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Abstract: The main idea of this investigation is to introduce an integrated intelligence approach that
investigates the chemically reacting flow of non-Newtonian fluid with a backpropagation neural
network (LMS-BPNN). The AI-based LMS-BPNN approach is utilized to obtain the optimal solution
of an MHD flow of Eyring–Powell over a porous shrinking wedge with a heat source and nonlinear
thermal radiation (Rd). The partial differential equations (PDEs) that define flow problems are
transformed into a system of ordinary differential equations (ODEs) through efficient similarity
variables. The reference solution is obtained with the bvp4c function by changing parameters as
displayed in Scenarios 1–7. The label data are divided into three portions, i.e., 80% for training, 10%
for testing, and 10% for validation. The label data are used to obtain the approximate solution using
the activation function in LMS-BPNN within the MATLAB built-in command ‘nftool’. The consistency
and uniformity of LMS-BPNN are supported by fitness curves based on the MSE, correlation index
(R), regression analysis, and function fit. The best validation performance of LMS-BPNN is obtained at
462, 369, 642, 542, 215, 209, and 286 epochs with MSE values of 8.67 × 10−10, 1.64 × 10−9, 1.03 × 10−9,
302 9.35 × 10−10, 8.56 × 10−10, 1.08 × 10−9, and 6.97 × 10−10, respectively. It is noted that f ′(η), θ(η),
and ϕ(η) satisfy the boundary conditions asymptotically for Scenarios 1–7 with LMS-BPNN. The dual
solutions for flow performance outcomes (C f x, Nux, and Shx) are investigated with LMS-BPNN. It is
concluded that when the magnetohydrodynamics increase (M = 0.01, 0.05, 0.1), then the solution
bifurcates at different critical values, i.e., λc = −1.06329,−1.097,−1.17694. The stability analysis is
conducted using an LMS-BPNN approximation, involving the computation of eigenvalues for the
flow problem. The deduction drawn is that the upper (first) branch solution remains stable, while the
lower branch solution causes a disturbance in the flow and leads to instability. It is observed that the
boundary layer thickness for the lower branch (second) solution is greater than the first solution. A
comparison of numerical results and predicted solutions with LMS-BPNN is provided and they are
found to be in good agreement.

Keywords: artificial neural network (ANN); non-Newtonian fluid; wedge flow; stability analysis;
non-linear thermal radiation

MSC: 68T07; 80A60; 76A05

1. Introduction

Wedge flows are extremely important in many industries and engineering applications.
Aerodynamic studies depend heavily on wedge flow, particularly to comprehend how flow
behaves around airfoils and wings with acute leading edges. This information is essential
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for creating stable and effective aircraft and other flying machines. There are many more
applications of wedge flow such as blood flow around blood vessel bifurcations, tanks
and reactors for chemical synthesis, and improving the blade design for wind turbines,
etc. Boundary layer theory finds crucial applications in determining the skin friction drag
experienced by bodies in motion through a fluid medium, including turbine blades, air-
plane wings, and ships. Falkner and Skan [1] were the first to present a model of wedge
flow, based on fundamental principles of the Prandtl boundary layer theory. Subsequently,
notable advancements have been achieved in this field with time. They used similarity
transformations to convert the flow equations (PDEs) into nonlinear third-order ODEs.
They investigated the effect of the pertained parameters of viscous fluids over stationary
wedges. The aforementioned issue was expanded upon by Vajravelu and Nayfeh [2] and
they scrutinized the impact of heat absorption on the hydromagnetic convection flow near
a wedge. Non-Newtonian fluids have garnered significant attention in the field of fluid
mechanics, finding applications in various industries, i.e., materials processing, aircraft,
and energy systems. Non-Newtonian fluids are characterized by their shear-thinning
or shear-thickening properties. Several fluid models have been developed over wedge
flow to capture their viscosity dependence, including the Casson fluid, Maxwell fluid,
Eyring–Powell fluid, Carreau fluid, and Williamson fluid models. Non-Newtonian fluids
have gained prominence, particularly in different flow scenarios, such as the movement
of hybrid nanofluid over shrinking surfaces. The Eyring–Powell model is based on a
kinetic molecular model of liquids. It is rooted in the kinetic theory of liquids, providing a
solid foundation rather than relying solely on empirical relationships. Secondly, it exhibits
Newtonian behavior at both low and high shear rates [3]. Hussain et al. [4] discussed the
numerical investigation of the chemical reaction of non-Newtonian fluid over a porous
wedge. Gireesha et al. [5] looked closely at the Eyring–Powell nano liquid on a revolv-
ing and moving disc surface. Ali and Zaib [6] explored the stagnation point flow of the
non-Newtonian nanofluid under convective conditions. Ahmed et al. [7] examined numer-
ical investigation for gyrotactic microorganisms for a moving/static wedge. Numerous
researchers have examined the transport phenomena of different non-Newtonian fluid
models in various contexts [8–11].

The investigation of magnetohydrodynamic (MHD) boundary layers has captivated
the interest of diverse scholars in recent decades due to its extensive relevance across
industrial and technology domains. The presence of magnetic particles within a fluid has
the potential to alter its magnetic characteristics. The presence of MHD in fluid increases
the heat transfer coefficient. This heat transfer enhancement has various applications, i.e.,
cooling in electronics appliances, nuclear reactors, and many industrial processes. Fluid
transportation systems can use MHD to reduce fluid friction in pipelines and channels,
which results in energy savings. MHD can be used to manipulate electrically conductive
fluids inside biological systems to create medical devices like drug delivery systems and
diagnostic tools. MHD sensors can identify fluid characteristics like velocity, conductivity,
and composition, providing real-time data for numerous industrial and scholarly appli-
cations. Yih [12] and Chamkha [13] delved into a numerical examination of the impact of
MHD on flow scenarios involving viscous fluids over non-isothermal wedges. To explore
further uses of MHD in the transport phenomena of fluid, see Refs. [14–17].

When we discuss the system’s behavior, it is crucial to scrutinize the stability of a
system. In fluid dynamics, stability is concerned with flow behavior. Fluid tends to become
unstable for a definite range of physical parameters. Instability in a fluid flow over the
shrinking surfaces arises due to vorticity inside the boundary layer and reveals the flow’s
non-uniqueness. Therefore, stability analysis is crucial in identifying flow behavior that is
stable and physically meaningful. Science and engineering both rely heavily on stability
to comprehend natural events. The researchers and scientists manipulate the flow control
strategies and find the flow stable region. They investigate the range of certain physical
parameters which affect flow behavior. The stability analysis aids in the optimization of the
boundary layer and this technique is used to reduce the drag force. With this technique, we
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can enhance the aerodynamics performance. The stability analysis of the shrinking surface
included contributions from various academics. Awaludin et al. [18] examined the stability
of MHD flow over a porous contracting/expanding wedge. Anuar et al. [19] investigated
the stability analysis of the hybrid nanofluid over an exponentially shrinking sheet with a
suction/injection effect on the stagnation point. They concluded that the non-unique nature
of a solution exists for a definite range of physical parameters. Waini et al. [20] investigated
the stability analysis of MHD boundary layer flow and heat transfer of hybrid nanofluid
past a permeable shrinking wedge. They explored the effects of shrinking parameters and
concentration of nanoparticles on the flow stability of a hybrid nanofluid. Mustafa et al. [21]
scrutinized the stability of flow over a porous lessening sheet. They obtained a dual solution
to the flow problem using the least squares method for some values of λ (velocity ratio
parameter) and the magnetic parameter. They plotted C f x and Nux and demonstrated
the range of dual solutions for certain physical parameters. Kasmani et al. [22] observed
the examination of chemical reactions on the flow behavior of nanofluid over a porous
wedge with heat generation/absorption during convective heat transfer. The stability
analysis of surfaces undergoing reduction/extension has captured the interest of numerous
researchers, like Pop [23], Zainal [24], Mishra [25], Hamid [26], Aberoumand [27], and
Lund [28].

Computational fluid dynamics (CFD) and machine-learning algorithms are two artifi-
cial intelligence (AI) methods that can be used to explain and predict fluid flow patterns in
complex geometries. Engineers can optimize designs to improve efficacy and performance
by using AI-driven simulations to analyze fluid behavior. Moreover, AI can be used to
create control techniques that modify fluid flows, improving qualities like lift, mixing,
and other desired attributes. These methods are implemented to enhance the productivity
of industrial processes, vehicles, and aircraft. Artificial neural networks (ANNs) have
various applications in the simulation of boundary layer flow, including modeling the effect
of boundary layer wind tunnel conditions, solving viscous and thermal boundary layer
problems, and enabling the solution to thin boundary layers with singular perturbation
problems. ANNs can be used with BPNN which is a well-known optimization technique
to enhance the fluid flow system performance and design. ANNs can assist in identifying
the best configurations to accomplish desired goals like decreasing drag or improving
efficiency. ANNs have been used to predict the mean velocity, turbulence intensity, and
model length scale factor in boundary layer wind tunnel profiles. Additionally, they have
been employed in predicting turbulent channel and separated boundary-layer flows, as
well as in developing prediction models for compressible turbulent boundary-layer flow
over a smooth flat surface. These applications demonstrate the effectiveness of ANNs in
simulating and understanding complex boundary layer phenomena. Zeeshan et al. [29] in-
vestigated the impact of thermal radiation and MHD on the boundary layer flow of Casson
ternary hybrid nanofluid with artificial neural network simulation. Das and Reddy [30]
examined the MHD boundary layer flow for the first time with ANN estimation over a
porous extending cylinder. Shoaib et al. [31] examined the impact of thermal radiation (R)
on MHD Casson fluid over a porous surface. They determined that the temperature of
the surface decreases when thermal radiation (Rd) rises. Awais et al. [32] developed an
ANN algorithm to investigate the transport phenomena through a porous surface. Reddy
et al. [33] developed a machine-learning scheme to analyze the effects of activation energy
on an MHD nanofluid flow over an extending sheet. Mishra et al. [34] examined the heat
transfer of ternary hybrid nanofluid with three different geometry with ANNs. There is
a variety of research conducted on the boundary layer flow with ANNs over different
geometries [29,35–38].

To the author’s knowledge, there is a lack of prior research on the use of an ANN
model to analyze the flow stability of MHD boundary layer flows over a porous contracting
wedge. According to a literature review, ANN models have proven to be highly effective in
obtaining approximate solutions to nonlinear problems. The current work therefore focuses
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on ANN approximation to analyze the flow stability over a porous contracting wedge. The
novelty and uniqueness of the present study are highlighted in the following lines:

➢ The chemically reacting flow of non-Newtonian fluid has been studied, taking into
account the properties of a heat source on a porous shrinking wedge.

➢ The impacts of the temperature ratio parameter on the heat transfer coefficient are
also considered to enhance the novelty of the present work.

➢ The current study examines the impact of many pertinent factors and results are
displayed graphically.

➢ To enhance the novelty and uniqueness of the latest research, we used a supervised
machine-learning (ANN with BPNN) approach to analyze the flow stability.

2. Materials and Methods

Consider the scenario of a chemically reacting flow of a two-dimensional model of
non-Newtonian fluid over a porous shrinking wedge with nonlinear thermal radiation
(Rd) and a heat source. The depiction of the flow geometry is illustrated in Figure 1,
with Cartesian coordinates denoted as x and y. The shrinking wall surface has a velocity
uw(x) = Uwxm and free stream velocity, ue(x) = U∞xm. Here, u and v are horizontal and
vertical components of velocity, respectively. We have β = Ω/π with Ω as the total angle of
a wedge [39] and m as the wedge angle parameter. It is noticed that 0 ≤ m ≤ 1. Tw and Cw
are constant temperature and concentration at the wall of a wedge where T∞ is the ambient
temperature and C∞ is the concentration of fluid far away from the wedge. Additionally,
the magnetic field B(x) = B0x

m−1
2 is introduced at an inclined angle Ψ with B0 the strength

of the magnetic field. If Ψ = π/2, then the magnetic field is applied perpendicular. The
governing equations of the flow under consideration are as follows [39–44]:

∂u
∂x

+
∂v
∂y

= 0, (1)

u ∂u
∂x + v ∂u

∂y = ue
due
dx +

(
ν + 1

ρ∧d

)
∂2u
∂y2 − 1

2ρd3∧

(
∂u
∂y

)2
∂2u
∂y2 + [β0g(T − T∞) + (C − C∞)β0g]sin

(
Ω
2

)
−

σB2(x)
ρ sin2(Ψ)(u − ue)

(2)

u
∂T
∂x

+ v
∂T
∂y

=
k

ρCp

∂2T
∂y2 − 1

ρCp

(
∂qr

∂y

)
+

Q(x)
ρCp

(T − T∞), (3)

u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C
∂y2 − k1(C − C∞). (4)

where β0 is the thermal expansion and g is an acceleration due to gravity. ν is the fluid
viscosity and d represents a rheological constant. The thermal radiation with heat genera-
tion/absorption effects is introduced. With the use of the Rosseland approximation [40], we
define thermal radiation as qr = − 4σ⋆

3k⋆
∂T4

∂y = −16 σ⋆

k⋆
∂T
∂y . We suppose the nonlinear radiation

effect; therefore the temperature should be T = T∞(1 + (θw − 1))θ, where θw = Tw
T∞

[40–44].
The chemical reaction equation has been introduced to enhance the novelty of the present
work, whereas DB is molecular diffusivity of the species concentration and k1 is a chemical
reaction parameter [39]. The boundary conditions of the flow problem are as follows:

u = uw, v = vw,T = Tw + bx2, C = Cw, at y = 0 , u → ue(x) , T → T∞, C → C∞, at y → ∞ (5)
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The partial differential equations (PDEs) (1)–(4) of the considered flow problem over a
porous shrinking wedge are transformed into ordinary differential equations (ODEs) with
similarity variables defined as below [39,40]:

ψ =

√
2νxue(x)

1 + m
f (η), η =

√
(1 + m)ue(x)

2νx
y, θ(η) =

T − T∞

Tw − T∞
,ϕ(η) =

C − C∞

Cw − C∞
. (6)

ψ, is the stream function, θ is a dimensionless temperature and ϕ is the dimensionless
concentration. The velocity components in terms of stream function ψ are defined as u = ∂ψ

∂y

and v = − ∂ψ
∂x . However, the velocity components using the similarity transformations

Equation (6) becomes the following [18,39,40]:

u = ue f ′(η), v = −
√

(1 + m)νue

2x

[
f (η) +

m − 1
m + 1

η f ′(η)
]

(7)

The continuity Equation (1) is satisfied identically. Moreover, Equations (2)–(4) of flow
problem is transformed into a dimensionless ordinary differential equation as follows:

(1 + W) f ′′′ − δW
2

f ′′′ ( f ′′ )2 + f f ′′ − β
(

1 − f ′2
)
+ Msin2Ψ

(
1 − f ′

)
+ (Grθ + Gcϕ)sin

(α

2

)
= 0 (8)

1
Pr

(
1 +

4
3

Rd
(
((θw − 1)θ + 1)3

))
θ′′ + 4Rd

(
((θw − 1)θ + 1)2(θw − 1)θ′2

)
+ f θ′ − 2β f ′θ + Q(2 − β)θ = 0 (9)

ϕ′′ − Sc
(

Kc(2 − β)ϕ + 2β( f ′ϕ − f ϕ′
)
= 0 (10)

The dimensionless boundary conditions for Equations (8)–(10) are transformed:

f (0) = S, f ′(0) = λ , θ(0) = 1, ϕ(0) = 1 , f ′(η) → 1 , θ(η) = 0, ϕ(η) = 0 , as η → ∞ . (11)

The physical parameters of interest arise in Equations (8–10) and the boundary con-

ditions in Equation (11) are defined as follows: W = 1
µ∧d , where δ = u3

e
νd2

m+1
2 represents

the Eyring–Powell fluid constant [39,40]. M =
2σB2

0
ρU∞(m+1) is the magnetic field constant [41],

λ = Uw
U∞

is the shrinking and stretching parameter, Rd = 4σ∗
3kk∗ T3

∞ is the thermal radiation

parameter, Sc = ν
Dm

is the Schmidt number, and Kc =
k1
ν is the chemical reaction param-

eter [39,45]. If Kc > 0, this shows a constructive/generative reaction, and Kc < 0 is a
destructive chemical reaction. We consider the generative reaction. θw = Tw

T∞
is the tempera-

ture difference parameter, Gr = gβo(Tw−T∞)L3

(m+1)ν2 is the Grashof number, Gc = gβo(Cw−C∞)L3

(m+1)ν2 is

the mass Grashof number [33,39], S = νw

√
2x

(m+1)ue
is the suction/injection parameter [39],
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and Re = ue L
ν is the Reynolds number. The physical output responses of interest are C f x,

Nux, and Shx [39,40].

C f x =
τw

ρu2
e (x)

, Nux =
xqw

k(Tw − T∞)
, Shx =

xqm

Db(Cw − C∞)
(12)

where τw = µ
(

∂u
∂y

)
y=0

, qw = −k
(

∂T
∂y

)
y=0

+ qr, and qw = Db

(
∂C
∂y

)
y=0

[39–41]. The stress

tensor for Eyring–Powell fluid [39] over the wedge is defined as follows:

τw =

(
µ +

1
∧d

)
∂ui
∂xj

− 1
6 ∧ d3

(
∂ui
∂xj

)3

(13)

By using Equations (6), and (13) in Equation (12), we obtained the output response of
flow quantities as follows [39,40]:

C f Re
1
2
x = (1 + W) f ′′ (0)− δW

3 ( f ′′(0))3, NuRe−
1
2

x

√
2

m+1 = −
(

1 + 4
3 Rd(1 + (θw − 1)θ(0))3

)
θ′(0),

ShRe−
1
2

x

√
2

m+1 = −ϕ′(0).
(14)

Stability Analysis

The stability analysis of flows is essential for understanding the behavior of fluids in
various engineering and natural systems. To examine flow stability, there are several instru-
ments, including the Reynolds number, the Euler equations and Lagrangian perturbation
theory, computational techniques, and linear stability analysis which entails linearizing the
Navier–Stokes equations concerning a base flow and solving linear equations to investigate
the flow properties. Examining the flow field’s stability properties with time is usually
the first step in analyzing the temporal stability analysis of fluid dynamics in wedge flow.
Understanding how disruptions or variations in the flow change over time and whether the
flow is stable or unstable depends on this analysis. The authors perform a linear stability
study to examine the temporal evolution of minor perturbations in the flow. Usually, this
involves resolving eigenvalue issues related to the linearized equations. The eigenvalues
reveal if the perturbations increase, decrease, or stay the same. Therefore, a temporal
stability analysis is executed, to investigate the impact of the pertained parameters on the
flow performance quantities, i.e., skin friction coefficient, Nusselt number, and Sherwood
number. The unsteady case is discussed to perform stability analysis [39–43]:

∂u
∂t + u ∂u

∂x + v ∂u
∂y = Ue

dUe
dx +

(
ν + 1

ρ∧d

)
∂2u
∂y2 − 1

2ρd3∧

(
∂u
∂y

)2
∂2u
∂y2 + [β0g(T − T∞) + (C − C∞)β0g] sin

(
Ω
2

)
− σB2(x)

ρ sin2(Ψ)(u − Ue)
(15)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

=
k

ρCp

∂2T
∂y2 +

16σ

3K∗ρCp

∂2T4

∂y2 +
Q(x)
ρCp

(T − T∞) (16)

∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C
∂y2 − k1(C − C∞) (17)

where t denotes time. Therefore, the new similarity transformation becomes the following:

ψ =

√
2νxue

1 + m
f (η, τ), η =

√
(1 + m)ue

2νx
y, θ(η, τ) =

T − T∞

Tw − T∞
, ϕ(η, τ) =

C − C∞

C − C∞
, τ =

1 + m
2

(ue

x

)
t. (18)

τ is a dimensionless time; the new similarity variables in Equation (18) are used to change
the flow Equations (15)–(17) to the following differential equations:

(1 + W)
∂3 f
∂η3 − δW

2
∂3 f
∂η3

(
∂2 f
∂η2

)2

+ f
∂2 f
∂η2 − β

(
1 −

(
∂ f
∂η

)2
)
+ Msin2Ψ

(
1 − ∂ f

∂η

)
+ (Grθ + Gcϕ)sin

( α

2

)
− ∂2 f

∂η∂τ
= 0 (19)
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1
Pr

(
1 + 4

3 Rd
(
((θw − 1)θ + 1)3

))
∂2θ
∂η2 + 4Rd

(
((θw − 1)θ + 1)2(θw − 1)

(
∂θ
∂η

)2
)
+ f ∂θ

∂η − 2β
∂ f
∂η θ+

Q(2 − β)θ − ∂θ
∂τ = 0

(20)

∂2ϕ

∂η2 − Sc(Kc(2 − β)ϕ + 2β(
∂ f
∂η

ϕ − f
∂ϕ

∂η
))− ∂ϕ

∂τ
= 0 (21)

Now, we define the corresponding boundary conditions:

f (0, τ) = S, ∂ f
∂η (0, τ) = λ, θ(0, τ) = 1, ϕ(0, τ) = 1, at η = 0,

∂ f
∂η (η, τ) → 1, θ(η, τ) = 0, ϕ(η, τ) = 0 , η → ∞ .

(22)

To test the stability of flow behavior, use the regular perturbation expansion to evaluate
the eigenvalue (see References [46,47]). Many more researchers use the same concept to
study the stability of the boundary layer flow over the shrinking surface: [48–51]. Consider,
f (η) = fo(η), θ(η) = θo(η), and ϕ(η) = ϕo(η), see Merril et al. [52]:

f (η, τ) = f0(η) + exp(−γτ)F(η, τ),
θ(η, τ) = θ0(η) + exp(−γτ)G(η, τ),
ϕ(η, τ) = ϕ0(η) + exp(−γτ)H(η, τ).

(23)

Here, γ is defined as the eigenvalue, F(η, τ), G(η, τ), and H(η, τ) are small as compared
to f0(η), θ0(η), and ϕ0(η); for details, see References [46–52]. From Equations (19)–(21), we
have an infinite set of eigenvalues γ1 < γ2 < γ3 < . . .. These eigenvalues define the flow
behavior. Substituting Equation (23) into Equations (19)–(21), we then obtain the following
linear steady-state eigenvalues problems and as we discuss the steady state the derivative
with τ vanishes [46–52]:

(1 + W)F′′′ − δW
2

(
f ′′O

2F′′′ + 2 f ′′O f ′′′O F′′
)
+ f ′′OF + foF′′ − 2β f ′oF′ − Msin2Ψ F′ + (GrG + GcH)sin

(α

2

)
− γF′ = 0, (24)

1
Pr G′′ + 1

Pr

(
4
3 R(θw − 1)

)
{(θw − 1)2(3θ2

0θ
′′
0 G + θ3

0G′′
)
+ 3(θw − 1)

(
2θ0θ

′′
0 G + θ2

0G′′
)
+ 3
(
θ
′′
0 G + θ0G′′

)
}+

(θw − 1)2{{(θw − 1)(2θ0θ′20 G + 2θ2
0θ

′
0G′)}+ {4θ′0θ0G′ + 2θ′20 G′}}+ 2(θw − 1)θ′0G′ + f0G′ + θ′0F+

2β
{

f ′0G + θ0F′}+ Q(2 − β)G − γG = 0,

(25)

H′′ − Sc(Kc(2 − β))H + 2β
{(

f ′0H + ϕ0F′)− ( f0H′ + ϕ′
0F
)}

− γH = 0. (26)

The corresponding boundary conditions are as follows [18,19]:

F(0) = 0, F′(0) = 0, G(0) = 0, H(0) = 0, at η = 0,
F′(η) → 0 , G(η) = 0, H(η) = 0 , η → ∞ .

(27)

3. Research Methodology

The authors focused on scrutinizing non-uniqueness and stability analysis of the flow
response outcomes (C f x, Nux, and Shx) of an MHD boundary layer flow non-Newtonian
fluid over a porous shrinking wedge with nonlinear thermal radiation analysis. To test
the stability of flow, it is important to evaluate the eigenvalues of the differential equation
of the proposed model. For this purpose, an unsteady case of the problem is defined and
regular perturbation expansion to obtain the eigenvalue. The writers divide the research
methodology into two phases. Firstly, the numerical data sheet of these flow response
outcomes can be obtained by solving Equations (8) and (10) and boundary conditions (11)
with bvp4c. Bvp4c is a MATLAB integrated package founded on the 3-stage Lobatto IIIa
formula and finite-difference scheme. We use the proper initial approximations to attain a
numerical solution. Secondly, an artificial neural network (ANN) is applied.
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Artificial Neural Network

A broadly renowned domain within the realm of artificial intelligence (AI) investiga-
tion is the study of artificial neural networks (ANNs), which use a computational structure
motivated by the organizational structure of the human brain. Robert Hecht-Nielsen [53],
known for developing one of the pioneering neurocomputers, provides a clear and un-
complicated definition of artificial neural networks (ANNs). Artificial neural networking
(ANN) unquestionably stands out as the most widely recognized technique in supervised
learning [53–58]. The Levenberg–Marquardt scheme (LMS) is widely used for nonlinear
optimizations problems. In the combination of BPNN, it helps in training the neural net-
work more efficiently. The convergence rate of LMS-BPNN is faster to optimize the flow
behavior in complex and high-dimensional data for the training of ANNs. The bvp4c along
with LMS-BPNN is a powerful scheme to handle complex mathematical problems more
efficiently and accurately.

They are basic nonlinear function approximations. ANNs derive their robustness and
flexibility from their modular structure, which uses the neuron as the fundamental building
unit, mimicking the neurons present in the human brain. An input is given to each neuron,
which then processes it through an activation function to produce an output. Combining
multiple neurons can result in the creation of various structures that convey information
about the issue and the type of data. In neural network (NN) topologies, input layers receive
the data, while output layers provide predictions. Nonlinear optimization techniques, i.e.,
backpropagation, are used to determine the network weights. This approach is used to
enhance the uniformity and accuracy of the model’s predictions. The neurons in artificial
neural networks (ANNs) are arranged in layers. In a neural network, each layer’s neurons
receive input from the previous layer and transmit their output to the next layer. The
performance of the suggested Eyring–Powell fluid model is investigated by LMS-BPNN.
This analysis involves the fitness function, MSE, regression, and error histogram with
the applications of the ‘nftool command’. For implementing the proposed LMS-BPNN
approach, the results concerning f ′(η), θ(η), and ϕ(η) profiles for inputs ranging from 0
to 3 exhibit considerable dispersion. The dataset is then partitioned into training (80%),
validation (10%), and testing (10%) subsets (Appendix A). Figure 2 illustrates a schematic
representation of a backpropagation neural network (BPNN) featuring n input nodes, r
output nodes, and a solitary hidden layer comprising m nodes, whereas Figure 2b shows
the multilayer ANN with m = 10. It means that we have 10 neurons in the hidden layers.
Every connection linking the nodes possesses an assigned weight. The input nodes are
characterized by a transfer function of unity, while the hidden and output nodes employ
sigmoidal S(.) and activation functions, respectively (for detailed analysis of these functions,
see Ref. [30]). The net input as shown in Figure 2a, is provided by the equation below:

yj(x) = ∑n
i=1 w1jiXi + b1j, (28)

We define w1ji as a weight, while b1j is the bias at the jth node. The output for the jth

node of the hidden layer is defined as follows:

Zj(x) =
1

1 + exp
(
−yj(x)

) (29)

As in Figure 2a, Ok(x) represents the output values of the kth node defined as follows:

Ok(x) = ∑m
j=1 w2kjZj + b2k (30)

where w2kj is a weight function. An artificial neural network (ANN) produces its output
by receiving inputs and calculating results depending on the activation of various nodes
and their linked weights. An activation function receives a weighted input from each node
in the network and produces an output that is then sent to the node after it.



Mathematics 2024, 12, 1420 9 of 24

Mathematics 2024, 12, x FOR PEER REVIEW 9 of 24 
 

 

We define 𝑤1𝑗𝑖 as a weight, while 𝑏1𝑗 is the bias at the jth node. The output for the 

jth node of the hidden layer is defined as follows: 

𝑍𝑗(𝑥) =
1

1+𝑒𝑥𝑝(−𝑦𝑗(𝑥))
  (29) 

As in Figure 2a, 𝑂𝑘(𝑥) represents the output values of the kth node defined as follows: 

𝑂𝑘(𝑥) = ∑ 𝑤2𝑘𝑗𝑍𝑗 + 𝑏2𝑘
𝑚
𝑗=1   (30) 

where 𝑤2𝑘𝑗 is a weight function. An artificial neural network (ANN) produces its output 

by receiving inputs and calculating results depending on the activation of various nodes 

and their linked weights. An activation function receives a weighted input from each node 

in the network and produces an output that is then sent to the node after it. 

 
 

(a) Schematic diagram of BPNN. (b) Multilayer ANN. 

Figure 2. Structure of artificial neural networks. 

4. Results and Discussion 

The AI-based LMS-BPNN framework has been developed to analyze the results of 

pertained parameters of interest (angle of inclination, 𝑀 , 𝑆 , 𝜆 , 𝑄 , 𝑅 , 𝑆𝑐 ) for Eyring–

Powell fluid flow over a porous shrinking wedge with nonlinear thermal radiation. By 

employing the LMS-BPNN framework, researchers can gain a deeper understanding of 

the complex interactions between fluid dynamics, heat transfer, and chemical reactions in 

the context of Eyring–Powell fluid flow over porous shrinking wedges with nonlinear 

thermal radiation. There are seven different scenarios which consist of three different 

cases of pertained parameters of interest as shown in Table 1. To validate the scenarios’ 

data, the correlation index (𝑅), MSE, error histogram, regression analysis, and function fit 

are defined. The mean squared error (MSE) is a measure of error in statistical models that 

assesses the average squared difference between numerical and predicted values. The 

MSE is used to evaluate the quality of a model, with a smaller MSE indicating a better fit 

of the model to the data. Figures 3 and 4 demonstrate the evaluation of performance and 

the examination of errors using histograms for the different scenarios (Scenarios 1–7) as 

shown in Table 1. In Figure 3a–g, it is noticed that the MSE is approximately 10−8 for 

various scenarios as presented in Table 1. The graphical depiction of the distribution of 

errors between the observed and predicted approximate values in a model is called an 

error histogram. It aids in comprehending the model’s performance and spotting possible 

problems like overfitting or underfitting. Figure 5 depicts regression analysis for different 

scenarios with LMS-BPNN. It is important to remember that the fitness function must be 

properly developed to represent the objectives of the neural network training. The effi-

ciency of the training process can also be affected by the optimization algorithm selection 

(i.e., LMS-BPNN) and its settings. Figure 6 represents the function fit for Scenarios 1–7 

with Case 1. It is found that the function is best fitted with an approximate error analysis 

Figure 2. Structure of artificial neural networks.

4. Results and Discussion

The AI-based LMS-BPNN framework has been developed to analyze the results of
pertained parameters of interest (angle of inclination, M, S, λ, Q, R, Sc) for Eyring–Powell
fluid flow over a porous shrinking wedge with nonlinear thermal radiation. By employing
the LMS-BPNN framework, researchers can gain a deeper understanding of the complex
interactions between fluid dynamics, heat transfer, and chemical reactions in the context of
Eyring–Powell fluid flow over porous shrinking wedges with nonlinear thermal radiation.
There are seven different scenarios which consist of three different cases of pertained
parameters of interest as shown in Table 1. To validate the scenarios’ data, the correlation
index (R), MSE, error histogram, regression analysis, and function fit are defined. The
mean squared error (MSE) is a measure of error in statistical models that assesses the
average squared difference between numerical and predicted values. The MSE is used to
evaluate the quality of a model, with a smaller MSE indicating a better fit of the model to
the data. Figures 3 and 4 demonstrate the evaluation of performance and the examination
of errors using histograms for the different scenarios (Scenarios 1–7) as shown in Table 1.
In Figure 3a–g, it is noticed that the MSE is approximately 10−8 for various scenarios as
presented in Table 1. The graphical depiction of the distribution of errors between the
observed and predicted approximate values in a model is called an error histogram. It aids
in comprehending the model’s performance and spotting possible problems like overfitting
or underfitting. Figure 5 depicts regression analysis for different scenarios with LMS-
BPNN. It is important to remember that the fitness function must be properly developed
to represent the objectives of the neural network training. The efficiency of the training
process can also be affected by the optimization algorithm selection (i.e., LMS-BPNN)
and its settings. Figure 6 represents the function fit for Scenarios 1–7 with Case 1. It is
found that the function is best fitted with an approximate error analysis of 10−4. Table 2
displays the convergence of labeled data for the proposed algorithm of LMS-BPNN for
the first solution of the Eyring–Powell fluid for Scenarios 1–7 in terms of error analysis for
different portions of divided data, iterations, and Mu. The best curve for the first solution
of the seven scenarios is obtained at 462, 369, 642, 542, 215, 209, and 286 epochs, while
the performance against these epochs/iterations is 8.67 × 10−10, 1.64 × 10−9, 1.03 × 10−9,
9.35 × 10−10, 8.56 × 10−10, 1.08 × 10−9, and 6.97 × 10−10, respectively.
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Table 1. Depiction for scenarios of Eyring–Powell fluid.

Scenario Case Input Parameters

Angle of Inclination M S λ Q Rd Sc

1
1 π/6
2 π/3
3 π/2

2
1 0.01
2 0.05
3 0.1

3
1 0.8
2 0.9
3 1

4
1 −0.9
2 −1.03
3 −1.06

5
1 0.01
2 0.05
3 0.1

6
1 0.1
2 0.5
3 0.9

7
1 0.5
2 1
3 1.5
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Table 2. Data analysis of the physical pertained parameters.

Scenario Case MSE Level Performance Gradient Mu Epoch T

Training Validation Testing

1
1 8.6689 × 10−10 6.8026 × 10−10 1.8599 × 10−9 8.67 × 10−10 1.36 × 10−8 1.00 × 10−9 462 4
2 5.2037 × 10−10 1.6579 × 10−9 1.19067 × 10−9 5.20 × 10−10 9.98 × 10−9 1.00 × 10−9 654 7
3 8.3986 × 10−10 1.93362 × 10−9 1.33751 × 10−9 8.40 × 10−10 9.96 × 10−8 1.00 × 10−9 693 9

2
1 1.64052 × 10−9 3.20122 × 10−9 1.76519 × 10−9 1.64 × 10−9 9.97 × 10−8 1.00 × 10−9 369 3
2 7.9217 × 10−10 1.4547 × 10−9 2.3372 × 10−9 7.92 × 10−10 7.79 × 10−9 1.00 × 10−9 412 4
3 9.08334 × 10−10 9.72836 × 10−9 3.7889 × 10−9 9.06 × 10−10 9.95 × 10−8 1.00 × 10−9 597 7

3
1 1.03437 × 10−9 1.24016 × 10−9 8.2608 × 10−10 1.03 × 10−9 9.99 × 10−9 1.00 × 10−9 642 8
2 1.91010 × 10−9 5.09625 × 10−9 5.26224 × 10−8 1.91 × 10−9 9.92 × 10−9 1.00 × 10−8 510 6
3 5.72994 × 10−10 9.8458 × 10−9 4.7515 × 10−7 5.72 × 10−10 9.15 × 10−7 1.00 × 10−8 448 5

4
1 9.34608 × 10−10 3.08313 × 10−9 4.1625 × 10−9 9.35 × 10−10 9.94 × 10−10 1.00 × 10−10 542 6
2 8.6976 × 10−10 1.3776 × 10−9 1.51617 × 10−8 8.70 × 10−10 9.99 × 10−8 1.00 × 10−9 661 7
3 9.9585 × 10−10 2.0020 × 10−9 1.7709 × 10−9 9.96 × 10−10 9.98 × 10−8 1.00 × 10−9 543 6

5
1 8.56423 × 10−10 1.21829 × 10−9 1.3627 × 10−9 8.56 × 10−10 9.71 × 10−8 1.00 × 10−9 215 2
2 2.21911 × 10−9 2.9967 × 10−8 6.05811 × 10−9 2.22 × 10−9 1.00 × 10−7 1.00 × 10−7 268 2
3 5.8907 × 10−10 7.7416 × 10−10 3.4344 × 10−9 5.89 × 10−10 9.82 × 10−8 1.00 × 10−9 248 2

6
1 1.08784 × 10−9 1.80714 × 10−9 6.5421 × 10−9 1.08 × 10−9 1.36 × 10−7 1.00 × 10−9 209 2
2 7.4637 × 10−10 2.3271 × 10−9 2.1346 × 10−9 7.46 × 10−10 9.93 × 10−8 1.00 × 10−8 329 3
3 8.4866 × 10−10 2.8219 × 10−9 2.7539 × 10−9 8.49 × 10−10 9.97 × 10−9 1.00 × 10−9 367 3

7
1 6.9690 × 10−10 9.5715 × 10−9 1.6041 × 10−9 6.97 × 10−10 9.95 × 10−9 1.00 × 10−10 286 3
2 8.1501 × 10−10 4.5647 × 10−9 1.2280 × 10−9 8.15 × 10−10 9.99 × 10−8 1.00 × 10−9 470 5
3 1.8905 × 10−9 2.0167 × 10−9 2.3857 × 10−9 1.65 × 10−9 6.36 × 10−8 1.00 × 10−9 292 4

The tabulated values of Mu and the gradient for the first solution of the seven scenar-
ios are shown in Table 2. These values are [1.0 × 10−9, 1.0 × 10−9, 1.0 × 10−9, 1.0 × 10−10,
1.0 × 10−9, 1.0 × 10−9, and 1.0 × 10−10] and [1.36 × 10−8, 9.97 × 10−8, 9.99 × 10−10,
9.94 × 10−8, 1.36 × 10−7, and 9.95 × 10−9]. The results indicate that LMS-BPNN consis-
tently exhibits efficient convergence in all scenarios related to Eyring–Powell fluid flow over
a diminishing wedge. The investigation of regression analysis is displayed in Figure 5a–g
for Scenarios 1–7 of Eyring–Powell fluid flow over a porous shrinking wedge. Regression
analysis serves as a means to explore correlations within the data. In Figure 5a–g, the
correlation coefficient (R) is observed to be at unity, indicating an optimal model fit. When
scrutinizing the numerical data sheet, the correlation coefficient (R) closely approximates
unity, lending support to the efficacy of LMS-BPNN in formulating an Eyring–Powell fluid
flow over a shrinking wedge. These coefficients assess the model’s fit quality and validate
the modeling accuracy. Figure 6a–g display the function fit for the proposed model and it
is noted that the function fits the model asymptotically.

Non-Uniqueness of Solution

The smart solution of flow behavior is obtained with AI-based LMS-BPNN for velocity
( f ′(η)), temperature (θ(η)), and concentration (ϕ(η)) profiles of Eyring–Powell fluid over
a porous shrinking wedge. AI-based learning is crucial to handle the flow stability of
shrinking and stretching surfaces. The MATLAB toolbox of ANNs (‘nftool’ command)
is used to train the network for f ′(η), θ(η), and ϕ(η) to observe the effects of varying
the physical parameters as in Table 1 (Scenarios 1–7). In this analysis, the author focus
on thermo-physical properties of flow over a shrinking wedge. The effects of different
pertained parameters are investigated, and a dual solution is obtained for various scenarios
as shown in Table 1 with W = 0.1 and δ = 0.2 remaining constant (see Ref. [39] for fixed
parameters). The dual solution for flow output responses are shown in Figure 7(a–f) for
different values of the pertained parameters as in Scenarios 1–7. The predicted solution
with LMS-BPNN is obtained for different values of Ψ = π

6 , π
3 , π

2 with M = 0.01, S = 0.8,
λ = −1, Q = 0.01, Rd = 0.1, Sc = 0.5, Kc = 0.4, W = 0.1, and δ = 0.2 (as shown in
Figure 7a. The values of these parameters are considered Ref. [39]). Figure 7b shows that
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the solution changes its nature at critical values λc = −1.06329, −1.097, −1.17694, for
various values of magnetics effects as shown in Scenario 2 (M = 0.01, 0.05, 0.1 with Ψ = π

6 ,
S = 0.8, λ = −1, Q = 0.01, Rd = 0.1, Sc = 0.5, W = 0.1, and δ = 0.2 remaining constant
(the values of these parameters are considered Ref. [39])). It is also important to declare
that with the increment in the value of M, then the solution bifurcates at maximum values
of −1.17694. Similarly, Figure 7c shows the impacts of porosity parameters on C fx. The
solution bifurcates for S = 0.8, 0.9, 1 at critical values λc = −0.8828, −0.97414, −1.06329.
Figure 7c shows that when we increase porosity parameters, then the critical values change
from −0.8828 to −1.06329. Figure 7d,e shows the effects of Q and Rd on heat transfer
coefficient. In Figure 7f, we observe the impact of Sc on Shx. It is examined that the critical
values remain the same for Scenario 7 Cases 1–3. From Figure 7, it is concluded that the
flow response outcomes (C f x, Nux, Shx) have a dual nature. Figure 8a depicts the effects
of the angle of inclination (Ψ) on f ′(η) and it is noted that the boundary layer thickness
for the second solution is higher than the first solution. Figure 8b,c show the impact of
Scenarios 2–3 on f ′(η). It is observed that when we increase the value of M, then the
first solution of f ′(η) increases and the boundary layer thickness of the second solution
increases. The dual solution is calculated at M = 0.01, 0.05, 0.1 with Ψ = π

6 , S = 0.8,
λ = −1, Q = 0.01, Rd = 0.1, Sc = 0.5, Kc = 0.4, W = 0.1, and δ = 0.2 (the values of
these parameters are considered Ref. [39]). Similarly, the porosity parameter (mentioned in
Scenario 3) has a similar fashion to that in Scenario 2. With the enhancement in the porosity
parameter, the velocity of the non-Newtonian fluid (Eyring–Powell fluid) increases. The
impacts of Scenario 5 are displayed in Figure 8d. This figure shows the effects of Q on the
temperature profile. Figure 8e shows the dual solution of the concentration profile against
Sc. The dual solutions are calculated for C f x, Nux, and Shx with LMS-BPNN for variation
in physical parameters for different scenarios as shown in Table 3. The non-unique nature
of the solution is investigated by a vertical line test. This test shows that if a vertical line
draws on a graph and it intersects at two points then the solution is non-unique. It is noted
that the first and second solutions exist for λ > λc, at λ = λc a unique solution exists while
there is no solution for λ < λc (‘c’ represents the critical value).
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Table 3. Comparison of LMS-BPNN outcomes of f ′′ (0) for different values of S.

S (DTM-BF) [14] Numerical [39] Numerical [59] Numerical [60] LMS-BPNN

−1.5 0.96935 0.96922 0.96923 0.9692 0.96896

−1.0 0.75637 0.75657 0.75658 0.7566 0.75087

0.0 1.23350 1.23258 1.23259 1.2326 1.23186

1.0 1.88928 1.88931 1.88931 1.8893 1.87283

Figure 8d,e show the dual nature of the heat and mass transfer co-efficient for Scenarios
5 and 7. It is also concluded that porosity and magnetic effects have a high influence on flow
response outcomes. When there is an increase in the values of M and S, the critical values
change rapidly. Therefore, a stability test is performed to test which solution is reliable
and trustworthy. Figure 9 shows the stability curve, and it is noted that the first (upper
branch) solution decays and the second (lower branch) solution causes a disturbance in
flow behavior. It is concluded that the upper branch solution is stable; however, the lower
branch solution is unstable.
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5. Conclusions

The main goal of this research is to introduce an innovative computational intelligence
method that utilizes the Levenberg–Marquardt technique with a backpropagated neural
network (LMS-BPNN) to explore flow stability. A proficient conversion technique is
employed on the PDEs of non-Newtonian fluid problems, transforming them into a system
of ODEs. The initial/reference solution is calculated with bvp4c by solving the resulting
system of ODEs. The labeled data set is divided into three parts: 80% is allocated for
training, 10% for testing, and 10% for validation. These subsets are employed to evaluate the
estimated solution derived from LMS-BPNN. The convergence of the solution is calculated
utilizing the MSE, error analysis, and correlation index (R). The performance, gradient, and
Mu of the LMS-BPNN are found to be 10−10, 1.3610−8, and 10−9, respectively. The dual
solution is calculated with BPNN for the different scenarios (Scenarios 1–7). The validity
and consistency of the proposed LMS-BPNN are demonstrated through the presentation
of table values and visual representations such as error and regression analysis. The dual
solutions for f ′(η), θ(η), and ϕ(η) are calculated and it is observed that both solutions
satisfy the boundary conditions asymptotically. The dual solution for flow performance
outcomes (C f x, Nux, and Shx) is investigated with LMS-BPNN. It is also concluded that the
critical value λc = −1.06329 exists at M = 0.01. When the magnetic effect increases, then
the critical values change, i.e., λc = −1.17694 at M = 0.1. It is noticed that the boundary
layer thickness for the second solution is greater than the first solution. It is also noted
that the magnetics effects and porosity are flow-significant input parameters. The smart
solution for stability assessment utilizes an approximation of LMS-BPNN, estimating the
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eigenvalues of the flow problem. The results indicate that the first solution remains stable,
while the second solution demonstrates instability. The accuracy and precision of AI-based
LMS-BPNN is demonstrated by the good agreement between the predicted results with
ANN and numerical results with bvp4c. In the future, unsupervised machine learning
should be applied to investigate the effects of thermal properties on heat transfer analysis
over a shrinking surface.
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Nomenclature

uw Velocity at wedge’s wall (m.s−1);
ue Ambient velocity (m.s−1);
Uw, U∞ Constant;
vw Suction velocity (m.s−1);
T Temperature of fluid (K);
T∞ Ambient temperature (K);
Tw Wall temperature (K);
Cw Concentration at wedge’s wall;
C∞ Concentration of fluid far away from a wedge;
Pr Prandtl number;
α Thermal diffusivity of fluid;
σ Electrical conductivity;
Rex Local Reynolds number;
C f x Skin friction;
Nux Nusselt number;
Shx Sherwood number;
Gr Grashof number;
Gc Mass Grashof number;
Bo Strength of the magnetic field;
Ψ Inclined angle (at which the magnetics field is applied);
βo Thermal expansion;
d Rheological constant;
M Magnetic field constant;
Rd Thermal radiation;
DB Molecular diffusivity;
Kc Chemical reaction parameter;
S Suction/injection parameter;
Q Heat generation/absorption constant;
λ Stretching and shrinking parameter;
Sc Schmidt number;
W, δ Eyring–Powell fluid constant;
τw Stress tensor;
γ Eigenvalue;
PDEs Partial differential equations;
ODEs Ordinary differential equations;
ANN Artificial neural network;
LMS-BPNN Levenberg–Marquardt scheme with a backpropagation neural network;
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DTM Differential transformed method;
MSE Mean squared error.

Appendix A

Validation of code;
function [Y,Xf,Af] = myNeuralNetworkFunction(X,~,~)
%MYNEURALNETWORKFUNCTION neural network simulation function.
%
%
% [Y] = myNeuralNetworkFunction(X,~,~) takes these arguments:
%
% X = 1xTS cell, 1 inputs over TS timesteps
% Each X{1,ts} = Qx2 matrix, input #1 at timestep ts.
%
% and returns:
% Y = 1xTS cell of 1 outputs over TS timesteps.
% Each Y{1,ts} = Q×1 matrix, output #1 at timestep ts.
%
% where Q is number of samples (or series) and TS is the number of timesteps.

%#ok<*RPMT0>

% ===== NEURAL NETWORK CONSTANTS =====

% Input 1
x1_step1.xoffset = [0;3];
x1_step1.gain = [0.333333333333333;1];
x1_step1.ymin = −1;

% Layer 1
b1 = [−2.0233281778319276434;2.7505507660415542404;4.7874361294992482385;5.81160

20445823428631];
IW1_1 = [−0.072148107843824041407;2.5537903512342152723 1.3403232535909823664];

% Layer 2
b2 = 3.1184491428184468731;
LW2_1 = [−0.28343636199198024572 −4.0103587755946596971 2.4796666138092882115];

% Output 1
y1_step1.ymin = −1;
y1_step1.gain = 2;
y1_step1.xoffset = 0;

% ===== SIMULATION ========

% Format Input Arguments
isCellX = iscell(X);
if ~isCellX
X = {X};
end

% Dimensions
TS = size(X,2); % timesteps
if ~isempty(X)
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Q = size(X{1},1); % samples/series
else
Q = 0;
end

% Allocate Outputs
Y = cell(1,TS);

% Time loop
for ts=1:TS

% Input 1
X{1,ts} = X{1,ts}’;
Xp1 = mapminmax_apply(X{1,ts},x1_step1);

% Layer 1
a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*Xp1);

% Layer 2
a2 = repmat(b2,1,Q) + LW2_1*a1;

% Output 1
Y{1,ts} = mapminmax_reverse(a2,y1_step1);
Y{1,ts} = Y{1,ts}’;

end
% Final Delay States
Xf = cell(1,0);
Af = cell(2,0);

% Format Output Arguments
if ~isCellX
Y = cell2mat(Y);
end
end

% ===== MODULE FUNCTIONS ========

% Map Minimum and Maximum Input Processing Function
function y = mapminmax_apply(x,settings)
y = bsxfun(@minus,x,settings.xoffset);
y = bsxfun(@times,y,settings.gain);
y = bsxfun(@plus,y,settings.ymin);
end

% Sigmoid Symmetric Transfer Function
function a = tansig_apply(n,~)
a = 2 ./(1 + exp(−2*n)) − 1;
end

% Map Minimum and Maximum Output Reverse-Processing Function
function x = mapminmax_reverse(y,settings)
x = bsxfun(@minus,y,settings.ymin);
x = bsxfun(@rdivide,x,settings.gain);
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x = bsxfun(@plus,x,settings.xoffset);
end
% This script assumes these variables are defined:
%
% input − input data.
% output − target data.

x = input’;
t = output’;
% Choose a Training Function
% For a list of all training functions type: help nntrain
% ‘trainlm’ is usually fastest.
% ‘trainbr’ takes longer but may be better for challenging problems.
% ‘trainscg’ uses less memory. Suitable in low memory situations.
trainFcn = ‘trainlm’; % Levenberg-Marquardt backpropagation.

% Create a Fitting Network
hiddenLayerSize = 10;
net = fitnet(hiddenLayerSize,trainFcn);
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