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Abstract: This paper examines the distribution of eigenvalues for a 2 × 2 random confusion matrix
used in machine learning evaluation. We also analyze the distributions of the matrix’s trace and the
difference between the traces of random confusion matrices. Furthermore, we demonstrate how these
distributions can be applied to calculate the superiority probability of machine learning models. By
way of example, we use the superiority probability to compare the accuracy of four disease outcomes
machine learning prediction tasks.
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1. Introduction

The distribution of eigenvalues of a confusion matrix is an interesting and important
concept in machine learning (ML), particularly in the evaluation of classification mod-
els [1]. Confusion matrices are widely used to assess the performance of a classification
algorithm by providing a detailed breakdown of the predicted and actual class labels [2–4].
The eigenvalues of a confusion matrix offer insights into the underlying structure and
characteristics of the classification results [5–9]. Eigenvalues are a mathematical concept
used to analyze linear transformations, and in the context of confusion matrices, they can
reveal information about the matrix’s behaviour [10,11]. The distribution of eigenvalues
provides a quantitative measure of the spread and concentration of information in the
matrix. Understanding the distribution of eigenvalues of a confusion matrix can be valuable
for various purposes, including model assessment, variable selection, high-dimensional
analysis, dimension reduction, model comparison, anomaly detection, and generalization
or overfitting issues [1,11–15].

For example, in Ref. [1], the significance of eigenvalue analysis for selecting important
features in big data was explored. The authors emphasize the importance of understanding
the patterns of eigenvalues in covariance matrices for various analytical purposes, such
as model comparison and anomaly detection. They highlight how eigenvalues provide
insights into the underlying structure of classification results, contributing to an overall
understanding of model performance. In a similar study by [11], the authors utilized
eigenvalue analysis in conjunction with principal component analysis (PCA) methods
to reduce the dimensionality of big data before exploring the performances of several
classification methods. The results of their analysis revealed that the outcomes from
eigenvalue and PCA are much superior to those from the linear discriminant analysis
(LDA) procedure.
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In another study by [15], various eigenvalue-based dimension reduction techniques
were compared for high-dimensional analysis. Specifically, the authors investigated the
performances of PCA, LDA, and singular value decomposition (SVD). The findings from the
study validate the utility of eigenvalue-based dimension reduction techniques in handling
high-dimensional data. By comparing the effectiveness of PCA, LDA, and SVD, the research
underscores the importance of eigenvalue analysis in addressing the challenges posed by
high-dimensional datasets. Moreover, ref. [16] utilized eigenvalue analysis to tackle the
generalization error problem in two-layered neural networks for high-dimensional analysis.
By leveraging eigenvalue properties, the study aimed to enhance the understanding of how
neural networks generalize from training data to unseen data. Eigenvalue analysis in this
context provides valuable insights into the behaviour and performance of neural networks,
particularly in high-dimensional spaces. The approach in [16] highlights the significance of
incorporating eigenvalue-based techniques in optimizing and refining machine learning
models for complex data analysis tasks.

In a different context within high-dimensional analysis, Sifaou et al. [14] employed
eigenvalue and eigenvector analyses to improve the performance of a high-dimensional
LDA classifier in the spiked covariance model. The author introduced a modified regular-
ized R-LDA that is based on eigenvalue and eigenvector analyses. Numerical simulations,
using both real and simulated data, revealed that the proposed classifier yields better
classification performance than the classical R-LDA while requiring lower computational
complexity. In a similar context, ref. [13] increased the performance of support vector
machine (SVM) by employing eigenvalue analysis of the features covariance matrices and
subsequently performing PCA to reduce the dimension of the features. This approach
helps to increase the prediction accuracy of hepatitis disease.

In a Bayesian analysis of confusion matrices, Caelen [17] delved into Bayesian methods
for analyzing confusion matrices in machine learning. While Bayesian approaches are
widely used in various aspects of ML, their application to confusion matrices provides a
unique perspective on model evaluation. Ref. [17] provided Bayesian interpretations of
various evaluation metrics derived from confusion matrices of machine learning models.
The authors presented posterior distributions for these metrics from the confusion matrix
and used them to compare the performances of several ML models.

The findings of various studies reviewed indicate a significant body of work on
eigenvalue analysis within the context of dimension reduction, particularly in Principal
Component Analysis (PCA) and Linear Discriminant Analysis (LDA). However, there is a
notable gap in research concerning the eigenvalue analysis of confusion matrices arising
from machine learning (ML) models. In high-dimensional analysis and variable selection,
dimension reduction serves as a filtering mechanism wherein techniques like eigenvalue
analysis are employed to select important variables before training a classification model.
Many authors, including [2,18–25], among others, have criticized this approach. They
argue that it eliminates the possibility of interaction effects present in variables. Therefore,
embedded and wrapper variable selection methods, which combine selection techniques
and ML models, are preferred. In this regard, comparing ML models based on confusion
matrices from a trained model will be more beneficial than the covariance matrix of a
pre-trained model.

Moreover, by leveraging eigenvalue analysis, researchers can objectively compare
different machine learning models, discerning their relative strengths and weaknesses
based on the underlying structure of their confusion matrices [26–29]. Hence, this paper
presents the distribution of eigenvalues for a 2 × 2 random confusion matrix arising from
a machine learning evaluation scenario. Furthermore, we provide distributions for both
the matrix’s trace and the difference between the traces of two random confusion matrices.
We also demonstrate how these distributions can be utilized to compute the superiority
probability of ML models.
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2. Distribution of Eigenvalues of Random Confusion Matrix

Suppose we have a learning problem given by data D = {Xi, Yi}, where i ∈ 1, 2, . . . , n,
Xi is the matrix of the features, and Yi is the response vector which we assume to be
categorical with k classes. For simplicity, we consider the binary case with k = 2 as the
derivation in this paper can be easily generalized to the multiclass k classes. In any binary
classification problem, the goal is to predict the Yi based on new information x ∈ X using
a classifier ŷ : f (x). Consider a testing dataset denoted as T = {(Xi, Yi)}nT

i=1, comprising
nT independent samples drawn from an unknown distribution F(X, Y). To assess the
accuracy of predictions made by ŷ on the samples in T, we introduce a loss function
L : y × ŷ → {a, b, c, d}. Let y belong to {θ0, θ1} as the true class, and ŷ belong to {θ0, θ1} as
the predicted class. Following convention in [17], we define the mapping of the L function
as follows:

L =


a, if y = θ1 and ŷ = θ1

b, if y = θ1 and ŷ = θ0

c, if y = θ0 and ŷ = θ1

d, if y = θ0 and ŷ = θ0

(1)

where a denotes true positive, b denotes false negative, c denotes false positive and d
denotes true negative. The elements of vector L can be presented in a 2 × 2 matrix often
referred to as a confusion matrix. Let A represents the 2 × 2 confusion matrix obtained
from a classification learning problem defined above; A can be defined as

A =

[
a b
c d

]
(2)

The obvious properties of A are that (a.) it is not symmetric (b.) it is square and it is also
random. Now, if we assume A is diagonalizable such that there exist a scalar λ and vector
V that we can use to decompose A using

AV = λV (3)

then λ = {λ1, λ2} and V =

[
v11 v12
v13 v13

]
are the eigenvalues and eigenvectors of A respec-

tively. One interesting property of eigenvalues of this type of diagonalizable square matrix
is that the sum of the eigenvalues equals the trace of the matrix. That is

tr(A) =
2

∑
j=1

λj. (4)

The tr(A) is very useful in evaluating the accuracy of a classifier in a machine learning
problem most especially if the categories of the response variable is balance that is pk = 1/k.
In a balance binary classification problem with nT test cases, the accuracy (ϕ̂) of a classifier
can be computed using

ϕ̂ = n−1
T tr(A)

= n−1
T

2

∑
j=1

λj.
(5)

Note that, since elements of A are resultants of random outcomes of randomly gen-
erated test instances used to validate classifier ŷ, A can be regarded as a random matrix.
Also, since only nT is the only known parameter, the elements of A can be assumed to be
multinomially distributed with parameters nT , πa, πb, πc and πd. Thus, the joint density
function of the elements in the random matrix A can be given as

P(a, b, c, d|nT , πa, πb, πc, πd) =
nT !

a! · b! · c! · d!· aπa · bπb · cπc · dπd · I(a + b + c + d = nT). (6)
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The last part of the RHS of (6) implies that it is required that the total sum of the four
cells be equal to the number of test instances for it to be a proper pdf.

Theorem 1. The joint probability density function (pdf) of the eigenvalues (λ1, λ2) of a 2 × 2
confusion matrix is given by:

f (λ1, λ2) =
1

4s2
√

π
e−

1
2s2 (λ

2
1+λ2

2−2Ā(λ1+λ2)+2Ā2)|λ1 − λ2| − ∞ ≤ λ1, λ2 ≤ ∞. (7)

Proof. We begin this proof by standardizing the element of the confusion matrix A as
follows:

z = s−1(A − Ā), (8)

where Ā is the mean of all elements in A and s is the standard deviation of each element
from their mean. If the confusion matrix is balanced such that pk = 1/4 for all four elements,

the mean Ā and standard deviation s are n
4 and

√
3n
16 , respectively. If otherwise, the mean

Ā and standard deviation s are computed as follows:

Ā =
a + b + c + d

4
,

s =

√
(a − Ā)2 + (b − Ā)2 + (c − Ā)2 + (d − Ā)2

3
.

(9)

The next step involves the symmetrization of z to achieve symmetry as expected for a
Gaussian Orthogonal Ensemble (GOE) [30,31].

zs = (z + zT)/2. (10)

where zs is the standardized symmetrized confusion matrix, z is the standardized confusion
matrix and zT is it transpose. The elements of zs are explicitly defined as

zs =

[
a′ b′

b′ d′

]
. (11)

Now that we have established that zs is a GOE with joint pd f of (a′, b′, d′) given by

f (a′, b′, d′) =
1

2π
e−

tr(z2
s )

2 ; − ∞ ≤ a′, b′, d′ ≤ ∞, (12)

we can proceed to derive the distribution of eigenvalues of zs and subsequently the distri-
bution of eigenvalues of A. Note that by using the change of variable rule, the distribution
of eigenvalues (η1, η2) of zs is given by

f (η1, η2) = f (a′, b′, d′)|det(J)|, (13)

where J is the change of variable Jacobian matrix. Thus, since zs matrix is invariant under
orthogonal transformation such that

zs = PTzη
s P (14)
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where P =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
is an orthogonal matrix and zη

s =

[
η1 0
0 η2

]
is a diagonal

matrix of the eigenvalues of matrix zs, we have[
a′ b′

b′ d′

]
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

][
η1 0
0 η2

][
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
=

[
η1 cos2(θ) + η2 sin2(θ) (η1 − η2) sin(θ)

(η1 − η2) sin(θ) η1 sin2(θ) + η2 cos2(θ)

]
.

(15)

As we are moving from zs to zη
s , it is required to normalized the resultant pd f of (η1, η2)

using the Jacobian determinant det(J). The change of variable Jacobian J is given as

J =


∂a′
∂η1

∂a′
∂η2

∂a′
∂θ

∂d′
∂η1

∂d′
∂η2

∂d′
∂θ

∂b′
∂η1

∂b′
∂η2

∂b′
∂θ


=

 cos2(θ) sin2(θ) (η2 − η1) sin(2θ)
sin2(θ) cos2(θ) (η1 − η2) sin(2θ)

1
2 sin(2θ) − 1

2 sin(2θ) (η1 − η2) cos(2θ)

.

(16)

Subsequently, the determinant of the Jacobian is given by

det(J) = det

 cos2(θ) sin2(θ) (η2 − η1) sin(2θ)
sin2(θ) cos2(θ) (η1 − η2) sin(2θ)

1
2 sin(2θ) − 1

2 sin(2θ) (η1 − η2) cos(2θ)


= cos2(θ)

[
cos2(θ) (η1 − η2) sin(2θ)

− 1
2 sin(2θ) (η1 − η2) cos(2θ)

]
− sin2(θ)

[
sin2(θ) (η1 − η2) sin(2θ)

1
2 sin(2θ) (η1 − η2) cos(2θ)

]
+ (η2 − η1) sin(2θ)

[
sin2(θ) cos2(θ)

1
2 sin(2θ) − 1

2 sin(2θ)

]
= (η1 − η2)(cos2(2θ) + sin2(2θ))

= η1 − η2.

(17)

Therefore, the corresponding joint pd f of (η1, η2) for matrix zs is given by

f (η1, η2) =
1

4
√

π
e−

1
2 (η

2
1+η2

2)|η1 − η2|; − ∞ ≤ η1, η2 ≤ ∞. (18)

Now that we have the distribution of the eigenvalues for the transformed matrix zs, we can
obtain the distribution of eigenvalues for the required confusion matrix A as follows

A = szs + Ā. (19)

From (19), it can be seen that there is a one-one correspondence between matrices A and zs,
thus, we can define the eigenvalues of A as a function of eigenvalues of zs. This implies

λ = sη+ Ā. (20)
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where λ = (λ1, λ2) and η = (η1, η2). Therefore, the joint pd f of eigenvalues of A is given
by

f (λ1, λ2) = fη1,η2(λ1, λ2)

∣∣∣∣ dη

dλ

∣∣∣∣
=

1
4
√

π
e−

1
2s2 (λ

2
1+λ2

2−2Ā(λ1+λ2)+2Ā2)
∣∣∣∣λ1 − λ2

s

∣∣∣∣∣∣∣∣1
s

∣∣∣∣
f (λ1, λ2) =

1
4s2

√
π

e−
1

2s2 (λ
2
1+λ2

2−2Ā(λ1+λ2)+2Ā2)|λ1 − λ2|; − ∞ ≤ λ1, λ2 ≤ ∞,

(21)

where η2
1 + η2

2 =

(
λ1−Ā

s

)2

+

(
λ2−Ā

s

)2

, η1 − η2 =

(
λ1−Ā

s

)
−

(
λ2−Ā

s

)
and dη

dλ = 1
s .

Remark 1. Equation (21) implies f (λ1, λ2) is a shifted GOE with mean and variance Ā and s2

respectively.

2.1. Distribution of Trace of a Random Confusion Matrix

Theorem 2. The probability density function (pdf) of the trace t = tr(A) of a 2 × 2 random
confusion matrix A is given by:

f (t) =
1√

4πs2
e−

1
4s2 (t−2Ā)2

; − ∞ ≤ t ≤ ∞, (22)

Lemma 1. Suppose matrix zs is a GOE, thus its elements (a′, d′) are independent and identically
distributed as normal, N(0, 1), and b′ is distributed normally as N(0, 1/2).

Remark 2. Lemma 1 implies that the distribution of the trace of the standardized symmetrized
matrix zs is the sum of two normal distributions denoted by N(0, 2). Thus,

f (w) =
1

2
√

π
e−w2/4; − ∞ ≤ w ≤ ∞. (23)

Proof. Again, considering the standardized symmetrized confusion matrix zs defined in
(11). The eigenvalues (η1, η2) of zs can be estimated from the characteristics equation

η2 − (a′ + d′)η + (a′d′ − b′2) = 0. (24)

Solving (24) gives

η1 =
(a′ + d′) +

√
(a′ + d′)2 − 4b′2

2
,

η2 =
(a′ + d′)−

√
(a′ + d′)2 − 4b′2

2
.

(25)

Recall that the trace (w) for matrix zs is given by

tr(zs) = η1 + η2

w = η1 + η2

=
(a′ + d′) +

√
(a′ + d′)2 − 4b′2

2
+

(a′ + d′)−
√
(a′ + d′)2 − 4b′2

2
w = a′ + d′

(26)

Again, by change of variable, we can derive the distribution of the trace of matrix A as
follows
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f (t) = fw(t)
∣∣∣∣dw

dt

∣∣∣∣
=

1
2
√

π
e−(t−2 ¯A)2/4s2

∣∣∣∣dw
dt

∣∣∣∣
=

1
2
√

π
e−(t−2Ā)2/4s2

∣∣∣∣1
s

∣∣∣∣
f (t) =

1√
4πs2

e−(t−2Ā)2/4s2
; − ∞ ≤ t ≤ ∞

(27)

Remark 3. Equation (27) implies f (t) is normally distributed with mean and variance 2Ā and 2s2

respectively and it is denoted by N(2Ā, 2s2).

Lemma 2. The cumulative distribution function F(t) for the trace of matrix A is given by

F(t) =
∫ t

−∞
f (t)dt

=
∫ t

−∞

1√
4πs2

e−(t−2Ā)2/4s2
dt

F(t) = Φ
(

t − 2Ā√
2s2

)
,

(28)

where Φ is the cd f of standardized normal distribution with mean 0 and variance 1.

Figure 1 illustrates the graph of the probability density function for the trace of a 2 × 2
random matrix, showcasing various diagonal probabilities π1 and π4. The plot highlights
that the distribution closely resembles a normal distribution when the diagonal cell prob-
abilities are equal or nearly equal. However, it is noticeably peaked when the confusion
matrix stems from a highly unbalanced machine learning task. Figure 2 supports the
observations made in Figure 1, displaying a consistently increasing cumulative distribution
function when cell probabilities are approximately equal, contrasted with a vertical line
around 1 in cases of unbalanced data.

0.5 0.6 0.7 0.8 0.9 1.0

0.
00

0.
02

0.
04

0.
06

t = λ1 + λ2

f(t
)

n = 1000 , π1 = 0.25 , π4 = 0.25
n = 1000 , π1 = 0.3 , π4 = 0.3
n = 1000 , π1 = 0.4 , π4 = 0.3
n = 1000 , π1 = 0.6 , π4 = 0.2
n = 1000 , π1 = 0.8 , π4 = 0.1
n = 1000 , π1 = 0.95 , π4 = 0.05

Figure 1. Graphs of the pd f of the trace of a random 2 × 2 confusion matrix for different diagonal
probabilities π1 and π4.
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0.2 0.4 0.6 0.8 1.0
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0

0.
2

0.
4

0.
6

0.
8

1.
0

t = λ1 + λ2

F
(t)

n = 1000 , π1 = 0.25 , π4 = 0.25
n = 1000 , π1 = 0.3 , π4 = 0.3
n = 1000 , π1 = 0.4 , π4 = 0.3
n = 1000 , π1 = 0.6 , π4 = 0.2
n = 1000 , π1 = 0.8 , π4 = 0.1
n = 1000 , π1 = 0.95 , π4 = 0.05

Figure 2. Graphs of the cd f of the trace of a random 2 × 2 confusion matrix for different diagonal
probabilities π1 and π4.

2.2. Distribution of Difference of Two Traces of Random Confusion Matrices

In machine learning, it is often valuable to compare the confusion matrices of two algo-
rithms, such as decision trees and random forests [2,18,19]. Understanding the distribution
of differences is crucial because it quantifies the degree of superiority one algorithm holds
over the other. Therefore, in this section, we have developed the distribution of differences
between two sets of 2 × 2 random confusion matrices.

Theorem 3. The probability density function (pd f ) of the difference of two traces of 2 × 2 random
confusion matrices A and B denoted by m = tr(A)− tr(B) is given by

f (m) =
1√

4πS2
A+B

e
− 1

4S2
A+B

(m−2Ā+2B̄)2

; − ∞ ≤ m ≤ ∞, (29)

where S2
A+B = S2

A + S2
B.

Lemma 3. Suppose the traces of matrices A and B are independently distributed normal N(2Ā, 2s2),
then the distribution of their difference is also normal with mean 2Ā − 2B̄ and variance S2

A+B =

S2
A + S2

B.

Remark 4. Lemma (3) implies that the pd f of the difference of two traces of 2× 2 random confusion
matrices A and B is N(2Ā − 2B̄, S2

A+B).

Proof. This proof follows from the earlier distribution of t which follows N(2Ā, 2s2). Thus,
the pd f of the difference of two traces of 2× 2 random confusion matrices A and B denoted
by m = tr(A)− tr(B) is given by

f (m) =
1√

4πS2
A+B

e
− 1

4S2
A+B

(m−2Ā+2B̄)2

; − ∞ ≤ m ≤ ∞, (30)

Lemma 4. The cumulative distribution function F(m) for the difference of two traces of 2 × 2
random confusion matrices A and B denoted by m = tr(A)− tr(B) is given by
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F(m) =
∫ m

−∞
f (m)dm

=
∫ m

−∞

1√
4πS2

A+B

e
− 1

4S2
A+B

(m−2Ā+2B̄)2

dm

F(m) = Φ
(

m − 2Ā + 2B̄√
S2

A+B

)
,

(31)

where Φ is the cd f of standardized normal distribution with mean 0 and variance 1.

Figure 3 displays the distributions of the differences between 2 × 2 random confu-
sion matrices at various effect sizes. The plot illustrates that as the effect size increases,
the spread of the distribution decreases, and conversely, as the effect size decreases, the
spread increases. Similarly, the cumulative distribution function in Figure 4 supports
these findings.

0.0 0.1 0.2 0.3 0.4 0.5

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

m = tr(A) − tr(B)

f(m
)

n = 1000 , δ = 0.1
n = 1000 , δ = 0.2
n = 1000 , δ = 0.3
n = 1000 , δ = 0.4
n = 1000 , δ = 0.5

Figure 3. Graphs of the pd f of for the difference of two traces of 2 × 2 random confusion matrices for
different effect size δ = tr(A)− tr(B).

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

m = tr(A) − tr(B)

F
(m

)

n = 1000 , δ = 0.1
n = 1000 , δ = 0.2
n = 1000 , δ = 0.3
n = 1000 , δ = 0.4
n = 1000 , δ = 0.5

Figure 4. Graphs of the cd f of for the difference of two traces of 2 × 2 random confusion matrices for
different effect size δ = tr(A)− tr(B)



Mathematics 2024, 12, 1425 10 of 14

3. Example

To demonstrate our approach, let us examine an example featuring two classifiers,
A and B, generating the following confusion matrices on the identical testing dataset T,
where the size of T is nT = 200:

A =

[
62 36
51 51

]
B =

[
50 53
50 47

]
.

(32)

The eigenvalues of matrices A and B are denoted by (λA
1 , λA

2 ) and (λB
1 , λB

2 ) respectively.
Correspondingly, the traces of matrices A and B can be computed as follows:

tr(A) = λA
1 + λA

2

tr(B) = λB
1 + λB

2 .
(33)

The estimates for the eigenvalues and traces of matrices A and B are as follows: (λA
1 = 99.7,

λA
2 = 13.3, tr(A) = 113) and (λB

1 = 100, λB
2 = −3, tr(B) = 97), respectively. With

these trace values, we can compute the accuracies of the two classifiers: (ϕA = 0.57,
ϕB = 0.49). According to this criterion, it seems that classifier A outperforms B. However,
without sufficient information, we cannot conclusively determine whether this superiority
is genuine or merely a result of chance. By analyzing the distribution of the difference
between the two traces, as shown in (30) and (31), we can quantify the extent to which
classifier A is superior to classifier B. Therefore, the probability that classifier A genuinely
outperforms B is given by

P[(ϕA = 0.57 − ϕB = 0.49) > 0] = 1 − P[(ϕA = 0.57 − ϕB = 0.49) < 0]

= 1 − F(m)

= 1 − Φ
(

0.08√
0.0775

)
= 0.8492.

(34)

This estimated probability value suggests a strong likelihood that model A significantly
surpasses model B in terms of accuracy performance.

4. Applications

We utilize the following datasets to demonstrate the practical application of analyzing
the distribution of differences between two traces of random confusion matrices in machine
learning, particularly within the field of medicine and health:

1. Heart disease [32]: This dataset comprises information from 303 patients with heart
disease at Cleveland Hospital, including 14 features. The objective is to determine the
presence or absence of heart disease.

2. Breast cancer [33]: Originating from the University Medical Centre, Institute of Oncol-
ogy, Ljubljana, Yugoslavia, this dataset contains data from 286 patients with breast
cancer, encompassing 9 features. The goal is to predict the presence or absence of
breast cancer recurrence.

3. Liver disease [34]: This dataset consists of 584 patient records from the NorthEast
region of Andhra Pradesh, India, across 10 features. The objective is to predict whether
a patient has liver disease using various biochemical markers.

The aim of this section is to implement and compare four baseline machine learning
algorithms applied to these datasets: logistic regression (LR), decision trees (DT), random
forest classification (RF) and XGboost classification (XG) [35]. The evaluation criterion
utilized to compare the ML algorithms is accuracy. In addition, the supremacy of each of
the algorithms is computed by computing the probability distribution in (31). Note that
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this probability can empirically be computed by bootstrapping the dataset L times and
then obtaining the empirical distribution of the difference between two accuracies or traces.
Thus, the approximate bootstrap estimate of (31) is

F̂(m) = L−1
L

∑
l=1

(ml < m), (35)

where L = 5000 is set as the bootstrap sample size. The significance of the approach
presented in this study lies in its provision of a closed-form solution for this distribution.
This solution offers a faster and more accurate method for calculating the distribution
of differences between two accuracies. All analyses were carried out using R statistical
software version 4.3.1.

Table 1 presents bootstrap accuracy estimates, denoted as ϕ̂L, along with their standard
errors, SE(ϕ̂L), and accuracy estimates for eigenvalue distribution, denoted as ϕ̂λ, along
with their standard errors, SE(ϕ̂λ), for the three datasets using the four baseline ML
methods. The results indicate that the accuracy estimates and associated standard errors
using both the bootstrap and eigenvalue distribution approaches are similar across the
machine learning (ML) methods and datasets. This finding empirically validates the
eigenvalue distribution approach for estimating the accuracy of an ML method based on
the eigenvalue of a confusion matrix.

Table 1. The bootstrap accuracy estimate ϕ̂L along with its standard error SE(ϕ̂L), and the accuracy
estimate for eigenvalue distribution ϕ̂λ along with its standard error SE(ϕ̂λ), for the three datasets
using the four baseline methods.

Heart Disease Breast Cancer Liver Disease

ϕ̂L ϕ̂λ ϕ̂L ϕ̂λ ϕ̂L ϕ̂λ

Method (SE(ϕ̂L)) (SE(ϕ̂λ)) (SE(ϕ̂L)) (SE(ϕ̂λ)) (SE(ϕ̂L)) (SE(ϕ̂λ))

LR
0.83 0.88 0.70 0.72 0.71 0.72

(0.031) (0.032) (0.043) (0.031) (0.029) (0.029)

DT 0.77 0.76 0.71 0.73 0.72 0.67
(0.042) (0.025) (0.031) (0.024) (0.031) (0.021)

RF 0.82 0.84 0.82 0.79 0.82 0.80
(0.031) (0.029) (0.025) (0.030) (0.025) (0.030)

XG
0.77 0.82 0.74 0.70 0.75 0.72

(0.036) (0.029) (0.030) (0.031) (0.030) (0.030)

Table 2 presents pairwise comparison results of the accuracies of the four ML methods
using both bootstrap and eigenvalue distribution approaches. Again, the estimates of the
pairwise differences are similar in most cases in terms of direction (positive or negative).
However, significant differences exist in the estimates of the superiority probability be-
tween the bootstrap and eigenvalue distribution approaches. On average, the results are
approximately similar for positive differences but exhibit distinct differences for negative
differences. The bootstrap tends to be conservative on average when the difference between
the accuracies of two ML methods is negative but restrictive when the difference is positive.
It is worth noting that bootstrap estimates are approximations to the distribution of the dif-
ference of ML accuracy, while the eigenvalue distribution provides the actual distribution of
the difference based on Theorem 3. Thus, the results of the superiority probability obtained
using the eigenvalue distribution are more reliable than bootstrap estimates, which have
been reported in previous studies to have potentially biased estimates [36,37].

In terms of ML performance based on superiority probability, XG is on average better
than LR and DT, while RF is on average better than XG. Thus, RF emerges as the best
among the four ML methods across the three datasets in terms of the prediction accuracy
and superiority of accuracy across several replications of the experiment.
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Table 2. Estimates of the difference between pairwise accuracies (m̂ = ϕA − ϕB) and their respective
superiority probabilities (1 − F(m̂)) using both bootstrap and eigenvalue distribution approaches
across the three datasets.

Heart Disease Breast Cancer Liver Disease

m̂L m̂λ m̂L m̂λ m̂L m̂λ

Pair (1 − F̂(m̂L)) (1 − F(m̂λ)) (1 − F̂(m̂L)) (1 − F(m̂λ)) (1 − F̂(m̂L)) (1 − F(m̂λ))

XG - LR
−0.05 −0.06 0.04 −0.02 0.03 0.01
(0.058) (0.408) (0.855) (0.473) (0.835) (0.509)

XG - RF −0.05 −0.02 −0.08 −0.08 −0.08 −0.08
(0.055) (0.468) (0.001) (0.367) (0.002) (0.375)

XG - DT 0.00 0.06 0.02 −0.03 0.02 0.05
(0.481) (0.598) (0.728) (0.453) (0.719) (0.588)

LR - RF 0.01 0.04 −0.12 −0.07 −0.11 −0.08
(0.536) (0.561) (0.000) (0.393) (0.000) (0.365)

LR - DT 0.06 0.11 −0.02 −0.01 −0.01 0.04
(0.895) (0.685) (0.300) (0.481) (0.316) (0.579)

RF - DT
0.05 0.08 0.10 0.06 0.10 0.13

(0.888) (0.629) (0.999) (0.595) (0.999) (0.715)

5. Conclusions

This paper introduces eigenvalue distributions for random confusion matrices ob-
tained from a machine learning (ML) evaluation. Additionally, we derived distributions
for the traces and the difference between traces from two ML methods. Our key finding is
that the eigenvalues from a 2 × 2 random confusion matrix, denoted as A, follow a shifted
Gaussian Orthogonal Ensemble (GOE) with a mean of Ā and a variance of s2. Furthermore,
the distribution of the trace of A follows a normal distribution with a mean and variance of
2Ā and 2s2, respectively. Similarly, the distribution of the difference of traces between two
random confusion matrices, A and B, is also normal with a mean and variance of 2(Ā + B̄)
and 2(s2

A + s2
B), respectively. By way of illustration, our study presents bootstrap accuracy

estimates and accuracy estimates for eigenvalue distribution across various ML methods
and datasets. The findings suggest that both approaches yield similar accuracy estimates
and standard errors, validating the effectiveness of the eigenvalue distribution method
for ML accuracy estimation based on confusion matrix eigenvalues. Pairwise compari-
son results reveal consistent estimates of differences between ML models, yet significant
variations exist in superiority probability estimates between bootstrap and eigenvalue dis-
tribution approaches. Notably, the bootstrap method tends to be conservative for negative
differences and restrictive for positive ones. This underscores the importance of considering
the actual distribution provided by the eigenvalue approach for more reliable superiority
probability assessments.
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