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Abstract: To model fuzzy numbers with the confidence degree and better account for information un-
certainty, Zadeh came up with the notion of Z-numbers, which can effectively combine the objective
information of things with subjective human interpretation of perceptive information, thereby improv-
ing the human comprehension of natural language. Although many numbers are in fact Z-numbers,
their higher computational complexity often prevents their recognition as such. In order to reduce
computational complexity, this paper reviews the development and research direction of Z-numbers
and deduces the operational rules for symmetric triangular Z-numbers. We first transform them
into classical fuzzy numbers. Using linear programming, the extension principle of Zadeh, the
convolution formula, and fuzzy number algorithms, we determine the operational rules for the
basic operations of symmetric triangular Z-numbers, which are number-multiplication, addition,
subtraction, multiplication, power, and division. Our operational rules reduce the complexity of
calculation, improve computational efficiency, and effectively reduce the information difference
while being applicable to other complex operations. This paper innovatively combines Z-numbers
with classical fuzzy numbers in Z-number operations, and as such represents a continuation and
innovation of the research on the operational laws of Z-numbers.

Keywords: Z-numbers; symmetric triangular fuzzy numbers; operational laws

MSC: 03E72

1. Introduction

In 1965, Zadeh [1] introduced the theory of fuzzy sets to effectively cope with uncertain
information. The theory highlights the fuzziness and uncertainty of human thinking,
reasoning, and perception of peripheral matters. It extended the characteristic function
from the binary ‘0’ or ‘1’ relationship to the interval ‘0’ to ‘1’ by introducing the concept of
membership degree, thereby quantitatively processing fuzzy information.

Nevertheless, relying solely on membership degree makes it difficult to accurately
describe the uncertainty in practical situations. Therefore, to resolve the uncertainty of
non-membership degree, researchers have made various extensions and derived batches of
theories such as intuitionistic fuzzy sets [2], hesitant fuzzy sets [3], type-2 fuzzy sets [4],
and interval-type intuitionistic fuzzy sets [5]. Moreover, in 2013 Masamichi and Hiroaki [6]
defined the boundaries of a sequence of fuzzy sets in view of the level set of fuzzy sets and
provided the boundaries, derivatives, and properties of the fuzzy set-valued mapping.

The aforementioned theories are only capable of addressing the issue of information
uncertainty, and lack the ability to handle incomplete and unreliable information, which is
typically only accessible in real-world situations. To this end, in 2011 Zadeh [7] introduced
the notion of Z-numbers to consider the dependability of information. Compared to the
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traditional fuzzy sets, Z-numbers add a reliability measure to further enhance the flexibility
and validity in the decision direction. Therefore, Z-numbers with fuzzy constraints are
more flexible and closer to human thinking; this theory has great potential for application
to the information described by probabilistic and fuzzy natural language.

From the current research outcomes on Z-numbers, we have observed four primary
issues of interest. The first involves extensions and special cases of Z-number theory.
Zadeh [7] initially introduced the notions of Z-information and Z+-numbers as definitions
derived from Z-numbers. Pal et al. [8] proposed Z-number-based computing with word
algorithms and simulated experimental figures for evaluating demand satisfaction. Banerjee
and Pal [9] introduced decision information into the structure of Z-numbers and presented
the notion of Z*-numbers. Pirmuhammadi et al. [10], Peng, Wang [11], and Mondal et al. [12]
proposed the concept of normal Z-numbers, hesitant uncertain linguistic Z-numbers, and
linguistic hesitant Z-numbers, respectively. Tian et al. [13] introduced fuzzy ZE-numbers,
while Haseli et al. [14–16] proposed a decision support model using the BCM and MARCOS
methods based on fuzzy ZE-numbers. Aliev et al. [17] initiated a general method for
constructing specific functions based on extension of the Z-number principle. Moreover,
Massanet et al. [18] raised a new method for creating hybrid discrete Z-numbers based on
discrete Z-numbers.

The second issue involves the study of various methods for sorting Z-numbers. Bakar
and Gegov [19] developed a multi-layer approach to classifying Z-numbers. Aliev et al. [20]
presented a method to ascertain the sorting of continuous and discrete numbers in Z-
numbers. A novel Z-number ranking method which takes the weights and fuzziness
degree of the prime points and the scalability of fuzzy numbers into account was extended
by Jiang et al. [21]. Ezadi et al. [22] introduced sigmoidal functions and symbolic means for
sorting Z-numbers.

The third issue involves studying various methods for computing Z-numbers.
Aliev et al. [23] developed an approach for the direct computation of Z-numbers by combin-
ing possibility constraints with probability constraints and defined arithmetic operations
for discrete Z-Numbers. Subsequently, the operations of continuous Z-numbers were
further provided by Aliev et al. [24] through discretization. Aiming to reduce computa-
tional complexity and improve computational efficiency, Aliev et al. [25] presented a basic
approach for developing the concept of Z-Numbers and provided examples to demonstrate
the validity of their method using the Hukuhara distance. Qiu et al. [26] presented the
process of computing the generalized difference for discrete and continuous Z-numbers.
Shen and Wang [27] defined multidimensional Z-numbers and proved their basic oper-
ations. Kang et al. [28] presented a methodology of fuzzy set uncertainty using entropy
and considering the effect of fuzzy set measure and range of fuzzy sets. Peng et al. [29]
defined a series of Z-number operational laws on the basis of Archimedean t-norms and t-
conorms. To balance reduced arithmetic complexity with retention of the inherent meaning
of Z-numbers, Zhu et al. [30] put forward a method for approximate Z-number computa-
tion (Z-ACM) in view of kernel density estimation. Based on the idea of transformation,
Kang et al. [31] proposed an improved method for converting Z-numbers into classical
fuzzy numbers, greatly simplified the operations of Z-numbers with the loss of a certain
amount of information, and promoted the application of Z-numbers to a degree.

The fourth issue involves research on the actual applications of Z-numbers.
Zhang et al. [32] combined Z-numbers with the best–worst method and TODIM (an
acronym in Portuguese referring to interactive and multi-criteria decision-making) to
conduct performance evaluation for the technological service platforms. Ashraf et al. [33]
and Nazari-Shirkouhi et al. [34] applied Z-numbers to supplier selection. Combining Z-
numbers with DEMATEL method, Zhu et al. [35], Wang et al. [36], and Akhavein et al. [37]
presented evaluation methods for the co-creative sustainable value propositions of smart
product service systems, human error probability, and sustainable projects ranking. In-
tegrating linguistic Z-numbers and the projection method, Huang et al. [38] built a new
model for failure mode and effect analysis. Moreover, numerous experts have expanded
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the notion of Z-numbers based on hesitant fuzzy sets and used optimization models to
build frameworks for solving multi-criteria decision-making, group decision-making, and
three-way decision-making problems [11,39–44].

Previous research on the operational rules of Z-numbers has mainly focused on
proposing a general method of computation using constraints, then used discretization
to obtain the operational rules of continuous Z-numbers. This category of methods is
extremely complicated, inefficient, and error-prone; for this reason, many researchers have
chosen to combine Z-numbers with other methods in order to derive the operation formulas.
Hence, to improve the efficiency of operation and make it easier to understand, we take
symmetric triangular Z-numbers as our research object and study their operational rules,
including number-multiplication, addition, subtraction, multiplication, power squares,
and division.

The main contribution of our approach is as follows. First, we convert Z-numbers
directly into classical fuzzy numbers using Zadeh’s extension principle and the operational
rules of classical fuzzy numbers for operations of Z-numbers, which does not appear in
any previous related papers. Second, we use many linear correlation methods to calculate
the symmetric triangular Z-numbers, which is simple in both calculation principle and
process and as such can reduce the complexity of the operations. Third, we derive the
formulas of the basic operations for Z-numbers, which can be directly used to simplify the
complex operations involved in many realistic problems and expand the application areas
of Z-numbers. Our calculation method can reduce uncertainty and prevent information
loss while processing information, which can minimize information differences.

We structure the remainder of this paper as follows: Section 2 briefly introduces the
related definitions and notation; Section 3 deduces the operational rules for symmetric
triangular Z-numbers; finally, Section 4 draws the conclusions.

2. Preliminaries

To begin, a number of fundamental concepts are first concisely introduced.

Definition 1 (Zadeh [1]). In a given domain U, the fuzzy number A can be defined as

A = {⟨t, µA(t)⟩|t ∈ U},

where µA : U → [0, 1] is the membership function of A’, while µA(t) depicts the degree of
belongingness of t ∈ U in A.

Definition 2 (Van Laarhoven and Pedrycz [45]). A is a triangular fuzzy number which can be
defined as (ap, aq, ar); its membership function can be determined as

µA(t) =



0, t ∈ (−∞, ap)

t − ap

aq − ap
, t ∈ (ap, aq)

ar − t
ar − aq

, t ∈ (aq, ar)

0, t ∈ (ar,+∞),

where ap and ar are respectively the upper and lower bounds of A. When ar − aq = aq − ap, A is a
symmetric triangular fuzzy number.

Definition 3 (Zadeh [7]). A Z-number Z is an ordered fuzzy number pair, denoted as Z = (A, B),
where A,B could be either natural languages or numbers. Z is associated with T, which is a real-
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valued uncertain variable. Fuzzy number A represents the fuzzy constraint R(T) on the values
which T can take, defined as T is A, represented as

R(T) : T is A → Poss(T = t) = µA(t),

where µA is the membership function of A and t is a generic value of T. When T is a random
variable, the probability distribution of T represents a probabilistic restriction on T, which can be
expressed as

R(T) : T is p,

where p is the probability density function of T. Under this circumstance,

R(T) : T is p, p → Prob(t ≤ T ≤ t + dt) = p(t)dt.

If T is a random variable, then T is A represents a fuzzy event in R, the probability of which
can be defined as

p =
∫

R
µA(t)pT(t)dt,

where pT is the underlying probability density of T. Fuzzy number B is the fuzzy restriction on the
reliability measure of A, expressed as

B =
∫

R
µA(t)pT(t)dt, (1)

where pT is not known, whereas the constraint on pT is known, which can be presented in Figure 1.

Figure 1. The membership function of A and probability density function of T.

In effect, Z = (A, B) can be regarded as a restriction on T, defined as

Prob(T is A) is B.

Definition 4 (Aliev et al. [23]). In a Z-number represented by Z = (A, B), if the fuzzy restriction
A of the real-valued indefinite variable T on the domain U is a discrete fuzzy set

µA : {t1, t2, · · · , tn} → [0, 1], and{t1, t2, · · · , tn} ∈ R
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and B is the reliability measure for A, which is also a discrete fuzzy set

µB : {b1, b2, · · · , bn} → [0, 1], and{b1, b2, · · · , bn} ∈ [0, 1],

then Z = (A, B) is a discrete Z-number.

Definition 5 (Aliev et al. [24]). In a Z-number represented by Z = (A, B), if the fuzzy restriction
A of the real-valued indefinite variable T on the domain U is a continuous fuzzy set

µA : U → [0, 1]

and B is the reliability measure for A, which is also a continuous fuzzy set, then Z = (A, B) is a
continuous Z-number.

Definition 6 (Zadeh [7]). Let ζ and τ be fuzzy sets with membership functions µ and v, and let
f : ℜ2 → ℜ be a function; then, f (ζ, τ) is also a fuzzy set with membership function

π(h) = sup{µ(s) ∧ v(t)|h = f (s, t)}, (2)

where s and t are the values within the range of ζ and τ.

Definition 7 (Wang [46]). Let ξ be a fuzzy number; its α-level sets (or α-cuts) ξα can be ex-
pressed as

ξα =
{

t ∈ ℜ|µξ(t) ≥ α
}

= [min
{

t ∈ ℜ|µξ(t) ≥ α
}

, max
{

t ∈ ℜ|µξ(t) ≥ α
}
] = [ξL

α , ξR
α ],

where µξ(t) is the membership function of ξ and ℜ is the universe of discourse. The functions ξL
α

and ξR
α have the following attributes:

(a) ξL
α is a monotonously growing left continuous function,

(b) ξR
α is a monotonously lessening left continuous function,

(c) ξL
α ≤ ξR

α , α ∈ [0, 1].

Example 1 (Aliev et al. [24]). Given that A = (al , am, au) is a symmetric triangular fuzzy
number, an α-cut Aα = {t ∈ ℜ|µA(t) ≥ α} is a closed interval:

Aα = [AL
α , AR

α ] = [al + α(am − al), au + α(au − am)]

= [am − (1 − α)(am − al), am + (1 − α)(au − am)].

Definition 8 (Kang et al. [31]). The basic idea of translating Z-numbers into classical fuzzy
numbers is as follows. First, the reliability part B is transformed into a crisp value by defuzzification,
then the weight of the crisp value is multiplied by the restriction part A, and finally, using the
approximate invariance property of the fuzzy expectation, the product is converted into a commonly
used classical fuzzy number.

Step 1: Assuming that A = (ak, al , am, an) is a trapezoid fuzzy number and B = (bl , bm, bn)
is a triangular fuzzy number, B can be transformed into a crisp number by the center of gravity
method with

γ =

∫
tµB(t)dt∫
µB(t)dt

=

∫ bm

bl

t
t − bl

bm − bl
dt +

∫ bn

bm
t

bn − t
bn − bm

dt

1
2
(bn − bl)

.
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Thus, the gravity center of B = (bl , bm, bn) is computed as

γ =
bn − bl

2
. (3)

Step 2: Taking the gravity center value γ of the reliability part B as the weight of the restriction
part A, the weighted Z-value can be written as

Zγ = {(t, µAγ)|µAγ(t) = γµA(t), t ∈ [0, 1]}. (4)

Step 3: Because A = (ak, al , am, an) is a trapezoidal fuzzy number, Zγ can be calculated by

Zγ =
√

γ × A = (
√

γ × ak,
√

γ × al ,
√

γ × am,
√

γ × an). (5)

Remark 1. If A = (ak, al , am) is a triangular fuzzy number, Equation (5) becomes

Zγ =
√

γ × A = (
√

γ × ak,
√

γ × al ,
√

γ × am). (6)

Definition 9 (Kwiesielewicz [47]). Let A = (ap, aq, ar), B = (bp, bq, br) be two triangular
fuzzy numbers, where ar ≥ aq ≥ ap ≥ 0 and br ≥ bq ≥ bp ≥ 0. Then, their addition, difference,
number-multiplication, and division can be shown as follows:

A + B = [ap + bp, aq + bq, ar + br], (7)

A − B = [ap − br, aq − bq, ar − bp], (8)

and

A
B

= [
ap

br
,

aq

bq
,

ar

bp
].

Definition 10 (Aliev et al. [24]). The multiplication and division of fuzzy numbers
A = (ap, aq, ar) and B = (bp, bq, br) are both fuzzy sets. The multiplication can be expressed as

A × B = U
α∈(0,1]

α(A × B)α,

where the α-cut is expressed as

(A × B)α = [min(aα
1 · bα

1 , aα
1 · bα

2 , aα
2 · bα

1 , aα
2 · bα

2), max(aα
1 · bα

1 , aα
1 · bα

2 , aα
2 · bα

1 , aα
2 · bα

2)], (9)

where aα
1 = ap + α(aq − ap), aα

2 = ar + α(ar − aq), bα
1 = bp + α(bq − bp), bα

2 = br + α(br − bq).
The division can be denoted as

A
B

= U
α∈(0,1]

α

(
A
B

)α

,

where the α-cut is expressed as(
A
B

)α

=

[
min

(
aα

1
bα

1
,

aα
1

bα
2

,
aα

2
bα

1
,

aα
2

bα
2

)
, max

(
aα

1
bα

1
,

aα
1

bα
2

,
aα

2
bα

1
,

aα
2

bα
2

)]
. (10)

Definition 11 (Kallenberg [48]). Suppose that (S, T) are two-dimensional continuous random
variables which have probability density f (s, t). Then, R = S + T is still a continuous random
variable with probability density

fS+T(r) =
∫

R
f (r − t, t)dt =

∫
R

f (s, r − s)ds. (11)
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Let the marginal probability density of (S, T) with respect to S,T be fS(s) and fT(t). If S and
T are independent of each other, Equation (11) will be reduced to the convolution formula

fS ◦ fT =
∫

R
fS(r − t) fT(t)dt =

∫
R

fS(s) fT(r − s)ds. (12)

If R =
T
S

, then

fS ◦ fT =
∫

R
|s| fS(s) fT(sr)ds. (13)

If R = ST, then

fS ◦ fT =
∫

R

1
|s| fS(s) fT(

r
s
)ds. (14)

Definition 12 (Aliev et al. [24]). In order to discretize fuzzy numbers, a method is presented.
The idea is to split the assistance of a fuzzy number B, Supp(B), into several subintervals bk,
k = 1, · · · , n. In particular, the subintervals are of the same size, i.e., the spacing is constantly
∆b = bk+1 − bk.

Example 2. Consider B = (0.4, 0.5, 0.6); its support Supp(B) will be discretized into
n = 11 points in the way shown below: bj1 = 0.4, bj2 = 0.425, · · · , bj11 = 0.6. Then, the
discretized fuzzy number can be attained as

B =
0

0.4
+

0.2
0.42

+
0.4

0.44
+

0.6
0.46

+
0.8

0.48
+

1
0.5

+
0.8

0.52
+

0.6
0.54

+
0.4

0.56
+

0.2
0.58

+
0

0.6
.

In the succeeding sections, we will use the above definitions and methods to derive
the operational rules of the symmetric triangular Z-numbers.

3. Operational Rules

This section introduces the operational rules for Z-numbers. The first step in the
operations is all about converting Z-numbers into ordinary fuzzy numbers, as defined
in Definition 8. Because the operations studied here are based on symmetric triangular
Z-numbers, A = (ap, aq, ar), B = (bp, bq, br), the value of the weight γ of the reliability
part B is always as shown in Equation (3). Considering that calculating the second com-
ponent of the derived Z-number requires a relatively long computation time, whereas
the calculation processes are similar to each other, we only provided examples for the
number-multiplication and addition operations in this section.

3.1. Number-Multiplication Formula

Theorem 1. Let λ be a real number and let Z = (A, B) = ((ap, aq, ar), (bp, bq, br)) be a symmetric
triangular Z-number. The formula for the number-multiplication of the continuous symmetric
triangular Z-number is

λZ = λ(A, B) = (λA, B).

Proof. First, multiplying a real number λ ∈ R by the base of Equation (6), we can obtain

λZγ = (λ
√

γ × ap, λ
√

γ × aq, λ
√

γ × ar).

From Equation (3), γ =
br − bp

2
. Let Z̄γ = λZγ. Because the weights remain un-

changed after the number-multiplication, the formula becomes

Z̄γ = (λ
√

γ × ap, λ
√

γ × aq, λ
√

γ × ar).
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Therefore, the final likelihood measure B is unchanged, and we obtain

λZ = λ(A, B) = (λA, B).

Example 3. Assume that Z = (A, B) = ((1, 2, 3), (0.7, 0.8, 0.9)), and calculate 3Z.

According to Equation (3), we have γ =
0.9 − 0.7

2
= 0.1. Accordingly, we can determine that

Z̄0.1 = 3Z0.1 = (3
√

10 × 1, 3
√

10 × 2, 3
√

10 × 3) = (3
√

10, 6
√

10, 9
√

10).

Finally, we obtain

3Z = (A, B12) =
(
(3
√

10, 6
√

10, 9
√

10), (0.7, 0.8, 0.9)
)

.

3.2. Addition Formula

Theorem 2. Let Z1 = (A1, B1) = ((a1p, a1q, a1r), (b1p, b1q, b1r)) and let Z2 = (A2, B2) =
((a2p, a2q, a2r), (b2p, b2q, b2r)) be continuous symmetric triangular Z-numbers. Then, their sum
Z12 can be deduced as

Z12 = Z1 + Z2 = (A12, B12),

where A12 = (aγ
1 , aγ

2 , aγ
3 ) = (

√
γ1a1p +

√
γ2a2p,

√
γ1a1q +

√
γ2a2q,

√
γ1a1r +

√
γ2a2r),

B12 =
∫

R µA12 p12dt, γ1 =
b1r − b1p

2
, γ2 =

b2r − b2p

2
, µA12 is the membership function of

A12, and p12 is the probability density of A12.

Proof. Based on Equation (6), the fuzzy transformations of Z1 and Z2 are

Zγ
1 =

√
γ1 A1 = (

√
γ1a1p,

√
γ1a1q,

√
γ1a1r),

Zγ
2 =

√
γ2 A2 = (

√
γ2a2p,

√
γ2a2q,

√
γ2a2r).

According to Equation (7), the sum of the two can be derived as

Zγ
12 = Zγ

1 + Zγ
2 = (

√
γ1a1p +

√
γ2a2p,

√
γ1a1q +

√
γ2a2q,

√
γ1a1r +

√
γ2a2r).

From Equation (3), it is known that γ1 =
b1r − b1p

2
, γ2 =

b2r − b2p

2
, where b1r and b1p

denote the third and first possibility of Z1, respectively, while b2r and b2p denote the third
and first possibility of Z2, respectively. Therefore, substitution yields

Zγ
12 =(

√
b1r−b1p

2
a1p+

√
b2r−b2p

2
a2p,

√
b1r−b1p

2
a1q+

√
b2r−b2p

2
a2q,

√
b1r−b1p

2
a1r+

√
b2r−b2p

2
a2r).

At this point, Z-numbers A and B have been transformed into simple fuzzy numbers
Zγ

1 and Zγ
2 , and are transformed into Zγ

12 by symbolic operations; the subsequent step is to
convert the simple fuzzy number Zγ

12 into a Z-number again.
According to Equation (4), the membership functions of Z1 and Z2 can be transformed

into the membership functions of their corresponding fuzzy numbers as follows:

µ
γ
A1

=
b1r − b1p

2
µA1 = PosAγ

1 ,

µ
γ
A2

=
b2r − b2p

2
µA2 = PosAγ

2 .

Then, according to Equation (2), we can find that
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µ
γ
A12

(v) = sup
u
(µγ

A1
(u) ∧ µ

γ
A2
(v − u)).

Let aγ
1 , aγ

2 , and aγ
3 be the three coordinate values on the horizontal axis. At this point,

the range of the membership function after transformation and summation is (0, β) instead
of (0, 1), where β denotes the maximum of the triangular fuzzy number, i.e., the vertex

of the vertical axis coordinate corresponding to aγ
2 . Then, β is min

{
b1r − b1p

2
,

b2r − b2p

2

}
,

which, as it is contrary to the initial required range of (0, 1), should be normalized to

µA12 =



t − aγ
1

aγ
2 − aγ

1
, t ∈ (aγ

1 , aγ
2 )

aγ
3 − t

aγ
3 − aγ

2
, t ∈ (aγ

2 , aγ
3 )

0, otherwise.

(15)

Then, A12 = (aγ
1 , aγ

2 , aγ
3 ) = (

√
γ1a1p +

√
γ2a2p,

√
γ1a1q +

√
γ2a2q,

√
γ1a1r +

√
γ2a2r).

Accordingly, we can use µA12 to calculate B12 in view of Equation (1) by

B12 =
∫

R
µA12 p12dt. (16)

From Equation (12), we can obtain P12 = P1 ◦ P2 =
∫

R p1(u)p2(v− u)du, and according
to Equation (1)

B1 =
∫

R
µA1(t)p1(t)dt, B2 =

∫
R

µA2(t)p2(t)dt,

the values of p1(u) and p2(v − u) in calculating P12 can be determined.
Nevertheless, if the calculation is carried out directly, many solutions will be obtained,

and they should be subject to

∫
R

p(t)dt = 1

p(t) > 0

∫
tp(t)dt =

∫
tµA(t)dt∫
µA(t)dt

=

∫
t

t − ap

aq − ap
dt∫ t − ap

aq − ap
dt

.

(17)

Under such conditions, p12 can be derived, then B12 can be obtained by substituting
p12 and µA12 into Equation (16). Accordingly, we can obtain

Z12 = Z1 + Z2 = (A12, B12).

Example 4. Assume that Z1 = (A1, B1) = ((1, 2, 3), (0.7, 0.8, 0.9)), Z2 = (A2, B2) =
((7, 8, 9), (0.4, 0.5, 0.6)) and calculate Z12 = Z1 + Z2.

First, according to Equation (3), the values of γ1 and γ2 can be derived as

γ1 =
0.9 − 0.7

2
= 0.1, γ2 =

0.6 − 0.4
2

= 0.1.
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As a result, the value of A12 is calculated as follows:

A12 = (aγ
1 , aγ

2 , aγ
3 ) = (

√
γ1a1p +

√
γ2a2p,

√
γ1a1q +

√
γ2a2q,

√
γ1a1r +

√
γ2a2r)

= (
√

0.1 × 1 +
√

0.1 × 7,
√

0.1 × 2 +
√

0.1 × 8,
√

0.1 × 3 +
√

0.1 × 9)

=

(
8√
10

,
√

10,
12√
10

)
.

According Equation (15), the following membership function is obtained after normalization:

µA12 =



√
10t − 8

2
, t ∈

(
8√
10

,
√

10
)

12 −
√

10t
2

, t ∈
(√

10,
12√
10

)
0, otherwise.

The next step is to calculate P12. Considering the greater difficulty of calculating the probability
density of continuous fuzzy numbers, we discretize and convert them to discrete fuzzy numbers
according to Definition 12.

First, we divide B equally into (l − 1) points and define each part as bl .
For example, B1 = (0.7, 0.8, 0.9) can be divided into 10 points:

B1 =
0

0.7
+

0.2
0.72

+
0.4
0.74

+
0.6

0.76
+

0.8
0.78

+
1

0.8
+

0.8
0.82

+
0.6

0.84
+

0.4
0.86

+
0.2

0.88
+

0
0.9

.

According to the discretization, it is known that

bj,l =
n

∑
i=1

µAj(tji)Pj,l(tji), j = 1, 2

where j corresponds to Z1 or Z2. When j = 12, it corresponds to Z12.
Thus, we obtain a linear programming model where bj,l is a target value and the model satisfies

the following constraints:

µAj(tj1)Pj,l(tj1) + µAj(tj2)Pj,l(tj2) + ... + µAj(tjn)Pj,l(tjn) → bj,l

s.t.



∑ Pj,l = 1

Pj,l ⩾ 0

∫
tPj,ldt =

∫
tµA(t)dt∫
µA(t)dt

Thus, we can obtain all Pj,l values for the lth b value; this is then continuousized and the
probability density functions P1,l and P2,l are obtained by fitting. Finally, we obtain P12,l using the
convolution formula P12 = P1 ◦ P2, then all P12 values are obtained by iteration.

Taking the fourth point as an example, the probability density functions after fitting are
N(2, 0.36) and N(8, 0.76), respectively; thus, the convolution formula can be used to find the
probability density of the point P12, which is equal to N(10, 0.83).
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Substituting each copy of P12 into B12,l =
∫

µA12 P12,ldt yields a series of values for B12.

Again taking the fourth point as an example, we have

B12,4 =
∫

µA12 P12,4dt

=
∫ √

10
8√
10

√
10t − 8

2
· 1

0.83
√

2π
e
−
(t − 10)2

2 · (0.83)2
dt +

∫ 12√
10√

10

12 −
√

10t
2

· 1
0.83

√
2π

e
−
(t − 10)2

2 · (0.83)2
dt.

The two endpoints and vertices are chosen to form B12 = (0.62, 0.72, 0.79).
Finally, we obtain

Z12 = (A12, B12) =

((
8√
10

,
√

10,
12√
10

)
, (0.62, 0.72, 0.79)

)
.

3.3. Subtraction Formula

The addition and subtraction operations for Z-numbers are extremely similar in
thought and procedure to the addition and subtraction of ordinary numbers. To derive
the subtraction expression, we transform the Z-numbers into classical fuzzy numbers first,
then use the operational rules of classical fuzzy numbers to determine the expression
of Ak. Finally, we apply the convolution formula to obtain the expression of Bk. The
difference in the derivation process mainly lies in the fuzzy number operator formula and
the convolution formula used to calculate P12.

Theorem 3. Let Z1 = (A1, B1) = ((a1p, a1q, a1r), (b1p, b1q, b1r)) and Z2 = (A2, B2) =
((a2p, a2q, a2r), (b2p, b2q, b2r)) be continuous symmetric triangular Z-numbers and let the dif-
ference between these two be Zk; then, we have

Zk = Z1 − Z2 = (Ak, Bk),

where Ak = (aγ
1 , aγ

2 , aγ
3 ) = (

√
γ1a1p − √

γ2a2r,
√

γ1a1q − √
γ2a2q,

√
γ1a1r −

√
γ2a2p),

Bk =
∫

R µAk pkdt, γ1 =
b1r − b1p

2
, γ2 =

b2r − b2p

2
, µAk is the membership function of Ak,

and pk is the probability density of Ak.

Proof. In views of Equation (6), the fuzzy transformations of Z1, Z2 are

Zγ
1 =

√
γ1 A1 = (

√
γ1a1p,

√
γ1a1q,

√
γ1a1r),

Zγ
2 =

√
γ2 A2 = (

√
γ2a2p,

√
γ2a2q,

√
γ2a2r).

Then, according to Equation (8), we have

Zγ
k = Zγ

1 − Zγ
2 = (

√
γ1a1p −

√
γ2a2r,

√
γ1a1q −

√
γ2a2q,

√
γ1a1r −

√
γ2a2p).

Similar to the addition process, it can be determined from Definition 6 that

µ
γ
Ak
(v) = sup

u
(µγ

A1
(v + u) ∧ µ

γ
A2
(u)).

After normalization, µAk is expressed as Equation (15). Therefore,

Ak = (
√

γ1a1p −
√

γ2a2r,
√

γ1a1q −
√

γ2a2q,
√

γ1a1r −
√

γ2a2p).
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Similar to Equation (17), P1 and P2 are under the three range condition restrictions.
Based on Equation (12), it is easy to find that Pk = P1 ◦ P2 =

∫
R p1(u+ v)p2(u)du. Then, B12

can be obtained by substituting pk and µAk into Equation (16). Hence, we can derive that

Zk = Z1 − Z2 = (Ak, Bk).

3.4. Multiplication Formula

Theorem 4. Let Z1 = (A1, B1) = ((a1p, a1q, a1r), (b1p, b1q, b1r)) and Z2 = (A2, B2) =
((a2p, a2q, a2r), (b2p, b2q, b2r)) be continuous symmetric triangular Z-numbers and let the multipli-
cation of these two be Z∗. Then, Z∗ can be expressed as

Z∗ = Z1 × Z2 = (A∗, B∗),

where A∗ = (
√

γ1
√

γ2a1pa2p,
√

γ1
√

γ2a1qa2q,
√

γ1
√

γ2a1ra2r), B∗ =
∫

R µA∗ p∗dt,

γ1 =
b1r − b1p

2
, γ2 =

b2r − b2p

2
, and µA∗ and p∗ are the membership function and probabil-

ity density of A∗, respectively.

Proof. Similar to the previous proof processes, we first let Z∗ = Z1 ×Z2 and then transform
them into classical fuzzy numbers, that is,

Zγ
1 =

√
γ1 A1 = (

√
γ1a1p,

√
γ1a1q,

√
γ1a1r),

Zγ
2 =

√
γ2 A2 = (

√
γ2a2p,

√
γ2a2q,

√
γ2a2r),

where γ1 =
b1r − b1p

2
, γ2 =

b2r − b2p

2
.

Then, we must apply α-cuts to perform the multiplication calculation. When studying
symmetric triangular fuzzy numbers, there will be a linear equation on the left and right
side after α-cut processing. Next, we mark the left side to indicate the symbol as L and the
right as R. The classical fuzzy number after the α-cut can be obtained as

¯Zγ1
1 = [ZL

1α, ZR
1α] = [

√
γ1(a1q − a1p)α +

√
γ1a1p,

√
γ1(a1q − a1r)α +

√
γ1a1r],

¯Zγ2
2 = [ZL

2α, ZR
2α] = [

√
γ2(a2q − a2p)α +

√
γ2a2p,

√
γ2(a2q − a2r)α +

√
γ2a2r].

Per Equation (9), it is reasoned that

¯Z∗γ∗ = ¯Zγ1
1 × ¯Zγ2

2 = [ZL
1α, ZR

1α]× [ZL
2α, ZR

2α] = [Z∗
α

L, Z∗
α

R],

where
Z∗

α
L = min

{
ZL

1αZL
2α, ZL

1αZR
2α, ZR

1αZL
2α, ZR

1αZR
2α

}
,

Z∗
α

R = max
{

ZL
1αZL

2α, ZL
1αZR

2α, ZR
1αZL

2α, ZR
1αZR

2α

}
.

After the modeling is completed, it is known that the ordinate corresponding to point
L is less than that corresponding to point R. Therefore, after analysis, it is found that

Z∗
α

L = ZL
1αZL

2α =[(a1q−a1p)(a2q−a2p)α
2+(a1pa2q+a2pa1q−2a1pa2p)α+a1pa2p]

√
γ1
√

γ2, (18)

Z∗
α

R = ZR
1αZR

2α =[(a1q−a1r)(a2q−a2p)α
2+(a1ra2q+a2ra1q−2a1ra2r)α+a1ra2r]

√
γ1
√

γ2. (19)

In the next step, in order to find the membership degree µ, α needs to be calculated first.
Let Z∗

α
L = m, which denotes the magnitude of the length of the horizontal axis taken

by the new membership degree after multiplying the two membership degrees and is an
unknown number. Transforming Equation (18), we obtain
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α =

−(a1p ã2 + a2p ã1) +

√
(a1p ã2 − a2p ã1)2 +

4ã1 ã2m√
γ1

√
γ2

2ã1 ã2
,

where we discard the roots of α < 0 and where ã1 = a1q − a1p = a1r − a1q, ã2 = a2q − a2p =
a2r − a2q.

Similarly, letting Z∗
α

R = n, after transforming Equation (19) we have

α =

−(a1r ã2 + a2r ã1) +

√
(a2r ã1 − a1r ã2)2 +

4ã1 ã2n√
γ1

√
γ2

2ã1 ã2
,

where we discard the roots of α > 1 and ã1 = a1q − a1p = a1r − a1q, ã2 = a2q − a2p =
a2r − a2q.

Due to the nature of symmetric triangular fuzzy numbers, it is obvious that

m + n = 2
√

γ1
√

γ2a1qa2q.

Therefore, the membership function of Z∗ is

µA∗ =



−(a1p ã2+a2p ã1)+

√
(a1p ã2−a2p ã1)2+

4ã1 ã2m√
γ1

√
γ2

2ã1 ã2
, m∈ (

√
γ1

√
γ2a1pa2p,

√
γ1

√
γ2a1qa2q)

−(a1r ã2+a2r ã1)+

√
(a2r ã1−a1r ã2)2+

4ã1 ã2(2
√

γ1
√

γ2a1qa2q−m)
√

γ1
√

γ2

2ã1 ã2
, m∈ (

√
γ1

√
γ2a1qa2q,

√
γ1

√
γ2a1ra2r)

0, otherwise.

(20)

As a result, A∗ = (
√

γ1
√

γ2a1pa2p,
√

γ1
√

γ2a1qa2q,
√

γ1
√

γ2a1ra2r).
The following steps are similar to the addition and subtraction calculation processes.

First calculating P∗ and then applying Equation (14), we obtain

P∗(v) = P1 ◦ P2 =
∫

R

1
|u| p1(u)p2(

v
u
)du.

It should be noted that a fundamental condition of the multiplicative convolution
formula is that P1 and P2 are independent of each other. Then, B∗ can be obtained by
substituting p∗ and µA∗ into Equation (16). Thus, the conclusion is obtained:

Z∗ = Z1 × Z2 = (A∗, B∗).

3.5. Power Formula

Theorem 5. Let λ be a real number and let Z = (A, B) = ((ap, aq, ar), (bp, bq, br)) be a symmetric
triangular Z-number. Its powers can be calculated by

Zλ = (Aλ, Bλ),

where Aλ = ((
√

γap)λ, (
√

γaq)λ, (
√

γar)λ), Bλ =
∫

µλ
A p(uλ)du, γ1 =

b1r − b1p

2
,

γ2 =
b2r − b2p

2
, µλ

A is the membership function of Aλ, and p(uλ) is the probability density

of Aλ.
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Proof. The power operation is actually a generalization of the multiplication calculation.
First, we can make Zλ

1 = (Aλ, Bλ), which means that Zλ
1 is obtained by multiplying λ

times Z1.
When λ = 1, Zλ

1 = Z1. When λ = 2, Zλ
1 = Z2

1 = Z1 ×Z1, and accord-
ing to the multiplication formula derived earlier, Z2

1 = (A2, B2), where Aλ = A2 =
((
√

γap)2, (
√

γaq)2, (
√

γar)2). Analogously, when λ=3, Zλ
1 =Z3

1 = Z1×Z1×Z1=(A3, B3),
where Aλ = ((

√
γap)3, (

√
γaq)3, (

√
γar)3).

Assume that An = ((
√

γap)n, (
√

γaq)n, (
√

γar)n) holds when λ = n. Then,
An+1 = An × A = ((

√
γap)n+1, (

√
γaq)n+1, (

√
γar)n+1).

Therefore, we can find that when λ ∈ R, Aλ = ((
√

γap)λ, (
√

γaq)λ, (
√

γar)λ).
For Bλ, when λ = 2, Bλ = B2 =

∫
µ2

A(t)p2(t)dt. Using Equation (20), we can find that
the membership function of Aλ is

µλ
A =



λ
√

m −√
γap√

γã1
, m ∈ ((

√
γap)λ, (

√
γaq)λ)

λ
√

m −√
γar√

γã1
, m ∈ ((

√
γaq)λ, (

√
γar)λ)

0, otherwise.

Then, according to Equation (14), we can find

P(u2) =
∫

R

1
|u| p2(u)du.

The same extends to the condition when λ ∈ R:

P(uλ) =

(∫
R

1
|u| p(u)du

)λ−2(∫
R

1
|u| p2(u)du

)
.

Accordingly, by combination with Bλ =
∫

µλ
A p(uλ)du, we can find the value of Bλ.

Finally, we obtain
Zλ = (Aλ, Bλ).

3.6. Division Formula

Theorem 6. Let Z1 = (A1, B1) = ((a1p, a1q, a1r), (b1p, b1q, b1r)) and Z2 = (A2, B2) =
((a2p, a2q, a2r), (b2p, b2q, b2r)) be continuous symmetric triangular Z-numbers and let the division
formula of these two be Zs. Then, it can be deduced that

Zs =
Z1

Z2
= (As, Bs),

where As =

(√
γ1a1p√
γ2a2p

,
√

γ1a1q√
γ2a2q

,
√

γ1a1r√
γ2a2r

)
, Bs =

∫
R µAs psdt, γ1 =

b1r − b1p

2
, γ2 =

b2r − b2p

2
,

µAs is the membership function of As, and ps is the probability density of As.

Proof. Let Zs =
Z1

Z2
, where Z1 = (A1, B1) and Z2 = (A2, B2). Then, we can convert Z1 and

Z2 to fuzzy numbers as follows:

Zγ1
1 = (

√
γ1a1p,

√
γ1a1q,

√
γ1a1r),

Zγ2
2 = (

√
γ2a2p,

√
γ2a2q,

√
γ2a2r),

where γ1 =
b1r − b1p

2
, γ2 =

b2r − b2p

2
.
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For these two triangular fuzzy numbers, their α-cuts are

¯Zγ1
1 = [ZL

1α, ZR
1α] = [

√
γ1(a1q − a1p)α +

√
γ1a1p,

√
γ1(a1q − a1r)α +

√
γ1a1r],

¯Zγ2
2 = [ZL

2α, ZR
2α] = [

√
γ2(a2q − a2p)α +

√
γ2a2p,

√
γ2(a2q − a2r)α +

√
γ2a2r].

From Equation (10), the α-cut of ¯Zγs
s =

¯Zγ1
1
¯Zγ2
2

is

[ZL
1α, ZR

1α]

[ZL
2α, ZR

2α]
= [ZL

sα, ZR
sα],

where ZL
sα = min

{
ZL

1α

ZL
2α

,
ZL

1α

ZR
2α

,
ZR

1α

ZL
2α

,
ZR

1α

ZR
2α

}
, ZR

sα = max

{
ZL

1α

ZL
2α

,
ZL

1α

ZR
2α

,
ZR

1α

ZL
2α

,
ZR

1α

ZR
2α

}
.

Similar to the proof process of multiplication, it is known that ZL < ZR. As a result,

ZL
sα =

ZL
1α

ZR
2α

=

√
γ1(a1q − a1p)α +

√
γ1a1p√

γ2(a2q − a2r)α +
√

γ2a2r
,

ZR
sα =

ZR
1α

ZL
2α

=

√
γ1(a1q − a1r)α +

√
γ1a1r√

γ2(a2q − a2p)α +
√

γ2a2p
.

Let ZL
sα = m, which is an unknown function that represents the range of values. We

discard the roots of α < 0; hence,

α =
m
√

γ2a2r −
√

γ1a1p√
γ1(a1q − a1p)− m

√
γ2(a2q − a2r)

=
m
√

γ2a2r −
√

γ1a1p√
γ1 ã1 − m

√
γ2 ã2

,

where ã1 = a1q − a1p = a1r − a1q, ã2 = a2q − a2p = a2r − a2q.

Let ZR
sα = n, which is an unknown function that represents the range of values. We

discard the roots of α > 1; therefore,

α =
n
√

γ2a2p −
√

γ1a1r√
γ1(a1q − a1r)− n

√
γ2(a2q − a2p)

=
n
√

γ2a2p −
√

γ1a1r√
γ1 ã1 − n

√
γ2 ã2

.

Due to the nature of the symmetric triangular fuzzy number, it is obvious that

m + n = 2
√

γ1a1q√
γ2a2q

.

The membership function of Zγs
s is

µAt =



m
√

γ2a2r −
√

γ1a1p√
γ1 ã1 − m

√
γ2 ã2

, m ∈
(√

γ1a1p√
γ2a2p

,
√

γ1a1q√
γ2a2q

)
2
√

γ1a1qa2p −
√

γ2a2pa2qm −√
γ1a1ra2q√

γ1 ã1a2q − 2
√

γ1 ã2a1q +
√

γ2 ã2a2qm
, m ∈

(√
γ1a1q√
γ2a2q

,
√

γ1a1r√
γ2a2r

)
0, otherwise.

Then, As =

(√
γ1a1p√
γ2a2p

,
√

γ1a1q√
γ2a2q

,
√

γ1a1r√
γ2a2r

)
.

Next, we use Equation (13) to calculate the probability density Ps:
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Ps(v) = P1 ◦ P2 =
∫

R
|u|p1(u)p2(uv)du.

Finally, we again use Equation (16) to obtain Bt. Therefore, we have

Zs =
Z1

Z2
= (As, Bs).

At this point, all of the mentioned operational rules related to Z-numbers have been
proposed and proven. Compared to other computational methods, our proposed method
simplifies the operations by converting them into classical fuzzy numbers and deriving
the two components of the desired Z-number via the operational laws of the classical
fuzzy numbers. When facing more complex Z-number operations, using these theorems of
basic operations can greatly reduce computational complexity, enabling the application of
Z-numbers to a wider range of fields.

4. Conclusions

Z-number proposals integrate objective natural language information and subjective
human understanding, taking both the vagueness of information and the level of “trust-
worthiness” of fuzzy information into account. Therefore, Z-numbers provide a great deal
of convenience in describing and analyzing uncertain information. Many researchers have
studied the concept since its introduction. Drawn from the theoretical foundation of fuzzy
sets theory and optimization methods, they have provided basic operational laws of com-
mon algebraic operations for Z-numbers. In a more straightforward manner, this paper has
focused on operational laws for symmetric triangular Z-numbers. First, we transform the
Z-numbers into classical triangular fuzzy numbers. After that, we employ the operational
laws of the classical fuzzy numbers for reference to derive the two components of the
derived Z-number. Finally, we provide the number-multiplication, addition, subtraction,
multiplication, power, and division expressions for the Z-numbers. In the fields of eco-
nomics, decision analysis, risk assessment, planning, and causal analysis, many real-life
numbers are actually Z-numbers. In previous academic research, however, they have been
simplified into other numbers due to their high computational complexity. Based on these
rules of basic operations, the application prospects of Z-numbers will be greatly improved.

There are some limitations to this article. First, this paper only proposes operational
laws for symmetric triangular Z-numbers, and does not apply to other types of Z-numbers;
hence, it is necessary to extend this method to more general Z-numbers in further theoretical
studies. Second, time and energy constraints limited our study to the multiplication, power
series, and quadratic operations of Z-numbers. We have not provided definitions and
operational rules for other calculations, including more complex algebraic operations,
expectations, and variance, which we plan to expand upon in the future. Finally, this paper
has not provided application examples to prove the applicability and scope of the proposed
operational laws, which requires further investigation in future work.
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