
Citation: Andrianov, I.V.; Khajiyeva,

L.A.; Kudaibergenov, A.K.;

Starushenko, G.A. On Aspects of

Continuous Approximation of

Diatomic Lattice. Mathematics 2024, 12,

1456. https://doi.org/10.3390/

math12101456

Academic Editor: Juan Ramón

Torregrosa Sánchez

Received: 29 March 2024

Revised: 24 April 2024

Accepted: 4 May 2024

Published: 8 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

On Aspects of Continuous Approximation of Diatomic Lattice
Igor V. Andrianov 1,* , Lelya A. Khajiyeva 2, Askar K. Kudaibergenov 2 and Galina A. Starushenko 3

1 Chair and Institute of General Mechanics, RWTH Aachen University, Eilfschornsteinstrasse 18,
D-52062 Aachen, Germany

2 Department of Mathematical and Computer Modeling, Al-Farabi Kazakh National University,
71 Al-Farabi Ave., 050040 Almaty, Kazakhstan; khadle@mail.ru (L.A.K.); askarkud@gmail.com (A.K.K.)

3 Department of Information Technology and Information Systems, Dnipro University of Technology,
19 Dmytra Yavornytskoho Ave., 49005 Dnipro, Ukraine; gs.gala.star@gmail.com

* Correspondence: igor.andrianov@gmail.com

Abstract: This paper is devoted to the continualization of a diatomic lattice, taking into account
natural intervals of wavenumber changes. Continualization refers to the replacement of the original
pseudo-differential equations by a system of PDEs that provides a good approximation of the
dispersion relations. In this regard, the Padé approximants based on the conditions for matching
the values of the dispersion relations of the discrete and continuous models at several characteristic
points are utilized. As a result, a sixth-order unconditionally stable system with modified inertia is
obtained. Appropriate boundary conditions are formulated. The obtained continuous approximation
accurately describes the amplitude ratios of neighboring masses. It is also shown that the resulting
continuous system provides a good approximation for the natural frequencies.
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1. Introduction

A diatomic lattice was proposed as a useful model in the theory of heat capacity by
Born and von Kármán [1,2]. This model is currently used to describe various metamateri-
als [3–6]. Therefore, the dynamics of the diatomic lattice has become a subject of extensive
investigations, in which both discrete model and its continuous approximations have been
considered [3,5,7–12].

It is worth mentioning the relationship between the discrete and continuous mod-
els. This issue was first discussed by the ancient Greeks. After Newton’s Calculus, the
continuous models had been a priority for a long time, and continuous mathematics accu-
mulated the huge number of tools for their analysis. The situation began to change with
the advent of modern computers. Kolmogorov wrote about the relations between discrete
and continuous mathematics [13]: “It is very likely that with the development of modern
computational techniques it will be understood that in many cases it makes sense to study
real phenomena without using the intermediate step of their stylization in the form of
infinite and continuous mathematics and proceeding directly to discrete models. Pure
mathematics was successfully developed mainly as a science of the infinite. Obviously, this
state of affairs is deeply rooted in our consciousness, which works with great ease with an
intuitively clear understanding of unbounded sequences, limiting processes, continuous
and even smooth manifolds, etc.”.

Continuous models can be treated as an asymptotic approximation to discrete models.
Their strength is that, as Kolmogorov noted, they are most accessible to our understanding
(or perhaps our understanding is distorted by traditional mathematical education, which

Mathematics 2024, 12, 1456. https://doi.org/10.3390/math12101456 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12101456
https://doi.org/10.3390/math12101456
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-2762-8565
https://orcid.org/0000-0001-9154-9653
https://doi.org/10.3390/math12101456
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12101456?type=check_update&version=2


Mathematics 2024, 12, 1456 2 of 12

tends to bias thinking in the direction of continuous mathematics). The advantage of con-
tinuous models is the possibility of using the powerful arsenal of continuous mathematics
for their analysis. At the same time, when using the continuous models to describe a
discrete structure, one must consider the natural limitations of these approximations to
avoid various “paradoxes” and artifacts [14–17].

Interestingly, continualization can lead to important insights, even in cases where it
does not allow a complete understanding of a discrete model. For example, “When Kruskal
derived the Korteweg–de Vries (K-dV) equation from the FPU lattice, he bypassed the
blockade imposed by the discrete to reach the enlightenment of the continuum. In this
moment of the journey of the FPU problem, the sweet fruit of solitonic integrability, one of
the most beautiful scientific discoveries of the second half of the last century, almost made
us forget that bypassing the blockade did not eliminate it. As later studies have clearly
shown, crossing the weak excitation threshold causes discretion to re-emerge in full force,
or in all its glory if you will, displacing K-dV and its siblings. The maturity of fifty years
of experience now makes us realize that Kruskal’s seminal leap is not a license to ignore
the discrete system, but rather a bridge to a synergetic methodology wherein we mediate
between this true system, for which our analytical means are quite poor, and an idealized
continuum system about which we can say many things.” [18].

The connection between discrete and continuous approximations is established by
the methods of discretization and continualization (homogenization) [3,4,8,14,15,19–22].
Discrete and continuous models are fundamentally different from each other. Thus, when
we replace one model by another, we can usually only achieve a good approximation of
some properties of the original object. Continualization often focuses on the comparison
of dispersion relations [3,14,15,22]. In addition, one can assume the correspondence of
the asymptotic behavior of wave processes in discrete and continuous media [19], the
equality of the group impedance matrices of the model and the modeled structure [4].
Homogenization of the discrete structure can also mean that a periodic structure is replaced
by a periodic structure of the same dimension and geometry whose periodicity cell is
the simplest discrete mechanical oscillatory system with the smallest possible number of
discrete parameters [3,4].

In the paper [20], the possibilities of deterministic discretization and chaotic continual-
ization were shown using the example of the logistic equation. This confirms the ambiguity
of the discretization and continualization processes.

Continualization is commonly understood as the approximation of non-local (pseudo-
differential or integral) operators by local (differential) ones. The simplest possibility is
a polynomial approximation [16] (the term “standard continuation” is also used for this
approximation [22]). It can be based on the Taylor series expansion of non-local operators
or the analysis of dispersion relations [16,17]. A continuous approximation based on
the first roots of the dispersion equation is also possible [16,17]. These procedures are
only suitable for describing the lower part of the spectrum or long waves and can lead
to ill-posed problems. In this regard, methods of regularization and extension for the
range of applicability of continuum models have become widespread. Padé approximants
(non-standard continualization [22]) [5,8,14,15,18–21] are often used for this purpose. They
allow the construction of improved long-wave approximations that approximate well the
asymptotic behavior of discrete wave processes or describe frequencies in the first Brillouin
zone. However, it must be taken into account that the use of such approximations has
significant limitations. As mentioned in [16], p. 65, “other approximation models that
are not associated with the polynomial approximation are also possible. An approximate
description of the dispersion curve over a wide range of wavelengths using an appropriate
function of the wavenumber k (for example when interpolating experimental data) can
be of interest in a number of cases. This model is good for describing non-decaying
waves, but in general it is incorrect to continue it in the complex region and use it for
boundary problems”.
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Our paper is devoted to the linear diatomic lattice. This classical problem still arouses
interest despite its long history [23–27]. In particular, [23–25] analyzed the question of
the range of wavenumbers that allow a correct description of the wave processes in the
diatomic lattice. The peculiarities of diatomic lattice modeling mentioned in [24,25] are
considered in our work.

There is extensive literature dealing with diatomic lattices. We only refer to studies
related to continualization using Padé approximants [8,21] and the construction of higher-
order continuous models [6].

Our paper is concerned with the continuization of diatomic lattices based on the
multipoint Padé approximants (Padé approximants of the second kind [28,29]). The prox-
imity of the dispersion curves of discrete and continuous models is used as a criterion for
approximation. It is shown that each natural frequency is also well approximated in this
case. An important feature of the continuous approximation constructed in this work is
that it is considered in the most natural periodic interval of wavenumbers.

2. Discrete System

Consider a finite lattice consisting of 2N + 2 alternating masses m1 and m2 connected
by springs of stiffness c (see Figure 1). We construct the final chain so that the number of
particles with masses m1 and m2 is equal. Since the total number of particles is assumed to
be large, this restriction is not important.
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Figure 1. Diatomic lattice.

The oscillation of this system is described by a system of mixed differential-difference
equations:

m1
..
un + c(2un − un+1 − un−1) = 0, n = 1, 3, 5, . . . , 2N + 1,

m2
..
un + c(2un − un+1 − un−1) = 0, n = 0, 2, 4, . . . , 2N,

(1)

where (
.
u) ≡ du

dt .
The lattice is fixed at the ends

u0 = u2N+1 = 0. (2)

Substituting the solution in the form

un = A sin βeiωt, n = 1, 3, 5, . . . , 2N + 1,
un = B sin βeiωt, n = 0, 2, 4, . . . , 2N

(3)

into Equation (1) and eliminating the amplitudes A and B, we find the relations:(
−ω2 + ω2

1
)

A − 1
2 ω2

1 cos nπ
2N+1 B = 0,(

−ω2 + ω2
2
)

B − 1
2 ω2

2 cos nπ
2N+1 A = 0,

(4)

where β = nπ
2N+1 , ωi =

√
2c/mi, i = 1, 2.

It is worth noting that, for the infinite lattice, the variable β should be considered as
continuously changing in the interval 0 ≤ β ≤ π.
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The dispersion equation can be written as follows

ω4 −
(
ω2

1 + ω2
2
)
ω2 + ω2

1ω2
2 sin2 [πn/(2N + 1)] = 0,

n = 0, 1, 2, . . . , 2N − 1, 2N, 2N + 1.
(5)

The question of interest is as follows: in which interval of wavenumber β = nπ
2N+1

changes should we consider solutions for the dispersion Equation (5)? As indicated in the
articles [23–25], we can limit ourselves to the interval 0 ≤ β ≤ π/2 when determining the
oscillation frequencies. For a complete study of the system, the interval 0 ≤ β ≤ π should
be taken into account.

Consider various limiting cases. In the following, we assume 2N ≫ 1, which is
justified since we consider the possibilities of a continuous approximation to the discrete
system. For 1/N ≪ 1, Equation (5) can be approximately replaced by the following:

ω4 −
(

ω2
1 + ω2

2

)
ω2 +

π2n2

(2N + 1)2 ω2
1ω2

2 = 0. (6)

For n = N, n = [N/2] (here symbol [] means the integer part of the number) and
n = 2N + 1, we obtain from (5)

ω2 ≈ ω2
1; ω2 ≈ ω2

2, (7)

ω2 ≈ 0.5
(

ω2
1 + ω2

2 ±
√

ω4
1 + ω4

2

)
, (8)

ω2 = 0 and ω2 = ω2
1 + ω2

2, (9)

respectively.

3. Continuous Approximations

We suppose that the masses are uniformly distributed along the interval of length L of
the X-axis (Figure 1). Then, the distance between the masses is H = L/(2N + 1). Assuming
that the number of masses is large, namely 2N ≫ 1, we can introduce a natural small
parameter h = H/L ≪ 1. Let us introduce dimensionless spatial coordinate x = X/L. We
also introduce functions of spatial and time arguments Uj(x, t), j = 1, 2 as follows

U1(hk, t) = uk(t), k = 1, 3, 5, . . . ,

U2(hk, t) = uk(t), k = 0, 2, 4, . . .
(10)

“The basic idea is to establish a one-to-one correspondence between the functions of
discrete arguments and a class of analytical functions, as well as between the operations
on them. Let the function u(nh) be given by its values, which are generally complex,
at the points nh (nodes) of the X-axis. Let us consider the problem of interpolation of
u(nh) by a smooth function u(x). Obviously, u(x) is defined within any Ψ(x), which
vanishes in all nodes, i.e., u(x) + Ψ(x) will also be an interpolating function. It is obvious
to try to select the smoothest interpolating functions from the entirety of interpolating
functions filtering out rapidly oscillating components” [16]. (See also the explanation of
this question in [30], p. 59). In [16] the concept of the quasicontinuum is introduced and
the Whittaker–Shannon–Kotel’nikov function (sinc-function) of the form

sinc(x) =
sin (πx/h)

πx
(11)

is utilized.
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The functions Uj(x, t), j = 1, 2 are assumed to be infinitely differentiable with respect
to the spatial coordinate. Hence, they can be expanded into the Taylor series

Uj(x0 ± h, t) = Uj(x0, t) +
∞

∑
i=1

(−1)ihi d i Uj(x, t)
dxi

∣∣∣∣∣
x=x0

. (12)

Rewrite system (1) in the form

m1
..
U1(kh, t) + 2c [U1(kh, t)− U2(kh, t)]

−c [U2((k + 1)h, t)− 2U2(kh, t) + U2((k − 1)h, t)] = 0, k = 1, 3, 5, . . .
m2

..
U2(kh, t) + 2c [U2(kh, t)− U1(kh, t)]

−c [U1((k + 1)h, t)− 2U1(kh, t) + U1((k − 1)h, t)] = 0, k = 0, 2, 4, . . .

(13)

Using the pseudo-differential operators and sinc-function (11), we can represent
system (13) as follows{

m1
..
U1(x, t) + 2c [U1(x, t)− U2(x, t)]

}
Φ(x) + 4c sin2

(
− ih

2
∂

∂x

)
U2(x, t) = 0,{

m2
..
U2(x, t) + 2c [U2(x, t)− U1(x, t)]

}
Φ(x) + 4c sin2

(
− ih

2
∂

∂x

)
U1(x, t) = 0.

(14)

Here, 4 sin2
(
− ih

2
∂

∂x

)
is the pseudo-differential operator [25], Φ(x) =

2N+1
∑

n=0
sin c(x − nh).

For continualization, we use the expansion

sin2
(
− ih

2
∂

∂x

)
= − 1

2 ∑
k=1

h2k

(2k)!
∂2k

∂x2k

= − h2

4
∂2

∂x2

(
1 + h2

12
∂2

∂x2 +
h4

360
∂4

∂x4 +
h6

20160
∂6

∂x6 + . . .
) (15)

and the equality
Φ(x) → 1 at h → 0 . (16)

In the zero approximation, where only terms of h0 order are considered, we obtain a
system of two coupled oscillators

..
U1 + ω2

1(U1 − U2) = 0,
..
U2 + ω2

2(U2 − U1) = 0.
(17)

Keeping the terms up to h4 in expansion (12), we obtain

..
U1 + ω2

1(U1 − U2)− 1
2 ω2

1h2[U2xx + (1/12)h2U2xxxx
]
= 0,

..
U2 + ω2

22c(U2 − U1)− 1
2 ω2

2h2[U1xx + (1/12)h2U1xxxx
]
= 0.

(18)

The comparison of the calculation results using Equation (18) with the solution of the
dispersion Equation (5) demonstrates the low accuracy of this continuum approximation. In
addition, as shown in [27,31], for Equation (18), the effect of the short wavelength instability
take place. This artifact can lead to instability or the divergence of numerical algorithms
when used to solve Equation (18).

Increasing the accuracy of continuous approximation and the short wavelength insta-
bility suppression can be achieved using Padé approximants [27,31]

1 +
h2

12
∂2

∂x2 ∼ 1/
(

1 − h2

12
∂2

∂x2

)
. (19)

Hence, we obtain a “model with modified inertia” (the term was proposed in [32])
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(
1 − h2

12
∂2

∂x2

)[ ..
U1 + ω2

1(U1 − U2)
]
− 1

2 ω2
1h2U2xx = 0,(

1 − h2

12
∂2

∂x2

)[ ..
U2 + ω2

2(U2 − U1)
]
− 1

2 ω2
2h2U1xx = 0.

(20)

The boundary conditions for system (20) are formulated as follows

Uj = 0 at x = 0, 1. (21)

Boundary value problem (20), (21) describes well-posed continuous approximations
of original discrete systems.

The natural vibrations of the continuous system can be described as

Uj = Cj sin (nπx) exp (iω t). (22)

System (20) approximates the oscillation frequencies of a discrete system quite well [8].
It is sufficient to consider the system on the interval 0 ≤ β ≤ π/2. However, as mentioned
in [23–25], the original system should be considered on the interval 0 ≤ β ≤ π. In this
case, system (20) does not provide a good approximation to the dispersion curve of the
discrete system.

Let us construct a higher-order approximation system using the conditions for match-
ing the solutions to the dispersion equations of the discrete and continuous systems at n = N,
n = [N/2] and n = 2N + 1 (see (7)–(9)). This rational approximation is sometimes called the
Padé approximation of the second kind [28,29]. As a result, we obtain a continuous system
with modified inertia(

1 + d1h2 ∂2

∂x2 + d2h4 ∂4

∂x4 + d3h6 ∂6

∂x6

) [
∂2

∂t2 U1 + ω2
1(U1 − U2)

]
− 1

2 ω2
1h2 ∂2

∂x2 U2 = 0,(
1 + d1h2 ∂2

∂x2 + d2h4 ∂4

∂x4 + d3h6 ∂6

∂x6

) [
∂2

∂t2 U2 + ω2
2(U2 − U1)

]
− 1

2 ω2
2h2 ∂2

∂x2 U1 = 0,
(23)

where
d1 = 73

140 + 61
9π2 − 32

√
2

35 ; d2 = 1
63 π4

[
812 +

(
327 − 288

√
2
)

π2
]
;

d3 = 16
315 π6

[
140 +

(
87 − 72

√
2
)

π2
]
.

(24)

Unfortunately, system (22) requires additional boundary conditions. This is a typical
difficulty that arises when higher-order models, derived originally for infinite media, are
applied to bounded domains [5,14,15]. To overcome this fundamental difficulty, various
approaches are used.

In [33], this problem was studied for 1D linear lattice, when the exact solution can be
easily obtained. It is proposed to introduce boundary conditions so as to achieve the most
suitable frequencies and mode approximations. The limitations of this method are clear.

An often used technique is the formation of some edge zone. Thus, in [34,35], for
second-grade elasticity, it is proposed to introduce the so-called ortho-fiber—a thin, notional
fiber of a material, starting at the surface and extending inward along the direction of
normal. The length of the ortho-fiber is small compared to the macroscopic characteristic
length of the problem and tends to zero.

For continuous systems (beams, plates), the correct formulation of boundary condi-
tions requires the consideration of the methods of fastening the plates used in practice (for
example, embedding in a groove). For the problem of bending a plate, when deriving and
justifying the conditions of simply support, it is assumed that there is a narrow zone of
pinching of the plate edge, with the length of it tending towards zero as some power the
thickness of the plate [36].

Similar problems occur in grid methods (see overview in [5]), where they can be solved
by introducing some fictitious points outside the considered domain.

All these techniques are based on the simple consideration that, in reality, the condi-
tions of ends fixation have a fairly complex structure, which should be taken into account
when studying continuous or discrete systems.
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Using this ideology, we introduce fictitious masses at points k = −1,−2,−3, . . .;
k = 2N + 2, 2N + 3, 2N + 4, . . . (Figure 2).
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additional boundary conditions.

Particularly in the case of a periodic spatial extension (“simple support”), one obtains
(see Figure 2):

ui = −u−i, i = 1, 2, 3, . . . ; u2N−j = −u2N+2+j, j = 0, 1, 2, 3, . . . (25)

In the continualization problems, this technique was applied in [14,15]. Using it for
the considered case, we arrive at the following boundary conditions

U1 = U1xx = U1xxxx = 0, U2 = U2xx = U2xxxx = 0 at x = 0, 1. (26)

From system (23), we obtain the dispersion equation for the continuous system

ω4 −
(
ω2

1 + ω2
2
)
ω2 + ω2

1ω2
2

( nπ
2N+1 )

2

1−d1( nπ
2N+1 )

2
+d2( nπ

2N+1 )
4−d3( nπ

2N+1 )
6 ×

×
[

1 − ( nπ
2N+1 )

2

4
[
1−d1( nπ

2N+1 )
2
+d2( nπ

2N+1 )
4−d3( nπ

2N+1 )
6]
]
= 0.

(27)

The analysis of Equation (27) shows that the system (23), (24) is unconditionally stable.
Note that the boundary value problem of the continuous approximation (23), (26)

remains the same for the case of an infinite lattice.

4. Numerical Results

The results of comparing the dispersion curves for the discrete and continuous systems
at ω2

2/ω2
1 = 1.5 are shown in Figure 3.

The solid curves show branches with normal dispersion, and the dotted curves
show those with anomalous dispersion. The calculations were carried out at the points
n = 0, 1, 2, . . . , 2N, 2N + 1. The value 2β/π is plotted along the abscissa.

As can be seen from Figure 3, the continuous system (23), (24) provides a good
approximation to the dispersion curve of the discrete system over the entire range of
wavenumber changes. Recall that we assume 2N ≫ 1, and the distance between the
masses is small. Hence, the dispersion curves in Figure 3 are shown as continuous lines.
Note that the curves corresponding to the discrete and continuous models practically merge
on the scale of the graph.

The variables U1, U2 have no obvious physical meaning (variables describing low-
frequency oscillations of the centers of mass of the cells and high-frequency oscillations
associated with internal degrees of freedom have physical meaning [9]).

The ratio of the amplitudes of mass vibrations C1 and C2 is given by the following
relations:

C1/C2 =
(−A2 + A1)ω

2
1

A1
(
−ω2 + ω2

1
) at ω2 ≤ ω2

1 (28)

and

C2/C1 =
(−A2 + A1)ω

2
2

A1
(
−ω2 + ω2

2
) at ω2

2 ≤ ω2, (29)

where A1 = 1 − d1
( nπ

2N+1
)2

+ d2
( nπ

2N+1
)4 − d3

( nπ
2N+1

)6; A2 = 1
2
( nπ

2N+1
)2.
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The calculation results at ω2
2/ω2

1 = 1.5 are presented in Figure 4. The obtained curves
qualitatively coincide with the corresponding curves for the discrete system [24] and make
it possible to estimate the ratios of the amplitudes of the neighboring masses.
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In the limiting case m1 = m2, the dispersion curve for the Lagrange lattice is obtained
(solid curve in Figure 5). The dotted curve corresponds to the displacements with zero
amplitude [24,25].
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Figure 5. Limit transition of the Born–Kármán lattice to the Lagrange lattice at m1 = m2. The line of
curve 1 almost completely coincides with the line for curve 3, so it seems to be invisible.

Dispersion curves for the discrete (1) (curves 1 and 2) and continuous (23), (24) (curves
3 and 4) systems are presented at ω2

2/ω2
1 = 1. Note that the curves corresponding to the

discrete and continuous models practically merge on the scale of the graph.
We also compare the eigenfrequency dependence with respect to the mode number

for the finite diatomic lattice, both with the discrete and the continuous approximation
proposed in the paper. Such a comparison is uninformative because the frequency values
are of different orders. Comparing the values of frequencies ωd and ωc in some averaged
sense looks more reasonable. For that, we use the following expression for the average
approximation error [37]:

A =
100%

ωd

√√√√√ 2N+1
∑

i=0
(ωid − ωic)

2

2N + 2
, (30)

where ωd =

2N+1
∑

i=0
ωid

2N+2 .
The calculations were carried out at ω2

2/ω2
1 = 1.5. The maximum error was obtained

for the acoustic branch (Figure 3). The calculation results for various values of N are given
in Table 1.



Mathematics 2024, 12, 1456 10 of 12

Table 1. The average error of the continuous approximations for frequencies.

N 5 10 15 20 25 30 35 40 45 50 ∞

A, % 0.4465 0.5837 0.6272 0.6471 0.6579 0.6645 0.6688 0.6718 0.6740 0.6755 0.6824

When calculating the limit, summation is replaced by integration for a sufficiently
large N as follows

ωd ≈ 1
2

2∫
0

ωd(n1) dn1,

2N+1
∑

i=0
(ωid−ωic)

2

2N+2 ≈ 1
2

2∫
0
(ωid(n1)− ωic(n1))

2 dn1, n1 = nπ
N+0.5 .

(31)

Hence, we obtain the following estimate:

A ≈

√
2

2∫
0
(ωid(n1)− ωic(n1))

2 dn1

2∫
0

ωd(n1) dn1

· 100% (32)

It is obvious that the approximation of frequencies using the continuous approximation
is quite satisfactory.

5. Conclusions

The continualization of a diatomic lattice was considered in the natural interval of
wavenumber changes. It provided a consistent limiting transition to the Lagrange lattice.

Note that the original system of 2N + 2 difference-differential Equation (1), each of
which contains the second-order derivative with respect to time, can be reduced to a system
of N + 1 difference-differential equations with the fourth-order derivative with respect
to time. After conducting its continualization, we obtain one continuous equation with
the fourth-order derivative with respect to time. This result agrees with the fourth-order
equation with respect to the time obtained from the continuous approximation (23).

The continualization consisted in the replacement of the original pseudo-differential
equations by a system of PDEs that provided a good approximation for the dispersion
relations. The use of the Padé approximants guaranteed the matching of the dispersion
relation values of the discrete and continuous models at several characteristic points. It
was not possible to limit ourselves to the second-order system of PDEs, which led to the
need for the correct formulation of boundary conditions. An adequate result was obtained
using a sixth-order system of PDEs with respect to spatial variables with modified inertia,
which is unconditionally stable.

The application of the continuous approximations allowed correctly describing not
only the frequency spectrum in the first Brillouin zone, but also the amplitude ratios of
neighboring masses.

The technique proposed in this paper can be used to construct continuous models for
flexural waves in the diatomic lattices [12]. The obtained continuous model can be also
applied to the nonlinear problems for the diatomic lattice described in [9,11,26].
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