ ± Bjw+

)(
t,±aj

)
= β

(
1√
2α
Aju− ∓ Bjw−

)(
t,±aj

)
± 1−β

α
√

π
Fj, j = 1, 3,

t ∈ (0, T],
(51)

The eigenvalues of matrix A1:

λ1 = −2.8284, λ2 = −1.4142, λ3 = −0.0000, λ4 = 0.0000, λ5 = 0.0000,
λ6 = 1.4142, λ7 = 2.8284.

The eigenvalues of matrix A3: λ1 = −1.7321, λ2 = −1.0000, λ3 = −0.0000,
λ4 = −0.0000, λ5 = 0.0000, λ6 = 1.0000, λ7 = 1.7321.

Each matrix has two positive, two negative, and three zero eigenvalues. The moment
equation system in the second approximation contains seven equations regarding the
moments of the particle distribution function, and the number of macroscopic boundary
conditions at the ends of the interval

(
−aj, aj

)
, j = 1, 3 equals two.

4. Discussion

The initial-boundary value problem for the two-dimensional Boltzmann equation
under microscopic Maxwellian conditions is approximated by the corresponding problem
for a two-dimensional nonstationary system of moment equations under macroscopic
boundary conditions. In this case, the Boltzmann equation contains a term depending on
the speed of a body moving in a liquid, and the Maxwell condition contains a parameter
that depends on the temperature of the body’s surface. Macroscopic boundary conditions
for the moment system of equations depend on the body’s surface temperature. The
theorem in the second section proves the existence of a global solution in time to the
initial-boundary value problem for a two-dimensional system of moment equations in the
first approximation in the function space C([0, T]; L2(G)). The questions of existence for a
two-dimensional system of moment equations in the second approximation and higher
approximations, as well as determining the speed of a body moving in a liquid and the
temperature of the body’s surface, will be investigated in subsequent works.

5. Conclusions

The study of the motion of solid bodies in fluids, particularly the investigation of the
forces that the medium exerts on a moving body, is an important and relevant problem in
hydrodynamics. The increase in the speed of movement of ships and submarines requires
numerical experiments to determine the hydrodynamic characteristics of bodies moving
in a fluid. The velocity of movement and surface temperature of the body, as well as the
hydrodynamic characteristics of the fluid, can be determined using the initial-boundary
value problem for the moment system of Equation (23) under the boundary conditions in
Equations (8) and (9).

In the case of body motion in fluids, the moment system of Equation (23) depends
on the velocity of the moving body and the surface temperature of the body, while the
boundary conditions in Equations (8) and (9) depend on the surface temperature of the
moving body. The system of Equation (23) represents a complex nonlinear hyperbolic
system of equations regarding the moments of the particle distribution function. The left
side of system in Equation (23) depends on unknown parameters α and (U1, U3), while
the right side is a quadratic form—moments of the collision integral. Additionally, the
boundary conditions in Equations (8) and (9) also depend on an unknown parameter. The
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characteristics of the moment equation system depend on three unknown parameters:
the movement velocity and surface temperatures of the body moving in the fluid stream.
Generally, formulating boundary conditions for such systems of equations is very difficult.
However, we have managed to formulate boundary conditions for the moment equation
system in the form of Equations (8) and (9).

It is crucial to provide proof of the correctness of initial-boundary problems for
the system of Equation (23) in different approximations under the boundary conditions
in Equations (8) or (9) from a mathematical standpoint. Understanding the hydrody-
namic characteristics of a body in motion through fluids is a significant problem in
continuum mechanics.

Determining the velocity of movement and the surface temperature of a body moving
in a fluid stream, as well as fluid parameters, is an important current task in hydrodynamics.
To determine the unknown coefficients of the system of moment equations, additional
information about solving the direct problem is provided. The next step is solving the
inverse problem. The plan is to develop an iterative numerical method for solving both
direct and inverse problems for a nonstationary nonlinear system of moment equations,
implement software algorithms, and apply them to solve the described inverse problems.
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− (2𝑙 + 1)(𝑙 − 𝑚)(𝑙 − 𝑚 + 1)(𝑙 − 𝑚 + 2)(2𝑙 − 3)(𝑙 + 𝑚) 𝑓 ,( ) −𝛾 ,( ) 𝐷 ,( ) (𝑑| |𝑓 ) 

𝑐 𝑓( ) = − 2(𝑙 + 2𝑛 + 1)(2𝑙 + 3)(𝑙 + 3) (𝑙 − 𝑚 + 1)(𝑙 − 𝑚 + 2)(𝑙 + 𝑚 + 1)(𝑙 + 𝑚 + 2)(2𝑙 + 1)(2𝑙 + 5) 𝑛(𝑛 + 𝑙 + 3 2)⁄ 𝑓 ,( )
− 𝑛(𝑛 − 1)𝑓 ,( ) + (𝑙 + 2𝑛 + 1)2𝑙 + 1 (𝑙 − 𝑚 + 1)(𝑙 + 𝑚 + 1)2𝑙 + 3 + (𝑙 − 𝑚)(𝑙 + 𝑚)2𝑙 − 1 𝑓( )
+ (𝑙 + 2𝑛 + 1)𝛾( ) 2(𝑙 + 𝑚)(𝑙 + 𝑚 − 1)(2𝑙 + 1)(2𝑙 − 1)(𝑙 + 3) 𝛼|𝑐|√2 𝑛 + 𝑙 + 12 𝑆 − 𝑛𝑆 𝑃( )𝑐𝑜𝑠𝑚𝜓𝑓 𝑑𝑐
− (𝑙 + 𝑚)(𝑙 + 𝑚 − 1)(2𝑙 + 1)(2𝑙 − 1) 𝜕 ,( ) (𝑑| |𝑓 ) − (𝑙 − 𝑚 + 1)(𝑙 − 𝑚 + 2)(2𝑙 + 1)(2𝑙 + 3) 𝜕 ,( ) (𝑑| |𝑓 )  
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− ⎝⎛
4 𝑛 𝑛 + 𝑙 + 12(2𝑙 + 3)(𝑙 + 3) (𝑙 − 𝑚 + 1)(𝑙 − 𝑚 + 2)(𝑙 + 𝑚 + 1)(𝑙 + 𝑚 + 2)(2𝑙 + 1)(2𝑙 + 5)× (𝑛 − 1)(𝑛 + 𝑙 + 1 2)⁄ 𝑓 ,( ) − (𝑛 − 1)(𝑛 − 2)𝑓 ,( )

+ 2 𝑛 𝑛 + 𝑙 + 12 (𝑙 − 𝑚 + 1)(𝑙 + 𝑚 + 1)2𝑙 + 3 + (𝑙 − 𝑚)(𝑙 + 𝑚)2𝑙 − 1 𝑓 ,( )2𝑙 + 1+ 2 𝑛 𝑛 + 𝑙 + 12 𝛾 ,( )
× 2(𝑙 + 𝑚)(𝑙 + 𝑚 − 1)(2𝑙 + 1)(2𝑙 − 1)(𝑙 + 3) 𝛼|𝑐|√2 𝑛 + 𝑙 − 12 𝑆
− (𝑛 − 1)𝑆 𝑃( )𝑐𝑜𝑠𝑚𝜓𝑓 𝑑𝑐 − (𝑙 + 𝑚)(𝑙 + 𝑚 − 1)(2𝑙 + 1)(2𝑙 − 1) 𝜕 ,( ) (𝑑| |𝑓 )
− (𝑙 − 𝑚 + 1)(𝑙 − 𝑚 + 2)(2𝑙 + 1)(2𝑙 + 3) 𝜕 ,( ) (𝑑| |𝑓 ) ⎠⎞, 

𝐷( )(𝑑| |𝑓 ) = 𝛼|𝑐|√2 𝑆 𝑃( ) − 𝑃( ) 𝑐𝑜𝑠(𝑚 + 1)𝜓+ (𝑙 + 𝑚)(𝑙 + 𝑚 − 1)𝑃( ) − (𝑙 − 𝑚 + 1)(𝑙 − 𝑚 + 2)𝑃( ) 𝑐𝑜𝑠(𝑚− 1)𝜓 (𝑑| |𝑓 )𝑑𝜇𝑑 𝜓; 𝐷( )(𝑑| |𝑓 ) = 𝛼|𝑐|√2 𝑆 (𝑙 − 𝑚 + 1)𝑃( )(𝜇) + (𝑙+ 𝑚)𝑃( )(𝜇)   𝑐𝑜𝑠𝑚𝜓(𝑑| |𝑓 )𝑑𝜇𝑑𝜓. 𝜕 , ±( ) (𝑑𝑓 ) = 2√2(𝑙 + 3)𝛼 𝛼|𝑐|√2 𝑆 𝑃±( )𝑐𝑜𝑠𝑚𝜓𝑑𝑓 𝑑𝜇𝑑𝜓 

𝐷( )(𝑑𝑓 ) =  ( )( )( ) √ | |√ 𝑆 𝑃( ) − 𝑃( ) 𝑐𝑜𝑠(𝑚 + 1)𝜓 +(𝑙 + 𝑚 + 1)(𝑙 + 𝑚)𝑃( ) − (𝑙 − 𝑚 + 2)(𝑙 − 𝑚 + 3)𝑃( ) 𝑐𝑜𝑠(𝑚 − 1)𝜓 +𝑃( ) − 𝑃( ) 𝑐𝑜𝑠(𝑚 + 1)𝜓 + (𝑙 + 𝑚 − 1)(𝑙 + 𝑚 − 2)𝑃( ) −(𝑙 − 𝑚)(𝑙 − 𝑚 + 1)𝑃( ) 𝑐𝑜𝑠(𝑚 − 1)𝜓 𝑑𝑓 𝑑𝜇𝑑𝜓.  𝐷1( ) = 𝛾( )4(2𝑙 + 1) 𝛼|𝑐|√2 𝑆 12𝑙 + 3 𝑃( ) − 𝑃( ) с𝑜𝑠(𝑚 + 2)𝜓− (𝑙 − 𝑚 + 1)(𝑙 − 𝑚 + 2)𝑃( )𝑐𝑜𝑠𝑚𝜓− 12𝑙 − 1 𝑃( ) − 𝑃( ) 𝑐𝑜𝑠(𝑚 + 2) 𝜓+ (𝑙 + 𝑚)(𝑙 + 𝑚 − 1)𝑃( )𝑐𝑜𝑠𝑚𝜓+ 12𝑙 − 1 −(𝑙 + 𝑚)(𝑙 + 𝑚 − 1)𝑃( )𝑐𝑜𝑠𝑚𝜓+ (𝑙 + 𝑚 − 2)(𝑙 + 𝑚 − 3)𝑃( )− (𝑙 − 𝑚 + 1)(𝑙 − 𝑚 + 2)𝑃( ) 𝑐𝑜𝑠 (𝑚 − 2)𝜓+ 12𝑙 + 3 −(𝑙 − 𝑚 + 1)(𝑙 − 𝑚 + 2)𝑃( )𝑐𝑜𝑠𝑚𝜓+ (𝑙 + 𝑚)(𝑙 + 𝑚 − 1)𝑃( ) − (𝑙 − 𝑚 + 3)(𝑙 − 𝑚 + 4)𝑃( ) 𝑐𝑜𝑠 (𝑚− 2)𝜓 𝑓 𝑑𝑐. 
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