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Abstract: Image restoration under adverse weather conditions poses a challenging task. Previous
research efforts have predominantly focused on eliminating rain and fog phenomena from images.
However, snow, being another common atmospheric occurrence, also significantly impacts advanced
computer vision tasks such as object detection and semantic segmentation. Recently, there has been a
surge of methods specifically targeting snow removal, with the majority employing visual Transform-
ers as the backbone network to enhance restoration effectiveness. Nevertheless, due to the quadratic
computations required by Transformers to model long-range dependencies, this significantly escalates
the time and space consumption of deep learning models. To address this issue, this paper proposes
an efficient snow removal Transformer with a global windowing network (SGNet). This method
forgoes the localized windowing strategy of previous visual Transformers, opting instead to partition
the image into multiple low-resolution subimages containing global information using wavelet
sampling, thereby ensuring higher performance while reducing computational overhead. Extensive
experimentation demonstrates that our approach achieves outstanding performance across a wide
range of benchmark datasets and can rival methods employing CNNs in terms of computational cost.

Keywords: image snow removal; transformer; efficient network; deep learning
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1. Introduction

With the widespread application of digital images in various fields, improving image
quality has become one of the significant topics in both research and engineering domains.
However, images captured in natural environments are often influenced by various weather
conditions, including the presence of snow. Snow coverage not only affects the visibility
and quality of images but may also have adverse effects on image processing and analysis.
Therefore, snow removal from images has become a challenging yet important task aimed
at recovering clear information from images affected by snow coverage.

Currently, snow removal from images has emerged as a research hotspot in the fields
of computer vision and image processing. Numerous algorithms and techniques have been
proposed to address this issue. Earlier, researchers proposed many methods involving
manual feature extraction [1–5]. However, these methods mostly rely on human intuition
and have a limited capacity to learn deep image features, resulting in suboptimal snow
removal performance and weak generalization ability. In recent years, with the powerful
feature extraction capability of Convolutional Neural Networks (CNNs), an increasing
number of CNN-based snow removal methods have been proposed [6–8]. Among them,
Liu et al. [6] introduced the first CNN-based snow removal method, named DesnowNet,
which generates snow-free images by sequentially processing complex translucent and
opaque snow particles. Chen et al. [7] treated the elimination of occlusion effects as
part of the snow removal process and restored the images. To better guide the model
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in learning snow particle information, they paid more attention to heavy snowfall. Jaw
et al. [9] proposed JSTASR, a modular snow removal network with Generative Adversarial
Networks (GANs) to enhance performance, but it has a large number of parameters. Chen
et al. [8] proposed HDCWNet based on dual-tree complex wavelet transform (DTCWT)
and discrepancy channel loss.

Despite the promising results achieved by recent Transformer-based snow removal
methods, the quadratic computational complexity of self-attention modules in modeling
long-range dependencies leads to a significant increase in inference time and memory
consumption. This poses a major challenge for practical applications of these models,
especially on resource-constrained devices. To address this limitation, we propose a novel
efficient snow removal Transformer architecture that incorporates global windowing and
wavelet sampling. By partitioning the image into multiple lower-resolution subimages
while preserving global contextual information, our approach strikes a balance between
performance and computational efficiency. The main contributions of this work can be
summarized as follows:

(1) We introduce an efficient visual Transformer method with global windowing for
reconstructing snow-affected images. This method ingeniously decomposes various infor-
mation in the image into multiple low-resolution subimages containing global information
using wavelet sampling.

(2) We propose a global information-sharing Transformer unit capable of interacting
information among all subimages through parameter sharing. This approach breaks the
information isolation issue present in previous localized windowing Transformers.

(3) We demonstrate the effectiveness of global windowing in image restoration, signifi-
cantly alleviating the drawbacks of slow inference speed and high GPU memory consump-
tion associated with Transformers in image restoration tasks. Extensive experimentation
validates the superior performance and robustness of our method across various scenarios,
indicating its high potential for practical applications.

2. Related Works
2.1. Single-Image Snow Removal

As another representation of atmospheric phenomena, the changes of snow are more
complex, and the spatial states are more abundant. According to previous work [8], images
affected by snow can be modeled as:

I(x) = K(x)T(x) + A(x)(1 − T(x)), (1)

where I(x) denotes the snowy image, T(x) is the media transmission, and A(x) is the
atmospheric light. Meanwhile, K(x) represents a snow scene image without veiling effect,
which can be obtained by the following formula:

K(x) = J(x)(1 − Z(x)R(x)) + C(x)Z(x)R(x), (2)

where J(x) is the scene radiance, R(x) is a binary mask that presents the snow location
information, and C(x) and Z(x) are the chromatic aberration map for the snow image and
the snow mask, respectively.

Traditional image snow removal methods still use feature priors to model snow parti-
cle information, such as histogram of gradients (HOG) [3,10], frequency separation [11],
etc. Disappointingly, these methods cannot guarantee the generalization of snow removal
and usually have poor performance. In order to further improve the ability of snow re-
moval, ref. [6] proposed the first deep neural network-based snow removal method, called
DesnowNet. DesnowNet adopts the multi-scale pyramid model of Inception-v4 as the
backbone and performs well in its proposed Snow100K dataset. In [7], JSTASR is pro-
posed to take into account the veiling effect and opaque snow particles. It removes the
effects caused by snow phenomena using convolution and slightly darker channel priors.
SMGARN [12] is a Snow Mask Guided Adaptive Residual Network, effectively removing
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snow by accurately detecting snowflakes and guiding the snow removal process based on
predicted snow masks.

The CNN-based methods discussed above have achieved significant progress in image
snow removal. However, their performance is still limited by the inherent inductive biases
of convolution operations, such as the local receptive field and spatial invariance. These
properties make it difficult for CNNs to capture long-range dependencies and adapt to the
diverse snow patterns in complex scenes.

2.2. Transformer-Based Methods

To model the dependency of pixel-level features, researchers began to pay attention
to Transformer, which has made a difference in the Nature Language Process (NLP).
The self-attention unit in Transformer can model the long-distance dependencies in the
sequence. However, due to the particularity of the image, directly expanding it into a
sequence as the input of the Transformer will cause excessive computational overhead.
Expecting to solve this problem, ViT [13] uses the idea of dividing an image into multiple
subimages of the same size. Later, to better promote the flow of information between
subimages, Swin Transformer [14] introduced the idea of window displacement to indirectly
model the entire image and demonstrated its excellent performance in high-level vision
tasks such as image classification and target detection. Recently, some works refined the
Transformers architecture to better-fit image restoration tasks, such as IPT [15], SwinIR [16],
and Restormer [17]. Among them, IPT draws on the network structure of DERT [18],
which uses 3 × 3 convolution with a step size of 3 to reduce the dimensionality of the
image. This method can alleviate the dimensionality problem to a certain extent. Notably,
the demanding requirements for GPU memory, training datasets, and reasoning time
are unacceptable. SwinIR directly migrated the Swin Transformer to the IR task and
achieved outstanding results. Despite its capabilities, SwinIR’s stacking of numerous
Transformer models also leads to prolonged execution times and remarkably high GPU
memory usage. Restormer is an efficient Transformer model tailored for image restoration,
mitigating the computational complexity through optimizing key design elements in multi-
head attention and feed-forward network to capture long-range pixel interactions while
remaining applicable to large images.

While Transformer enhances model performance, it incurs substantial GPU memory
and time overhead, lacking inherent encoding of 2D image positional information which
CNNs natively provide. Therefore, our goal is to explore and incorporate a more elegant
and efficient Transformer for image restoration.

2.3. Wavelet Transform in Image Restoration

Wavelet is widely used in various computer vision tasks due to its effectiveness in
capturing both spatial and frequency information of images. For example, ref. [19] proposed
a novel Transformer for hyperspectral image classification. It unifies downsampling with
wavelet transform to losslessly decompress feature maps, providing an efficient trade-
off between performance and computation. Ref. [20] introduced a method for learning
3D shape representations using multiscale wavelet decomposition. Ref. [21] proposed
a multiscale wavelet transformer framework for face forgery detection, which gradually
aggregates multiscale wavelet representations from different stages of backbone networks
and designs frequency-based spatial attention and cross-modal attention to better fuse
frequency and spatial features through unified Transformer blocks for improved efficiency.

For image restoration, in HDCWNet [8], DTCWT is employed to locate high-frequency
snow information in the image for better snow removal performance and mitigate color
distortion, whereas wavelet transforms cannot accurately distinguish snow from other
high-frequency components, thus potentially removing some useful details. Moreover, the
changes in the subband information during wavelet upsampling inevitably affect the recon-
structed image quality. Recently, Li et al. [22] proposed an Efficient Wavelet-Transformer
(EWT) for single image denoising. Different from previous works, EWT integrates wavelet
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transform into the Transformer architecture. By performing wavelet downsampling and
upsampling, it can simultaneously exploit multi-scale and multi-frequence contextual
information while reducing computational cost and GPU memory usage.

Inspired by the success of wavelet transforms in image restoration, we propose a
global sampling module based on wavelet sampling in our architecture. This allows us
to extract informative global features at reduced resolutions to lower the computational
burden of self-attention modules.

3. Method

The architecture overview of our method is illustrated in Figure 1. It begins by
decomposing the input RGB image (Xinput) into multiple degraded subimages through a
series of wavelet samplings, which differs from previous patch-based approaches:

χ = DWT(Xinput), (3)

In the SGNet architecture, DWT(·) denotes the Discrete Wavelet Transform, and χ
represents the subimage set obtained from the partition: χ = XLL, XLH , XHL, XHH . Each
subimage is treated as a “token”, contrasting with prior methods where features of patches
were set as concatenations of original pixel RGB values. In our implementation, we employ
three stages of wavelet sampling, resulting in each image being downsampled to half
its original size. To enhance representation, we apply several convolutional embedding
layers to project the features sampled at each stage to an arbitrary dimension (denoted as
C). Finally, the features are restored back to the pixel space through an inverse wavelet
transform (IWT):

Xoutput = IWT(χ′). (4)

To generate hierarchical representations, as the network deepens, feature resolution
is reduced through wavelet sampling layers. The first sampling layer downsamples the
original image resolution using the discrete sampling method of the Haar wavelet, globally
sampling the image with a stride of 1 (pixel intervals), and applying convolutional layers
in the channel dimension.

Figure 1. (a) Overview of the SGNet Structure. SGNet follows the architecture of a U-shaped network,
with the distinction that in both the encoder and decoder, we introduce a global sampling approach
instead of conventional pooling and convolution. The central portion of the network employs
multi-stage Global Window-aware Transformer (GWT) blocks as the backbone for feature extraction.
(b) Each Transformer block consists of multiple Transformer networks based on the channel dimension.

3.1. Global Window-Aware Transformer

The Global Window-aware Transformer (Figure 2b Lower) is constructed by replacing
the standard Multi-head Self-Attention (MSA) module in the Transformer block with a
module based on global windows while keeping other layers unchanged. As shown
in Figure 1, this module consists of a multi-head self-attention module based on global
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windows, followed by a two-layer MLP with GELU non-linear activation function. Layer
Normalization (LN) layers are applied before each MSA module and each MLP, and residual
connections are applied after each module. In GWT, the Attention mechanism (block GWA)
operates individually on each subimage in χ. Assuming χ ∈ Rs2× H

s ×
W
s ×C, where s2 is

the number of subimages, H and W are the height and width of each subimage, and C is
the channel dimension, then we have χi ∈ R H

s ×
W
s ×C for each subimage χi. Following the

operation rules of Attention, we obtain the computed features as follows:

χ̃i = So f tmax(χi
Q · (χi

K)
T)χi

V , (5)

where χi
Q, χi

K, and χi
V are the query, key, and value matrices computed from the input

subimage χi, respectively. The subsequent GWT blocks follow the same computation
process, enabling the model to capture long-range dependencies within each subimage.

In the past, CNNs were often relied upon to extract features from images, but their
limited receptive fields cannot model the rich semantic information in images (Figure 2a).
Although introducing Transformers to vision tasks has significantly addressed this issue, the
enormous computational and storage requirements have led to current vision Transformers
being constrained to use a window-based approach (Figure 2b Upper). The Local Window-
aware Transformer originated from ViT [13]. ViT directly divides the image into fixed-size
windows, then obtains patch embeddings through linear transformations, and feeds the
patch embeddings into the Transformer for self-attention operations. Subsequently, Swin
Transformer [14] adopts a rolling tensor approach to extract features across windows.
However, the essence of these methods still involves dividing the entire image into several
local regions for computation. The problem with this approach is the inability to break the
information isolation between windows. Moreover, the standard Transformer architecture
is designed to perform self-attention computation, where relationships between a token and
all other tokens are computed. Such global computation results in quadratic complexity
with respect to the number of tokens, making it unsuitable for visual problems involving
high-resolution images, such as image restoration. To address this, our proposed global
windowing approach can effectively solve the aforementioned problem by efficiently
capturing global context while maintaining computational feasibility. To effectively model
the global context, we consider constructing globally informative windows and computing
self-attention within them. These windows are uniformly sampled from the image in a
global manner. Assuming the original image size is H × W, and the number of global
samplings is s, then each window ultimately contains H

s × W
s patches. The computational

complexity of the window-based module is:

Ω(MSA) = 4HWC2 + 2(HW)2C (6)

Ω(G − MSA) = 4(
HW
s2 )C2 + 2s2C3 (7)

where C represents the channel dimension. The former is quadratic relative to the number
of patches HW, while the latter, when s is fixed (typically set to 8), is linear. Global self-
attention computation is typically impractical for large HW, whereas attention based on
global windows is scalable, and computing attention across the channel dimension can
further reduce computational costs.
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Figure 2. Schematic diagrams of CNN, traditional local window-aware visual Transformer, and
global window-aware Transformer. In (b), “Local Windows” represents a schematic of the windowing
concept in ViT [13], while “Global Windows” represents the strategy based on global sampling
proposed in this paper. Global Windows provide the best summary of international information.

3.2. Global Sampling

The self-attention module based on local windows lacks connections across windows,
limiting its modeling capability. To introduce cross-window connections while maintaining
efficient computation with non-overlapping windows, Swin Transformer adopts a shift-
ing window partitioning method, alternating between two partitioning configurations
in consecutive Transformer blocks. While effective for visual tasks, such an approach
inevitably disrupts information sharing across the global context. As shown in Figure 3,
the global window utilizes a cross-pixel sampling strategy, such as uniformly sampling the
8 × 8 feature map into windows of size 4 × 4 starting from the top-left pixel.

As shown in Figure 3, each downsampling module utilizes a conventional window
partitioning strategy, starting from the top-left pixel, dividing the 8 × 8 feature map into
4 windows of size 4 × 4(M = 4) each. Then, the next module employs the same sampling
strategy to configure the windows, obtaining new window combinations by uniformly
sampling the original features.

Figure 3. Schematic diagram of the efficient batch computation method of self-attention in the global
window strategy.

Then, utilizing the computational method in the Haar wavelet transform, the operation
to combine the four subimages I1, I2, I3, I4 is executed as follows:

I1

I2

I3

I4

 =
1
2


1 1 1 1
−1 −1 1 1
−1 1 −1 1
1 −1 −1 1




I1
I2
I3
I4

 (8)
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3.3. Implicit Positional Encoding

When computing self-attention, we typically follow [23] by adding a relative positional
bias B ∈ RM2×M2

for each head during similarity calculation, ensuring that positional
information of the image is not lost during the process of computing local windows:

Attention(Q, K, V) = So f tmax(
QKT
√

d
+ B)V, (9)

where Q, K, V ∈ RM2×d are the query, key, and value matrices, d is the query/key dimen-
sion, and M2 is the number of patches in a window.

The method proposed in this paper no longer requires such encoding forms. Instead,
this process is implicitly transferred to the global window, referred to as implicit positional
encoding. Since global sampling disperses global information into the interiors of each
window, it alleviates positional ambiguity caused by non-overlapping local sampling.

4. Experiment

In this section, we provide relevant experimental details, descriptions, and results to
validate the effectiveness and superiority of the proposed method.

4.1. Datasets

In this work, we trained our SGNet with the CSD [8] train set (8000 images) for
synthetic images and used the Snow100K [6] train set (50,000 images) to train the model
for real images. For evaluation, we use three benchmark test sets, including SRRS [7],
CSD [8], and Snow100K [6]. Specifically, we adopted the last 2000 images in the SRRS
test set for evaluation. We followed the approach of a recent work, which chose the last
two thousand images from the SRRS dataset as test cases. This choice was based on
their representativeness of typical snow conditions, as the SRRS dataset contains many
images with repetitive backgrounds. In contrast, the last 2000 images cover a variety of
snow densities and an ample number of scenes. For CSD, we use its 2000 test images for
verification. Then, we use the three test sets Snow100K-S, Snow100K-M, and Snow100K-L
provided by Snow100K for evaluation. Furthermore, we also conduct validation on two
additional image snow removal datasets (Cityscape [24] and Kitti [24]) to fully demonstrate
the effectiveness of SGNet.

4.2. Implementation Detail
Training Details

Following previous works, we randomly extract 16 snowy patches with a size of
128 × 128 as inputs. Meanwhile, we augment the training data with flips and rotates
operations to further improve the generalization ability of the model. The learning rate
is initialized to 10−4 and halved every 100 epochs. We implement our model with the
PyTorch framework and update it with the Adam optimizer.

4.3. Comparisons with State-of-the-Art Methods

We first evaluate our approach on five synthetic snow removal image datasets and com-
pare it with state-of-the-art methods. All methods are trained using the same configuration.

4.3.1. Quantitative Comparison

Table 1 presents the quantitative results of our proposed method (SGNet) and other
methods on three commonly used benchmark datasets. The upper portion of the table
includes results for image restoration methods specific to particular weather conditions.
SGNet demonstrates reliable performance across all benchmark datasets (i.e., 33.90 on
Snow100K-S and 29.56 on Snow100K-L). Although Restormer achieves results close to or
even higher than SGNet on Snow100K-M, it is noteworthy that our method achieves a
PSNR improvement of 0.11 dB over the previous best method on the most challenging



Mathematics 2024, 12, 1424 8 of 13

Snow100K-L dataset. Furthermore, while DS-GAN’s performance on the CSD dataset is
slightly higher than SGNet, from the perspective of average performance, SGNet still holds
an absolute advantage.

Table 1. Quantitative comparison of image desnowing on Snow100K (-S, -M, and -L), SRRS, and CSD
datasets (PSNR (dB)). Snow100K (-S, -M, and -L) are abbreviated S100K (-S, -M, and -L), respectively.
The best results are bold, and the second best results are underlined.

Method S100K-S S100K-M S100K-L CSD SRRS Average

DesnowNet [6] 32.23 30.68 28.79 28.39 24.41 28.90
All-in-One [25] 32.73 31.82 28.99 28.88 24.63 29.41

TransWeather [26] 32.60 31.22 29.14 29.36 25.01 29.46
Restormer [17] 33.89 32.42 29.45 29.21 24.79 29.95

DS-GAN [9] 33.43 31.87 28.06 29.38 25.10 29.56
DDMSNET [24] 31.46 31.35 28.85 29.25 24.77 29.13

SGNet (Ours) 33.90 32.38 29.56 29.27 25.31 30.08

Table 2 presents the quantitative results of our proposed method (SGNet) and other
methods on three commonly used benchmark datasets using no-reference metrics, includ-
ing NIQE, NRQM, and PIQE. The three values in each column of Table 2 correspond to
NIQE, NRQM, and PIQE. NIQE aims to assess the naturalness of images, indicating how
much they resemble natural scenes, with lower scores being better; NRQM evaluates local
frequency domain features, global frequency domain features, and spatial features compre-
hensively, with higher values being better; PIQE divides test images into non-overlapping
blocks and analyzes the distortion of blocks, with smaller values being better. Our SGNet
consistently achieves the best performance across all the datasets regarding the three met-
rics. On the most challenging Snow100K-L dataset, SGNet outperforms other methods by a
large margin, demonstrating its superior capability in handling heavy snow images. These
no-reference evaluation results further validate the effectiveness of our proposed method
in generating high-quality snow-free images.

Additionally, Table 3 presents the quantitative results on the Cityscape and Kitti
datasets. On the Cityscape dataset, SGNet achieves a PSNR gain of 0.14 dB compared
to the second-best method. Similarly, on the Kitti dataset, SGNet also achieves the high-
est performance scores. In summary, our proposed method demonstrates competitive
performance across all datasets and notably outperforms state-of-the-art methods in
terms of average scores, showcasing a significant advantage. It is worth emphasizing
that both TransWeather and Restormer employ a local window approach. The results in
Tables 1–3 demonstrate the significant advantages of SGNet over these two methods in
terms of performance scores. This highlights the superiority and feasibility of the global
window strategy.

Table 2. Quantitative comparison of image desnowing on Snow100K (-S, -M, and -L), SRRS, and
CSD datasets (No-Reference Metric: NIQE↓, NRQM↑, and PIQE↓). Snow100K (-S, -M, and -L) are
abbreviated S100K (-S, -M, and -L), respectively. The best results are bold, and the second best results
are underlined.

Method S100K-S S100K-M S100K-L CSD SRRS

DesnowNet [6] 4.31/3.57/14.30 6.78/2.86/18.32 9.43/2.57/20.24 8.25/3.86/11.20 6.92/5.81/14.79
All-in-One [25] 2.96/6.02/10.88 3.45/4.15/14.65 5.56/3.41/15.66 6.74/5.12/10.65 4.74/9.02/12.61

TransWeather [26] 2.43/6.78/10.94 3.64/4.22/13.90 5.82/4.89/15.12 6.30/5.37/9.13 4.36/8.76/12.38
Restormer [17] 3.12/7.04/9.81 4.58/4.52/13.98 5.07/4.70/14.56 5.82/5.69/10.42 5.28/9.31/11.07

DS-GAN [9] 2.58/5.23/9.65 2.90/3.93/13.74 4.77/4.38/13.71 5.71/7.01/8.56 4.07/9.77/12.56
DDMSNET [24] 2.65/6.14/9.04 3.35/4.06/12.07 4.81/4.72/12.13 6.08/5.83/8.92 4.16/10.34/10.89

SGNet (Ours) 2.17/6.90/8.63 2.77/4.87/11.72 4.53/5.01/11.09 5.25/6.58/8.03 3.70/10.61/10.72
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Table 3. Quantitative comparison of image desnowing on Cityscape and Kitti datasets (PSNR(dB)
and SSIM). The best results are bold , and the second best results are underlined.

Method Cityscape Kitti

DesnowNet [6] 31.74 31.51
All-in-one [25] 32.88 32.08

TransWeather [26] 32.61 31.97
Restormer [17] 33.36 33.09

DS-GAN [9] 33.15 32.61
SMGARN [12] 33.42 32.76

DDMSNET [24] 33.21 32.49

SGNet (Ours) 33.56 33.12

4.3.2. Visual Comparison

In Figure 4, we provide visual comparisons with other state-of-the-art models on
Snow100K [6], CSD [8], and SRRS [7]. According to Figure 4, we can clearly observe that
SGNet can reconstruct high-quality snow-free images very close to the ground truth (GT).
We also visually compare with current state-of-the-art methods, and from the figures, it
can be observed that both methods are visually very close, with our method even showing
fewer residual snow remnants in certain areas. In Figure 4, it can be seen that the snow-free
images reconstructed by SGNet are clearer and have fewer snow residues. These results
indicate that SGNet effectively eliminates snow streaks and fine snowflakes’ interference in
the image, and it is more effective in removing large snowflakes without generating large
areas of shadow. This suggests that our method achieves visually more appealing results
compared to other baseline methods.

Additionally, in Figure 5, we showcase the snow removal capabilities of our method in
real-world scenarios to validate the generalization ability of the proposed approach (please
zoom in to view details). It can be clearly seen from the figure that SGNet can effectively
remove large snow particles and dense snowflakes. This is attributed to the proposed
global windowing mechanism, which accurately predicts the position and shape of the
snow. With the predicted snow mask, the images reconstructed by SGNet have almost no
snow and better preserve texture details.

Figure 4. Visual comparison with other advanced models. Obviously, our proposed method can
reconstruct high-quality snow-free images.
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Figure 5. Visual comparison on real snow images from Snow100K. Obviously, our proposed method
can reconstruct clear images with less snow residue.

4.4. Investigation
4.4.1. Model Size and Performance Comparison

Table 4 presents a comparison of model size, memory consumption, processing time,
and PSNR performance among various snow removal methods. SGNet stands out as it
achieves a more balanced trade-off between performance and resource consumption. In
terms of model size, SGNet (12.64 M parameters) is notably smaller compared to sev-
eral other methods, such as Restormer (16.98 M parameters) and TransWeather (21.90 M
parameters). This indicates that SGNet requires fewer parameters while still delivering com-
petitive performance. Regarding memory consumption, SGNet (14,682 MiB) demonstrates
efficiency comparable to other methods, such as DesnowNet and DDMSNET, despite its
superior performance in terms of PSNR. This suggests that SGNet achieves a more optimal
utilization of memory resources. In terms of processing time, SGNet (0.39 s) exhibits a
moderate processing speed, which is slightly faster than Restormer (1.95 s) and DS-GAN
(0.77 s), while still maintaining high-quality results. This indicates that SGNet is capable of
achieving efficient computation without compromising performance.

Overall, SGNet showcases a remarkable balance between model parameters, memory
consumption, processing time, and PSNR performance. Its ability to achieve competitive
performance while consuming fewer resources makes it a promising and practical solution
for snow removal tasks.

Table 4. Model size and performance comparison. The results in the figure show that SGNet achieves
a more perfect balance between model parameters and performance.

Method Param (M) Memory (MiB) Time (s) PSNR (dB)

DesnowNet [6] 15.60 12,076 0.32 28.79
All-in-one [25] 9.32 14,754 0.53 28.99

TransWeather [26] 21.90 17,627 0.81 29.14
Restormer [17] 16.98 22,910 1.95 29.45

DS-GAN [9] 13.51 15,370 0.77 28.06
DDMSNET [24] 10.26 11,923 0.28 28.85

SGNet (Ours) 12.64 14,682 0.39 29.56

4.4.2. Investigation of SGNet

In this section, we conducted an ablation analysis on the crucial design elements of
the proposed SGNet by evaluating it on the Snow100K dataset.

Global Windows. The ablation results for the global window approach on Snow100K
are presented in Table 5. SGNet employing global window partitioning outperforms models
built on single window partitioning at each stage. Accuracy improves by +0.25 on the
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heavily disturbed Snow100K-L dataset, with scores also increasing by +0.39 and +0.59 on
Snow100K-S and -M, respectively. These findings indicate the effectiveness of leveraging
global image information through global window construction.

Table 5. Ablation studies were conducted on SGNet’s three benchmark tests to investigate the effects
of the global window approach and different position embedding methods. Specifically, “w/o global”
denotes that all self-attention modules utilize conventional window partitioning without global
sampling. “abs. pos.” refers to the absolute position embedding of the Vision Transformer (ViT),
while “rel. pos.” indicates the default setting using additional relative position bias terms.

Method Snow100K-S Snow100K-M Snow100K-L

w/o global 33.51 31.79 29.31
global 33.90 32.38 29.56

no pos. 33.90 32.38 29.56
abs. pos. 33.77 32.26 29.52

abs. + rel. pos. 33.68 32.28 29.47
rel. pos. 33.70 32.31 29.48

Sampling methods. Table 6 presents the performance comparison of different sam-
pling methods on the Snow100K dataset. Evidently, the approach utilizing global sampling
achieves the highest PSNR scores across all three datasets: 33.90 on Snow100K-S, 32.38 on
Snow100K-M, and 29.56 on Snow100K-L. This indicates that global sampling effectively
captures comprehensive image information and contributes to enhanced restoration qual-
ity. In comparison to global sampling, methods employing max-pooling for sampling
yield slightly lower PSNR scores, with scores of 33.47, 32.06, and 29.36 on Snow100K-S,
Snow100K-M, and Snow100K-L, respectively. This suggests that max-pooling may not
fully capture global context, leading to slightly inferior results. Similarly, methods em-
ploying average pooling for sampling also yield slightly lower PSNR scores compared to
global sampling, with scores of 33.52, 32.14, and 29.45 on Snow100K-S, Snow100K-M, and
Snow100K-L, respectively. This further emphasizes the superiority of global sampling in
capturing comprehensive image information. Therefore, global sampling outperforms other
sampling methods in enhancing restoration performance across all evaluated datasets.

Table 6. Comparison of different sampling methods on the Snow100K dataset.

Method Snow100K-S Snow100K-M Snow100K-L

Global 33.90 32.38 29.56
Max-pooling 33.47 32.06 29.36
Avg-pooling 33.52 32.14 29.45

5. Discussion

In terms of limitations, we employed wavelet transform as a sampling method, which
requires the input image dimensions to be powers of 2. To align images, we had to pad
the input images, which to some extent can affect the distribution of image information. In
future work, we plan to downsample images using an overlapping approach to address
this. Additionally, SGNet adopts an end-to-end processing flow, delegating the extraction
of image texture and color to the wavelet transform. This may result in some snow-related
information not being fully covered. In our future work, we will focus on studying the
extraction of weather degradation features.

6. Conclusions

This paper proposes an efficient snow removal Transformer method utilizing global
windowing to address the challenge of snow removal from images. Distinguished from pre-
vious visual Transformers, our approach partitions the image into multiple low-resolution
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subimages containing global information using wavelet sampling, aiming to reduce com-
putational overhead while maintaining high performance. The key contributions include
introducing an efficient visual Transformer method with global windowing, proposing
a global information-sharing Transformer unit to address information isolation issues,
and demonstrating the effectiveness of global windowing in image restoration through
extensive experimentation. Extensive experiments demonstrate that SGNet achieves a pro-
cessing time difference of only 0.1 s compared to CNN-based methods, while also realizing a
0.7 dB improvement in PSNR performance. Compared to Transformer-based methods, our
approach achieves the best results across all performance metrics. In summary, our method
offers a promising solution with improved efficiency and performance, paving the way for
further advancements in image restoration and computer vision tasks.
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