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Abstract: This paper concentrates on the general birth–death processes with two different types of
catastrophes. The Laplace transform of transition probability function for birth–death processes with
two-type catastrophes is successfully expressed with the Laplace transform of transition probability
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time is considered. The Laplace transform of its probability density function, expectation and variance
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1. Introduction

The Markov process is a very important branch of stochastic processes that has a very
wide range of applications. Standard references are Anderson [1], Asmussen [2], Chen [3]
and others.

The birth–death process, as a very important class of Markov processes, has been
widely applied in finance, communications, population science and queueing theory. In the
past few decades, there have been many works on generalizing the ordinary birth–death
process, making the theory of birth–death processes more and more fruitful. Recently,
the stochastic models with catastrophe have aroused much research interest. For exam-
ple, Chen Zhang and Liu [4], Economou and Fakinos [5] and Pakes [6] considered the
instantaneous distribution of continuous-time Markov chains with catastrophes. Chen and
Renshaw [7,8] analyzed the effect of catastrophes on the M/M/1 queuing model. Zhang
and Li [9] extended these results to the M/M/c queuing model with catastrophes. Li and
Zhang [10] further considered the effect of catastrophes on the MX/M/c queuing model.
Di Crescenzo et al. [11] discussed the probability distribution and the relevant numerical
characteristics of the first occurrence time of an effective disaster for a general birth–death
process with catastrophes. Other related works can be found in Artalejo [12], Bayer and
Boxma [13], Chen, Pollett, Li and Zhang [14], Dudin and Karolik [15], Gelenbe [16], Ge-
lenbe, Glynn and Sigman [17], Jain and Sigman [18], Zeifman and Korotysheva [19] and
many others.

The models considered in the above references involve only one type of catastrophe.
However, in real situations, there may be multiple types of catastrophes involved in a
stochastic model. For example, earthquakes and fires have a huge influence on a biological
population. Wars and epidemics affect population in a country. In general, different
catastrophes may have completely different effects. Therefore, a natural and important
problem is considering the first occurrence time of an effective catastrophe (including
different types of catastrophes) and determiniing the type of the first effective catastrophe.

The purpose of this paper is to consider the general birth–death processes with two-
type catastrophes. We mainly discuss the property of the first occurrence time of effective
catastrophe and the type of the first effective catastrophe.

We start our discussion by presenting the infinitesimal generator, i.e., the so-called q-matrix.
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Definition 1. Let {Nt : t ≥ 0} be a continuous-time Markov chain on state space Z+ = {0, 1, 2, · · · },
if its q-matrix Q = (qij : i, j ∈ Z+) is given by

Q = Q̂ + Qd, (1)

where Q̂ = (q̂ij : i, j ∈ Z+) and Qd = (q(d)ij : i, j ∈ Z+) are given by

q̂ij =



λi, i ≥ 0, j = i + 1,
µi, i ≥ 1, j = i − 1,
−λ0, i = j = 0,
−ωi, i = j ≥ 1,
0, otherwise.

(2)

and

q(d)ij =



β, i = 0 or i ≥ 2, j = 1,
α, i ≥ 1, j = 0,
−β, i = j = 0,
−α, i = j = 1,
−γ, i = j ≥ 2,
0, otherwise.

(3)

with α, β ≥ 0, λi > 0 (i ≥ 0), µi > 0 (i ≥ 1) and ωi = λi + µi (i ≥ 1), γ = α + β, respectively.
Then, {Nt : t ≥ 0} is called a birth–death processes with two-type catastrophes. Its probability

transition function is denoted by P(t) = (pij(t) : i, j ∈ Z+) and the corresponding resolvent is
denoted by Π(λ) = (πj,n(λ) : j, n ∈ Z+).

Remark 1. By Definition 1, α and β describe the rates of catastrophes. We call them α-catastrophe
and β-catastrophe, respectively. That is, α-catastrophe kills all the individuals in the system, while
β-catastrophe partially kills the individuals in the system with only one individual left. If α = β = 0,
i.e., there is no catastrophe, then {Nt : t ≥ 0} degenerates into an ordinary birth–death process,
which is denoted by {N̂(t) : t ≥ 0}, and its q-matrix is denoted by Q̂. The probability transition
function of {N̂t : t ≥ 0} is denoted by P̂(t) = ( p̂ij(t) : i, j ∈ Z+) and the corresponding resolvent
is denoted by Π̂(λ) = (π̂j,n(λ) : j, n ∈ Z+).

The rest of this paper is organized as follows. In the following Section 2, we reveal the
relationship of the transition probability of {Nt : t ≥ 0} and the transition probability of
{N̂t : t ≥ 0} in Laplace transform version (Theorem 1). In Section 3, the first occurrence
time of an effective catastrophe is discussed. We first construct a new process, {Mt : t ≥ 0},
which coincides with {Nt : t ≥ 0} until the occurrence of catastrophe and can distinguish
what type of catastrophe occurs, and then reveal the relationship of the transition probability
of {Mt : t ≥ 0} and the transition probability of {N̂t : t ≥ 0}) in Laplace transform version
(Theorems 2 and 3). Finally, we obtain the probability distribution of the first occurrence
time of an effective catastrophe in a Laplace transform version and the probabilities of the
first effective catastrophe being of the α-type or the β-type.

2. Probability Transition Function

From Definition 1, we see that a catastrophe may reduce the system state to zero
or one. However, since natural death rate µ1, µ2 > 0, when the system state transfers
to zero from one or transfers to one from two, it is difficult to distinguish whether it
was a catastrophe or a natural death. Therefore, it is important to discuss such effective
catastrophe. For this purpose, we first construct the relationship of P(t) and P̂(t) (or,
equivalently, Π(λ) and Π̂(λ)).
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The following lemma presents the basic properties of P(t) (or Π(λ)) and P̂(t) (or Π̂(λ)).

Lemma 1. (i) P(t) = (pj,n(t) : j, n ∈ Z+) satisfies the following Kolmogorov forward equations:
for any j, n ∈ Z+ and t ≥ 0,

p′j,0(t) = −(λ0 + γ)pj,0(t) + µ1 pj,1(t) + α,

p′j,1(t) = λ0 pj,0(t)− (ω1 + γ)pj,1(t) + µ2 pj,2(t) + β,

p′j,n(t) = λn−1 pj,n−1(t)− (ωn + γ)pj,n(t) + µn+1 pj,n+1(t), n ≥ 2,

(4)

or equivalently, in the resolvent version
(λ + λ0 + γ)πj,0(λ)− δj,0 = µ1πj,1(λ) +

α
λ ,

(λ + ω1 + γ)πj,1(λ)− δj,1 = λ0πj,0(λ) + µ2πj,2(λ) +
β
λ ,

(λ + ωn + γ)πj,n(λ)− δj,n = λn−1πj,n−1(λ) + µn+1πj,n+1(λ), n ≥ 2.

(5)

(ii) P̂(t) = ( p̂j,n(t) : j, n ∈ Z+) satisfies the following Kolmogorov forward equations: for
any j, n ∈ Z+ and t ≥ 0,{

p̂′j,0(t) = −λ0 p̂j,0(t) + µ1 p̂j,1(t),

p̂′j,n(t) = λn−1 p̂j,n−1(t)− (λn + µn) p̂j,n(t) + µn+1 p̂j,n+1(t), n ≥ 1,

or, equivalently, in the resolvent version{
(λ + λ0)π̂j,0(λ)− δj,0 = µ1π̂j,1(λ),
(λ + λn + µn)π̂j,n(λ)− δj,n = λn−1π̂j,n−1(λ) + µn+1π̂j,n+1(λ), n ≥ 1.

Proof. (i) By Kolmogorov forward equations and the honesty of P(t), we know that

p′j,0(t) = −(λ0 + β)pj,0(t) + (µ1 + α)pj,1(t) +
∞

∑
k=2

αpj,k(t)

= −(λ0 + β)pj,0(t) + µ1 pj,1(t) +
∞

∑
k=1

αpj,k(t)

= −(λ0 + β)pj,0(t) + µ1 pj,1(t) + α(1 − pj,0(t))

= −(λ0 + γ)pj,0(t) + µ1 pj,1(t) + α

and

p′j,1(t) = (λ0 + β)pj,0(t)− (λ1 + µ1 + α)pj,1(t) + (µ2 + β)pj,2(t) +
∞

∑
k=3

βpj,k(t)

= λ0 pj,0(t)− (ω1 + α)pj,1(t) + µ2 pj,2(t) + β(1 − pj,1(t))

= λ0 pj,0(t)− (ω1 + γ)pj,1(t) + µ2 pj,2(t) + β.

The other equalities of (i) and (ii) follow directly from Kolmogorov forward equations and
the Laplace transform. The proof is complete.

The following theorem plays an important role in later discussion. It reveals the
relationship of P(t) and P̂(t) (or, equivalently, Π(λ) and Π̂(λ)).

Theorem 1. For any j, n ∈ Z+, we have

pj,n(t) = e−γt p̂j,n(t) + α
∫ t

0
e−γs p̂0,n(s)ds + β

∫ t

0
e−γs p̂1,n(s)ds (6)



Mathematics 2024, 12, 1468 4 of 17

or, equivalently, in the resolvent version

πj,n(λ) = π̂j,n(λ + γ) +
1
λ
· [απ̂0,n(λ + γ) + βπ̂1,n(λ + γ)] (7)

Proof. We first assume α = 0. The corresponding process is denoted by Ñt and its probability
transition function is denoted by P̃(t) = (p̃j,n(t) : j, n ∈ Z+). Denote {At : t ≥ 0} = {N̂t : t ≥ 0}.
Let {Kt : t ≥ 0} be a Poisson process with parameter β, which is independent of
{At : t ≥ 0}. Note that {Kt : t ≥ 0} can be viewed as a catastrophe flow. We let l(t)
be the time until the first catastrophe before time t. Then, l(t) has the truncated exponen-
tial law,

P(l(t) ≤ u) = 1 − e−βu I[0,t)(u).

We denote {A(0)
t : t ≥ 0} := {At : t ≥ 0}. We let {A(n)

t : t ≥ 0}n≥1 be an independent

sequence of copies of {A(0)
t : t ≥ 0} but with A(n)

0 = 1. We define {Rt : t ≥ 0} by

Rt = A(Kt)
l(t) , t ≥ 0.

Then, {Rt : t ≥ 0} is a continuous-time Markov chain. It evolves like A(0)
t . At the first

catastrophe time, it jumps to State 1, and then evolves like A(1)
t . At the next catastrophe

time, it jumps to State 1 again, and so on. We let P̄(t) = ( p̄jn(t) : j, n ∈ Z+)) be the
probability transition function of {Rt : t ≥ 0}. Then,

pjn(t) = P(Rt = n|R0 = j) = Pj(Rt = n) = Ej[I{n}(Rt)] = Ej[Ej[I{n}(A(Kt)
l(t) )|Kt, l(t)]],

where Pj = P(·|R0 = j) and Ej is the mathematical expectation under Pj. We denote

G(Kt, l(t)) := Ej[I{n}(A(Kt)
l(t) )|Kt, l(t)] for a moment. Then, the above equality equals to

Ej[G(Kt, l(t))]

= Ej[Ej[G(Kt, l(t))|l(t)]]

= Pj(l(t) = t)Ej[G(Kt, l(t))|l(t) = t] + βξ
∫ t

0
e−βsEj[G(Kt, l(t))|l(t) = s]ds.

Since l(t) = t ⇔ Kt = 0 and R0 = j ⇔ A0 = j, we have

Pj(l(t) = t) = Pj(Kt = 0) = e−βt

and

Ej[G(Kt, l(t))|l(t) = t] = Ej[I{n}(A(0)
t )] = Ej[I{n}(At)] = p̂jn(t).

If s < t, then

Ej[G(Kt, l(t))|l(t) = s]

=
∞

∑
k=1

Pj(Kt = k|l(t) = s)G(k, s)

=
∞

∑
k=1

Pj(Kt = k|l(t) = s)Ej[I{n}(A(Kt)
l(t) )|Kt = k, l(t) = s]

=
∞

∑
k=1

Pj(Kt = k|l(t) = s)Ej[I{n}(A(k)
s )]
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=
∞

∑
k=1

Pj(Kt = k|l(t) = s)E[I{n}(A(k)
s )|A0 = j, A(k)

0 = 1]

=
∞

∑
k=1

Pj(Kt = k|l(t) = s)P(A(k)
s = n|A0 = j, A(k)

0 = 1]

=
∞

∑
k=1

Pj(Kt = k|l(t) = s)P(A(k)
s = n|A(k)

0 = 1]

=
∞

∑
k=1

Pj(Kt = k|l(t) = s)P(As = n|A0 = 1]

= p̂1,n(s).

Therefore,

p̄j,n(t) = e−βt p̂j,n(t) + βξ
∫ t

0
e−βs p̂1,n(s)ds.

It is easy to check that p̄′j,n(0) = p̃′j,n(0). This implies that Rt and Ñt are same in the sense
of distribution. Hence,

p̃j,n(t) = e−βt p̂j,n(t) + β
∫ t

0
e−βs p̂1,n(s)ds. (8)

Now, we consider the general case of α > 0. Denote {Ãt : t ≥ 0} := {Ñt : t ≥ 0}. Let
{K̃t : t ≥ 0} be a Poisson process with parameter αξ, which is independent of {Ãt : t ≥ 0}.
{K̃t : t ≥ 0} can be viewed as a catastrophe flow with parameter α. Let l̃(t) be the time
until the first catastrophe before time t. Then, l(t) has the truncated exponential law

P(l̃(t) ≤ u) = 1 − e−αu I[0,t)(u).

We denote {Ã(0)
t : t ≥ 0} := {Ãt : t ≥ 0}. Let {Ã(n)

t : t ≥ 0}n≥1 be an independent

sequence of copies of {Ã(0)
t : t ≥ 0} but with Ã(n)

0 = 0 (n ≥ 1). We define {R̃t : t ≥ 0} by

R̃t = Ã(K̃t)

l̃(t)
, t ≥ 0.

Let P̌(t) = ( p̌j,n(t) : j, n ∈ Z+) be the probability transition function of {R̃t : t ≥ 0}. By a
similar argument as above, we know that

p̌j,n(t) = e−αt p̄j,n(t) + α
∫ t

0
e−αs p̄0,n(s)ds.

By (8),

p̌j,n(t) = e−αt[e−βt p̂j,n(t) + β
∫ t

0
e−βs p̂1,n(s)ds]

+α
∫ t

0
e−αs[e−βs p̂0,n(s) + β

∫ s

0
e−βu p̂1,n(u)du]ds

= e−(α+β)t p̂j,n(t) + α
∫ t

0
e−(α+β)s p̂0,n(s)ds + β

∫ t

0
e−(α+β)s p̂1,n(s)ds.

It is easy to check that p̌′j,n(0) = p′j,n(0). This implies that R̃t and Nt are same in sense of
distribution. Hence,
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pj,n(t) = e−(α+β)t p̂j,n(t) + α
∫ t

0
e−(α+β)s p̂0,n(s)ds + β

∫ t

0
e−(α+β)s p̂1,n(s)ds.

Equation (6) is proven. Taking Laplace transform on (6) implies (7). The proof is complete.

3. The First Occurrence Time of Effective Catastrophe

We now consider the first effective catastrophe of {Nt : t ≥ 0}. We let Cj be the
first occurrence time of an effective catastrophe for {Nt : t ≥ 0} starting from state j.
The probability density function of Cj is denoted by dj(t). We let Cj,0 and Cj,1 be the first
occurrence time of an effective α-catastrophe and an effective β-catastrophe, respectively. It
is obvious that Cj = Cj,0 ∧ Cj,1.

In particular, if α = 0 or β = 0, then Cj = Cj,1 or Cj = Cj,0, respectively, and the current
model deduces to the model discussed in Di Crescenzo et al. [11]. In this paper, we mainly
consider the property of Cj and probabilities P(Cj ≤ t, Cj,0 < Cj,1) and P(Cj ≤ t, Cj,1 < Cj,0).
For this purpose, we construct a new process, {Mt : t ≥ 0}, such that {Mt : t ≥ 0} coincides
with {Nt : t ≥ 0} until the occurrence of catastrophe, but {Mt : t ≥ 0} enters into an
absorbing state −1 if the first effective catastrophe is a β-type and enters into another
absorbing state −2 if the first effective catastrophe is an α-type. Therefore, the state space
of {Mt : t ≥ 0} is S := {−2,−1, 0, 1, · · · } and its q-matrix Q̃ = (q̃jn : j, n ∈ S) is given by

q̃ij =



λi, i ≥ 0, j = i + 1,
µi, i ≥ 1, j = i − 1,
α, i ≥ 1, j = −2,
β, i = 0, j = −1,
β, i ≥ 2, j = −1,
−(λ0 + β), i = j = 0,
−(ω1 + α), i = j = 1,
−(ωi + γ), i = j ≥ 2,
0, otherwise.

Different from Q, Q̃ can reveal the different effects of different types of catastrophes.
More specifically, an α-catastrophe or a β-catastrophe occur at state j ≥ 0 if and only if the
system state jumps to −2 or −1 from j ≥ 0, respectively. Since {Mt : t ≥ 0} coincides with
{Nt : t ≥ 0} until the occurrence of catastrophe and both −2 and −1 are absorbing states
for {Mt : t ≥ 0}, we know that Cj and the absorbing time of {Mt : t ≥ 0} are same in the
sense of distribution.

Let H(t) = (hj,n(t) : j, n ∈ S) and Φ(λ) = (ϕj,n(λ) : j, n ∈ S) be the Q̃-transition
function and the Q̃-resolvent.

Lemma 2. For any j ≥ 0, we have

h′j,−2(t) = α(1 − hj,−2(t)− hj,−1(t)− hj,0(t)),

h′j,−1(t) = β(1 − hj,−2(t)− hj,−1(t)− hj,1(t)),

h′j,0(t) = −(λ0 + β)hj,0(t) + µ1hj,1(t),

h′j,1(t) = λ0hj,0(t)− (ω1 + α)hj,1(t) + µ2hj,2(t),

h′j,n(t) = λn−1hj,n−1(t)− (ωn + γ)hj,n(t) + µn+1hj,n+1(t), n ≥ 2,

(9)

or, equivalently, in the resolvent version



Mathematics 2024, 12, 1468 7 of 17



λϕj,−2(λ) = α( 1
λ − ϕj,−2(λ)− ϕj,−1(λ)− ϕj,0(λ)),

λϕj,−1(λ) = β( 1
λ − ϕj,−2(λ)− ϕj,−1(λ)− ϕj,1(λ)),

(λ + λ0 + β)ϕj,0(λ)− δj,0 = µ1ϕj,1(λ),
(λ + ω1 + α)ϕj,1(λ)− δj,1 = λ0ϕj,0(λ) + µ2ϕj,2(λ),
(λ + ωn + γ)ϕj,n(λ)− δj,n = λn−1ϕj,n−1(λ) + µn+1ϕj,n+1(λ), n ≥ 2.

(10)

Proof. By Kolmogorov forward equation,

h′j,−2(t) =
∞

∑
k=1

αhj,k(t)

= α(1 − hj,−2(t)− hj,−1(t)− hj,0(t)).

h′j,−1(t) = βhj,0(t) +
∞

∑
k=2

βhj,k(t)

= β(1 − hj,−2(t)− hj,−1(t)− hj,1(t)).

The other equalities of (9) follow directly from Kolmogorov forward equations and (10)
follows from the Laplace transform of (9). The proof is complete.

We now investigate the relationship of Φ(λ) and Π(λ). For this purpose, we define

Aij(λ) := 1 − λπi,j(λ), i, j ≥ 0 (11)

and

H(λ) := λ−1{[λ + αA00(λ)][λ + βA11(λ)]− αβA10(λ)A01(λ)}. (12)

The following theorem reveals that Φ(λ) can be reexpressed with Π(λ).

Theorem 2. Let Φ(λ) = (ϕj,n(λ) : j, n ∈ S) be the Q̃-resolvent and Π(λ) = (πj,n(λ) : j, n ∈ Z+)
be the Q-resolvent. Then,

ϕ0,n(λ) =
(λ + βA11(λ))π0,n(λ)− βA01(λ)π1,n(λ)

H(λ)
, n ≥ 0, (13)

ϕ1,n(λ) =
−αA10(λ)π0,n(λ) + (λ + αA00(λ))π1,n(λ)

H(λ)
, n ≥ 0 (14)

and

ϕj,n(λ) = πj,n(λ) + Fj(λ)π0,n(λ) + Gj(λ)π1,n(λ), j ≥ 2, n ≥ 0, (15)

where

Fj(λ) :=
αβA10(λ)Aj1(λ)− α(λ + βA11(λ))Aj0(λ)

λH(λ)
(16)

and

Gj(λ) :=
αβA01(λ)Aj0(λ)− β(λ + αA00(λ))Aj1(λ)

λH(λ)
(17)

with (πj,n(λ) : j, n ≥ 0) being given by (7).
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Proof. By (10) with j = 0, 1,
(λ + λ0 + β)ϕ0,0(λ)− 1 = µ1ϕ0,1(λ),
(λ + ω1 + α)ϕ0,1(λ) = λ0ϕ0,0(λ) + µ2ϕ0,2(λ),
(λ + ωn + γ)ϕ0,n(λ) = λn−1ϕ0,n−1(λ) + µn+1ϕ0,n+1(λ), n ≥ 2,

(18)


(λ + λ0 + β)ϕ1,0(λ) = µ1ϕ1,1(λ),
(λ + ω1 + α)ϕ1,1(λ)− 1 = λ0ϕ1,0(λ) + µ2ϕ1,2(λ),
(λ + ωn + γ)ϕ1,n(λ) = λn−1ϕ1,n−1(λ) + µn+1ϕ1,n+1(λ), n ≥ 2

(19)

and by (5) with j = 0, 1,
(λ + λ0 + γ)π0,0(λ)− 1 = µ1π0,1(λ) +

α
λ ,

(λ + ω1 + γ)π0,1(λ) = λ0π0,0(λ) + µ2π0,2(λ) +
β
λ ,

(λ + ωn + γ)π0,n(λ) = λn−1π0,n−1(λ) + µn+1π0,n+1(λ), n ≥ 2.

(20)


(λ + λ0 + γ)π1,0(λ) = µ1π1,1(λ) +

α
λ ,

(λ + ω1 + γ)π1,1(λ)− 1 = λ0π1,0(λ) + µ2π1,2(λ) +
β
λ ,

(λ + ωn + γ)π1,n(λ) = λn−1π1,n−1(λ) + µn+1π1,n+1(λ), n ≥ 2.

(21)

We let

ϕ0,n(λ) = A(λ)π0,n(λ) + B(λ)π1,n(λ), n ≥ 0. (22)

Substituting (22) into (18) and using (20), we have{
(λ + αA00(λ))A(λ) + αA10(λ)B(λ) = λ

βA01(λ)A(λ) + (λ + βA11(λ))B(λ) = 0.
(23)

Indeed, by the first equality of (18),

(λ + λ0 + β)[A(λ)π0,0(λ) + B(λ)π1,0(λ)]− 1 = µ1[A(λ)π0,1(λ) + B(λ)π1,1(λ)],

i.e.,

A(λ)[(λ + λ0 + β)π0,0(λ)− µ1π0,1(λ)] + B(λ)[(λ + λ0 + β)π1,0(λ)− µ1π1,1(λ)] = 1.

It follows from the first equality of (20) and the first equality of (21) that

(λ + αA00(λ))A(λ) + αA10(λ)B(λ) = λ.

By the second equality of (18),

(λ + ω1 + α)[A(λ)π0,1(λ) + B(λ)π1,1(λ)]

= λ0[A(λ)π0,0(λ) + B(λ)π1,0(λ)] + µ2[A(λ)π0,2(λ) + B(λ)π1,2(λ)],

i.e.,

A(λ)[(λ + ω1 + α)π0,1(λ)− λ0π0,0(λ)− µ2π0,2(λ)]

+B(λ)[(λ + ω1 + α)π1,1(λ)− λ0π1,0(λ)− µ2π1,2(λ)] = 0.
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It follows from the second equality of (20) and the second equality of (21) that

βA01(λ)A(λ) + (λ + βA11(λ))B(λ) = 0.

Therefore, (23) holds. It follows from (23) that

A(λ) =
λ + βA11(λ)

H(λ)
and B(λ) =

−βA01(λ)

H(λ)
.

The other equalities of (18) also hold.
We let

ϕ1,n(λ) = C(λ)π0,n(λ) + D(λ)π1,n(λ), n ≥ 0. (24)

Substituting (24) into (19) and using (21), we have{
(λ + α − αλπ0,0(λ))C(λ) + α(1 − λπ1,0(λ))D(λ) = 0
β(1 − λπ0,1(λ))C(λ) + (λ + β − βλπ1,1(λ))D(λ) = λ.

(25)

Indeed, by the second equality of (19),

(λ + ω1 + α)[C(λ)π0,1(λ) + D(λ)π1,1(λ)]− 1

= λ0[C(λ)π0,0(λ) + D(λ)π1,0(λ)] + µ2[C(λ)π0,2(λ) + D(λ)π1,2(λ)],

i.e.,

[(λ + ω1 + α)π0,1(λ)− λ0π0,0(λ)− µ2π0,2(λ)]C(λ)

+[(λ + ω1 + α)π1,1(λ)− λ0π1,0(λ)− µ2π1,2(λ)]D(λ) = 1

It follows from the second equality of (20) and the second equality of (21) that

βA01(λ)C(λ) + (λ + βA11(λ))D(λ) = λ.

By the first equality of (19),

(λ + λ0 + β)[C(λ)π0,0(λ) + D(λ)π1,0(λ)] = µ1[C(λ)π0,1(λ) + D(λ)π1,1(λ)],

i.e.,

[(λ + λ0 + β)π0,0(λ)− µ1π0,1(λ)]C(λ) + B(λ)[(λ + λ0 + β)π1,0(λ)− µ1π1,1(λ)] = 0.

It follows from the first equality of (20) and the first equality of (21) that

(λ + αA00(λ))C(λ) + αA10(λ))D(λ) = 0.

Therefore, (25) holds. It follows from (25) that

C(λ) =
−αA10(λ)

H(λ)
and D(λ) =

λ + αA00(λ)

H(λ)
.

The other equalities of (19) also hold.
By (10) with j ≥ 2,

(λ + λ0 + β)ϕj,0(λ) = µ1ϕj,1(λ),
(λ + ω1 + α)ϕj,1(λ) = λ0ϕj,0(λ) + µ2ϕj,2(λ),
(λ + ωn + γ)ϕj,n(λ)− δj,n = λn−1ϕj,n−1(λ) + µn+1ϕj,n+1(λ), n ≥ 2

(26)
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and by (5) with j ≥ 2,
(λ + λ0 + γ)πj,0(λ) = µ1πj,1(λ) +

α
λ ,

(λ + ω1 + γ)πj,1(λ) = λ0πj,0(λ) + µ2πj,2(λ) +
β
λ ,

(λ + ωn + γ)πj,n(λ)− δj,n = λn−1πj,n−1(λ) + µn+1πj,n+1(λ), n ≥ 2.

(27)

Let

ϕj,n(λ) = Dj(λ)πj,n(λ) + Fj(λ)π0,n(λ) + Gj(λ)π1,n(λ). (28)

Substituting (28) into the last equality of (26), we have

Dj(λ)[(λ + ωn + γ)πj,n(λ)− λn−1πj,n−1(λ)− µn+1πj,n+1(λ)]− δj,n

+Fj(λ)[(λ + ωn + γ)π0,n(λ)− λn−1π0,n−1(λ)− µn+1π0,n+1(λ)] (29)

+Gj(λ)[(λ + ωn + γ)π1,n(λ)− λn−1π1,n−1(λ)− µn+1π1,n+1(λ)] = 0, n ≥ 2.

By the last equalities of (20), (21) and (27), we have Dj(λ)δj,n = δj,n for n ≥ 2 and hence
Dj(λ) = 1.

Substituting (28) into the first and second equalities of (26) and using (20) and (21),
we have {

(λ + αA00(λ))Fj(λ) + αA10(λ)Gj(λ) = αλπj,0(λ)− α,
βA01(λ)Fj(λ) + (λ + βA11(λ))Gj(λ) = βλπj,1(λ)− β.

(30)

Solving (30) yields (16) and (17). The proof is complete.

By Theorem 1, we know that

λπj,n(λ) = λπ̂j,n(λ + γ) + απ̂0,n(λ + γ) + βπ̂1,n(λ + γ).

Denote

an(λ) = 1 − απ̂0,n(λ + γ)− βπ̂1,n(λ + γ), n ≥ 0. (31)

Then, Ajn(λ) can be represented as

Ajn(λ) = an(λ)− λπ̂j,n(λ + γ), (32)

Hence, by some algebra, H(λ) can be represented as

H(λ)

= αβ[a0(λ)π̂0,1(λ + γ) + a1(λ)π̂1,0(λ + γ)− λπ̂1,0(λ + γ)π̂0,1(λ + γ)]

+αa0(λ)β(λ) + βa1(λ)α(λ) + λα(λ)β(λ), (33)

where α(λ) = 1 − απ̂0,0(λ + γ), β(λ) = 1 − βπ̂1,1(λ + γ). Indeed,

λH(λ) = (αa0(λ) + λα(λ))(βa1(λ) + λβ(λ))

−αβ(a0(λ)− λπ̂1,0(λ + γ))(a1(λ)− λπ̂0,1(λ + γ))

= αβa0(λ)a1(λ) + αλa0(λ)β(λ)

+βλa1(λ)α(λ) + λ2α(λ)β(λ)

−αβa0(λ)a1(λ) + αβa0(λ)λπ̂0,1(λ + γ) + αβa1(λ)λπ̂1,0(λ + γ)

−αβλ2π̂1,0(λ + γ)π̂0,1(λ + γ)

= λαβ[a0(λ)π̂0,1(λ + γ) + a1(λ)π̂1,0(λ + γ)− λπ̂1,0(λ + γ)π̂0,1(λ + γ)]

+λ[αa0(λ)β(λ) + βa1(λ)α(λ) + λα(λ)β(λ)]
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which implies (33).
The following theorem further reveals that Φ(λ) can be reexpressed with Π̂(λ).

Theorem 3. Let Φ(λ) = (ϕj,n(λ) : j, n ∈ S) be the Q̃-resolvent and Π̂(λ) = (π̂j,n(λ) : j, n ∈ Z+)

be the Q̂-resolvent. Then,

ϕj,n(λ) = π̂j,n(λ + γ) +
Uj(λ)π̂0,n(λ + γ) + Vj(λ)π̂1,n(λ + γ)

H(λ)
, j, n ≥ 0, (34)

where

Uj(λ) = α(λ + α + β)β(λ)π̂j,0(λ + γ) + αβ(λ + α + β)π̂1,0(λ + γ)π̂j,1(λ + γ),

and

Vj(λ) = β(λ + α + β)α(λ)π̂j,1(λ + γ) + αβ(λ + α + β)π̂0,1(λ + γ)π̂j,0(λ + γ).

Proof. By (11) and (12) and Theorem 1, we know that for any j, n ≥ 0,

Ajn(λ) = 1 − λπ̂j,n(λ + γ)− απ̂0,n(λ + γ)− βπ̂1,n(λ + γ)

= λ[π̂0,n(λ + γ)− π̂j,n(λ + γ)] + A0n(λ)

= λ[π̂1,n(λ + γ)− π̂j,n(λ + γ)] + A1n(λ).

Note that the right-hand sides of (16) and (17) are well defined. We can define Fj(λ) and
Gj(λ) for j = 0, 1. Hence, it follows from Theorem 2 that for any j ≥ 0,

λH(λ)Fj(λ) = αβA10(λ)A01(λ) + αβλA10(λ)[π̂0,1(λ + γ)− π̂j,1(λ + γ)]

−α(λ + βA11(λ))A00(λ)− αλ(λ + βA11(λ))[π̂0,0(λ + γ)− π̂j,0(λ + γ)]

and

λH(λ)Gj(λ) = −βλA01(λ) + αβλA01(λ)[π̂0,0(λ + γ)− π̂j,0(λ + γ)]

−βλ(λ + αA00(λ))[π̂0,1(λ + γ)− π̂j,1(λ + γ)].

Therefore, by some algebra, we can obtain

λH(λ)[Fj(λ) +
α

λ
(1 + Fj(λ) + Gj(λ))]

= αλ(λ + α + β)(1 − βπ̂1,1(λ + γ))π̂j,0(λ + γ) + αβλ(λ + α + β)π̂1,0(λ + γ)π̂j,1(λ + γ)

=: λUj(λ), j ≥ 0. (35)

Similarly,

λH(λ)[Gj(λ) +
β

λ
(1 + Fj(λ) + Gj(λ))]

= βλ(λ + α + β)(1 − απ̂0,0(λ + γ))π̂j,1(λ + γ) + αβλ(λ + α + β)π̂0,1(λ + γ)π̂j,0(λ + γ)

=: λVj(λ), j ≥ 0. (36)

By Theorems 1 and 2, for any j ≥ 2, n ≥ 0,
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ϕj,n(λ) = πj,n(λ) + Fj(λ)π0,n(λ) + Gj(λ)π1,n(λ)

= π̂j,n(λ + γ) +
απ̂0,n(λ + γ) + βπ̂1,n(λ + γ)

λ

+Fj(λ)[π̂0,n(λ + γ) +
απ̂0,n(λ + γ) + βπ̂1,n(λ + γ)

λ
]

+Gj(λ)[π̂1,n(λ + γ) +
απ̂0,n(λ + γ) + βπ̂1,n(λ + γ)

λ
]

= π̂j,n(λ + γ) + [Fj(λ) +
α

λ
(1 + Fj(λ) + Gj(λ))] · π̂0,n(λ + γ)

+[Gj(λ) +
β

λ
(1 + Fj(λ) + Gj(λ))] · π̂1,n(λ + γ),

where Fj(λ) and Gj(λ) are given in (16) and (17). By (35) and (36), we know (34) holds for
j ≥ 2, n ≥ 0.

As for j = 0, by (13) and Theorem 1,

ϕ0,n(λ)

=
λ(λ + βA11(λ))π0,n(λ)− βλA01(λ)π1,n(λ)

λH(λ)

=
(λ + βA11(λ))[(λ + α)π̂0,n(λ + γ) + βπ̂1,n(λ + γ)]− βA01(λ)[(λ + β)π̂1,n(λ + γ) + απ̂0,n(λ + γ)]

λH(λ)

=
(λ + α)(λ + βA11(λ))− αβA01(λ)

λH(λ)
π̂0,n(λ + γ) +

β[λ + βA11(λ)− (λ + β)A01(λ)]

λH(λ)
π̂1,n(λ + γ)

= π̂0,n(λ + γ) +
(λ + α)(λ + βA11(λ))− αβA01(λ)− λH(λ)

λH(λ)
π̂0,n(λ + γ)

+
β[λ + βA11(λ)− (λ + β)A01(λ)]

λH(λ)
π̂1,n(λ + γ).

By the definition of H(λ),

(λ + α)(λ + βA11(λ))− αβA01(λ)− λH(λ)

= (λ + α)(λ + βA11(λ))− αβA01(λ)− (λ + αA00(λ))(λ + βA11(λ)) + αβA10(λ)A01(λ)

= α(λ + βA11(λ))(1 − A00(λ))− αβA01(λ)(1 − A10(λ)).

On the other hand, by some algebra, we can see that

λU0(λ) = λH(λ)[F0(λ) +
α

λ
(1 + F0(λ) + G0(λ))]

= αβA10(λ)A01(λ))− α(λ + βA11(λ))A00(λ)) + α(λ + βA11(λ))− αβA01(λ)

= α(λ + βA11(λ))(1 − A00(λ))− αβA01(λ)(1 − A10(λ)),

λV0(λ) = λH(λ)[G0(λ) +
β

λ
(1 + F0(λ) + G0(λ))]

= αβA01(λ)A00(λ)− β(λ + αA00(λ))A01(λ) + β(λ + βA11(λ))− β2 A01(λ)

= β[λ + βA11(λ)− (λ + β)A01(λ)].

Therefore, (34) holds for j = 0. By a similar argument, (34) also holds for j = 1. The proof
is complete.

We now consider the probability distribution of Cj and the related probabilities
P(Cj ≤ t, Cj,0 < Cj,1) and P(Cj ≤ t, Cj,1 < Cj,0). It is easy to see that P(Cj ≤ t, Cj,k < Cj,1−k)

is differentiable in t for k = 0, 1. We let dj,k(t) = d
dt P(Cj ≤ t, Cj,k < Cj,1−k) for k = 0, 1.
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Also, we let ∆j,k(λ) denote the Laplace transform of dj,k(t) for k = 0, 1 and ∆j(λ) denote
the Laplace transform of dj(t).

The following theorem presents the probability distribution of Cj (j ≥ 0) in the Laplace
transform version and the probability that the first effective catastrophe is an α-type or a
β-type.

Theorem 4. For any j ≥ 0, we have

∆j,0(λ) =
α(λ + β)(1 − λϕj0(λ))− αβ(1 − λϕj,1(λ))

λ2 + (α + β)λ
,

∆j,1(λ) =
β(λ + α)(1 − λϕj1(λ))− αβ(1 − λϕj,0(λ))

λ2 + (α + β)λ

and

∆j(λ) =
α(1 − λϕj0(λ)) + β(1 − λϕj1(λ))

λ + α + β
,

where ϕj,0(λ) and ϕj,1(λ) are given in Theorem 3. In particular,

P(Cj,0 < Cj,1) =
α[1 + β(ϕj,1(0)− ϕj0(0))]

α + β
,

P(Cj,1 < Cj,0) =
β[1 + α(ϕj0(0)− ϕj,1(0))]

α + β
,

where ϕj,0(λ) and ϕj,1(λ) are given by (34).

Proof. By the definitions of {Mt : t ≥ 0} and {Nt : t ≥ 0}, we know that for any j ≥ 0,

P(Cj,0 ≤ t, Cj,0 < Cj,1) =
∫ t

0
dj,0(τ)dτ = hj,−2(t),

P(Cj,1 ≤ t, Cj,1 < Cj,0) =
∫ t

0
dj,1(τ)dτ = hj,−1(t)

and

P(Cj ≤ t) =
∫ t

0
dj(τ)dτ = hj,−2(t) + hj,−1(t).

Therefore, dj,0(t) = h′j,−2(t), dj,1(t) = h′j,−1(t) and dj(t) = h′j,−2(t) + h′j,−1(t). Hence,

∆j,0(λ) = λϕj,−2(λ), ∆j,1(λ) = λϕj,−1(λ)

and

∆j(λ) = λϕj,−2(λ) + λϕj,−1(λ).

By (10) of Lemma 2, we know that

(λ + α)λϕj,−2(λ) + αλϕj,−1(λ) = α(1 − λϕj,0(λ))

and

βλϕj,−2(λ) + (λ + β)λϕj,−1(λ) = β(1 − λϕj,1(λ)).
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Therefore, by the first two equalities of (10),

∆j,0(λ) = λϕj,−2(λ) =
α[(λ + β)(1 − λϕj0(λ))− β(1 − λϕj,1(λ))]

λ2 + (α + β)λ
,

∆j,1(λ) = λϕj,−1(λ) =
β[(λ + α)(1 − λϕj1(λ))− α(1 − λϕj,0(λ))]

λ2 + (α + β)λ

and hence

∆j(λ) =
α(1 − λϕj0(λ)) + β(1 − λϕj1(λ))

λ + α + β
.

Note that P(Cj < ∞) = ∆j(0) = 1; the last two assertions hold. The proof is complete.

The following theorem gives the mathematical expectation and the second moment
of Cj.

Theorem 5. For any j ≥ 0,

E[Cj] =
1 + αϕj,0(0) + βϕj,1(0)

α + β

and

E[C2
j ] =

2[1 + αϕj,0(0) + βϕj,1(0)− (α + β)(αϕ′
j,0(0) + βϕ′

j,1(0))]

(α + β)2 ,

where ϕj,0(λ) and ϕj,1(λ) are given by (34).

Proof. By Theorem 4, we have

(λ + α + β)∆j(λ) = α(1 − λϕj,0(λ)) + β(1 − λϕj,1(λ)).

Differentiating the above equality yields

(λ + α + β)∆′
j(λ) + ∆j(λ) = −α(λϕj,0(λ))

′ − β(λϕj,1(λ))
′. (37)

Let λ = 0 and note that ∆j(0) = 1. We have

E[Cj] = −∆′
j(0) =

1 + αϕj,0(0) + βϕj,1(0)
α + β

.

Differentiating (37) yields

(λ + α + β)∆′′
j (λ) + 2∆′

j(λ)

= −α(λϕj,0(λ))
′′ − β(λϕj,1(λ))

′′

= −α[λϕ′′
j,0(λ) + 2ϕ′

j,0(λ)]− β[λϕ′′
j,1(λ) + 2ϕ′

j,1(λ)].

Let λ = 0 in the above equality yield

(α + β)∆′′
j (0) + 2∆′

j(0) = −2αϕ′
j,0(0)− 2βϕ′

j,1(0).
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Therefore,

E[C2
j ] = ∆′′

j (0)

=
2(−∆′

j(0)− αϕ′
j,0(0)− βϕ′

j,1(0))

α + β

=
2[1 + αϕj,0(0) + βϕj,1(0)− (α + β)(αϕ′

j,0(0) + βϕ′
j,1(0))]

(α + β)2 .

The proof is complete.

Finally, if α = 0 or β = 0, we obtain the following result which is due to Di Crescenzo et al. [11].

Corollary 1. (i) If β = 0, then for any j ≥ 0,

E[Cj] =
1
α
+

π̂j,0(α)

1 − απ̂0,0(α)

and

E[C2
j ] =

2
α2

(
1 +

απ̂j,0(α)

1 − απ̂0,0(α)
−

α2π̂′
j,0(α)

1 − απ̂0,0(α)
−

α3π̂j,0(α)π̂
′
0,0(α)

(1 − απ̂0,0(α))2

)
.

(ii) If α = 0, then for any j ≥ 0,

E[Cj] =
1
β
+

π̂j,1(β)

1 − βπ̂1,1(β)

and

E[C2
j ] =

2
β2

(
1 +

βπ̂j,1(β)

1 − βπ̂1,1(β)
−

β2π̂′
j,1(β)

1 − βπ̂1,1(β)
−

β3π̂j,1(β)π̂′
1,1(β)

(1 − βπ̂1,1(β))2

)
.

Proof. If β = 0, by Theorem 3,

ϕj,0(λ) = π̂j,0(λ + α) +
απ̂j,0(λ + α)π̂0,0(λ + α)

1 − απ̂0,0(λ + α)
=

π̂j,0(λ + α)

1 − απ̂0,0(λ + α)
.

Therefore,

ϕj,0(0) =
π̂j,0(α)

1 − απ̂0,0(α)

and

ϕ′
j,0(0) =

π̂′
j,0(α)

1 − απ̂0,0(α)
+

απ̂j,0(α)π̂
′
0,0(α)

(1 − απ̂0,0(α))2 .

Hence, by Theorem 4,

E[Cj] =
1 + αϕj,0(0)

α
=

1
α
+

π̂j,0(α)

1 − απ̂0,0(α)

and
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E[C2
j ] =

2
α2 [1 + αϕj,0(0)− α2ϕ′

j,0(0)]

=
2
α2

(
1 +

απ̂j,0(α)

1 − απ̂0,0(α)
−

α2π̂′
j,0(α)

1 − απ̂0,0(α)
−

α3π̂j,0(α)π̂
′
0,0(α)

(1 − απ̂0,0(α))2

)
.

(i) is proven. The proof of (ii) is similar.

4. Summary

In this paper, we mainly considered the influence of two-type catastrophes in the
general birth–death processes. We first revealed the relationship of transition probability of
the process with catastrophe and transition probability of the process without catastrophe
in the Laplace transform version. Then, we constructed a new process, {Mt : t ≥ 0}, which
coincides with {Nt : t ≥ 0} until the occurrence of catastrophe and can distinguish what
type the first effective catastrophe is when it occurs. By discussing the relationship of the
transition probability of {Mt : t ≥ 0} and the transition probability of the process with
catastrophe, we established the relationship of the transition probability of {Mt : t ≥ 0}
and the transition probability of the process without catastrophe in the Laplace transform
version. Finally, we obtained the probability distribution of the first occurrence time of
an effective catastrophe in the Laplace transform version and the probabilities of that the
first effective catastrophe is an α-type or a β-type. In particular, if α = 0 or β = 0, we then
obtained the results in Di Crescenzo et al. [11].

Relevant to the model considered in this paper, there are some interesting and impor-
tant problems. For example, we let Cj(n) (n ≥ 1) denote the occurrence time of the n’th
catastrophe. What is the probability distribution of Cj(n)? And also, how do the multi-type
catastrophes affect a branching system?
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