
Citation: Aboutaib, I.; Brzdęk, J.;
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Abstract: Let E be a Hausdorff locally convex space. We investigate the space Λφ[E] of weakly
Köthe–Orlicz summable sequences in E with respect to an Orlicz function φ and a perfect sequence
space Λ. We endow Λφ[E] with a Hausdorff locally convex topology and determine the continuous
dual of the so-obtained space in terms of strongly Köthe–Orlicz summable sequences from the dual
space E′ of E. Next, we give necessary and sufficient conditions for Λφ[E] to be barrelled or quasi-
barrelled. This contributes to the understanding of different spaces of vector-valued sequences and
their topological properties.
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1. Introduction

Let E be a locally convex space. The spaces ℓp(E) and ℓp{E} of weakly p-summable
and absolutely p-summable sequences in E, respectively, were introduced by Pietsch in [1].
The same author investigated applications of these spaces in the study of absolutely p-
summing operators. In addition, he investigated the spaces Λ{E} and Λ(E) of absolutely
Λ-summable and weakly Λ-summable sequences in E, respectively, where Λ is a sequence
space endowed with its Köthe normal topology. Building upon Pietsch’s work, Rosier [2]
extended the study to the general case, wherein Λ is equipped with a general polar topology
(instead of the Köthe normal topology). Rosier obtained notable results, which included a
comprehensive description of the dual space of Λ{E}r.

Employing the AK property, Florencio and Paúl [3] determined a representation of
the elements of Λ⊗̃εE (the completion of the injective tensor product Λ ⊗ε E) as weakly
Λ-summable sequences in E.

Later, Oubbi and Ould Sidaty extended in [4] the concept of strong summability,
initially introduced by Cohen [5] for normed spaces, to the locally convex spaces. This
extension allowed them to obtain a description of the continuous dual space of Λ(E)r.
Further results and properties for Λ(E) were obtained in [6–8]. Recently, Ould Sidaty
investigated in [9] the nuclearity (as a convex bornological space) of Λb(E), i.e., the space
of all totally Λ-summable sequences within the context defined by [10], where E represents
a convex bornological space. Furthermore, Ghosh and Srivastava explored in [11] the
notion of absolute Λ-summability (using an Orlicz function φ). They introduced and
investigated the space F(E, φ), consisting of all sequences (xn)n in a Banach space E that
satisfy the condition
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(
φ
(∥xn∥E

ρ

))
n
∈ F

for some ρ > 0, where F denotes a normal sequence space.
It is worth noting that several kinds of sequence spaces have already been investigated

in the literature. Descriptions of some of them rely on infinite Köthe matrices (ai,j)i,j∈N,
some others rely on Cesàro operators, and others rely on different kinds of convergence or
summability (see [1–4,6–20]).

Of course, Orlicz functions yield natural sequence spaces in the scalar-valued case.
They are also used to construct vector-valued sequence spaces (see for example [11,17,19]
and the references therein). The characterization of continuous dual or Köthe–Toeplitz dual
are examples of the main issues authors are interested in (see, e.g., [21]). But first of all, a
linear topology must be defined on the sequence space in consideration.

In this paper, for an Orlicz function φ and a locally convex space E, we introduce the
notion of a weakly (φ, Λ)-summable sequence (xn)n in E and examine some properties of
the linear space Λφ[E] consisting of all such sequences. Actually, weakly (φ, Λ)-summable
sequences and the corresponding sequence spaces were investigated in [8] for a Banach
space E. There, the author gave necessary and sufficient conditions for Λφ[E] to be reflexive.
The situation in a locally convex space is quite complicated, for the topology is no more
given by a single norm but by a family of infinitely many semi-norms, which means that a
bounded neighborhood of 0 may not exist there.

The outcomes of this paper extend and improve some results in the literature, espe-
cially those in [8]. We first equip Λφ[E] with a Hausdorff locally convex topology, and then
we investigate the completeness and the continuity of projections of the so-obtained locally
convex space. We embed E in Λφ[E] as a complemented subspace. In order to investigate
the topological dual of Λφ[E], we define the notion of strongly (φ, Λ)-summable sequences
and the space Λφ⟨E⟩ of all such sequences. Actually, we prove that whenever Λφ[E] is
AK, its topological dual can be given in terms of strongly summable sequences. Next, we
characterize the property of barrelledness in Λφ[E]. To address this issue, we examine
equicontinuous sets of the dual space of Λφ[E]. For ample information on barrelled locally
convex spaces, we refer to the monograph [22].

2. Preliminaries

Throughout this paper, K denotes the field of real or complex numbers, N is the set
of positive integers, and (E, τ) is a Hausdorff locally convex space over K, for which the
continuous dual is denoted by E′. If M runs over the collection M of all σ(E′, E)-closed
and equicontinuous discs of E′, the topology τ is generated by the semi-norms

PM(x) := sup{|a(x)|, a ∈ M}, x ∈ E, M ∈ M.

For any nonempty set X, XN denotes the set of all sequences from X, and X(N) is the
subset of XN consisting of all sequences with finite support. If Ω ⊂ EN is a linear space, its
Köthe dual, as defined in [23], is the set

Ω∗ :=
{
(an)n ⊂ E′ :

+∞

∑
n=1

|an(xn)| < +∞, (xn)n ∈ Ω
}

.

If t ∈ E, we write ten to mean the sequence for which the entrees are all zero, but the nth
one equals t. The kth finite section of a sequence x := (xn)n ∈ Ω is defined by

x(k) =
k

∑
n=1

xnen = (x1, x2, . . . , xk, 0, 0, . . . ).
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If a topology is given on Ω, we denote by Ωr the linear subspace of Ω consisting of
those sequences x such that x(k) ∈ Ω for all k ∈ N, and x = lim

k→∞
x(k) in Ω.

If Λ is a normal linear subspace of KN, then Λ contains the set ΛF of all finite sections
of its elements. Unless the contrary is clearly stated, it is equipped with a polar topology τS
defined by a topologizing family S ⊂ Λ∗ consisting of normal closed and bounded discs
with respect to the weak topology σ(Λ∗, Λ). Such a topology is given by the semi-norms

PS((αn)n) := sup
{ +∞

∑
n=1

|αnβn|, (βn)n ∈ S
}

, (αn)n ∈ Λ, S ∈ S .

For a bounded disc A in a Hausdorff topological vector space F, FA is the linear span
of A. When no topology is specified on FA, it is endowed with the gauge ∥.∥A of A as a
norm, where ∥t∥A := inf{r > 0, t ∈ rA}, t ∈ FA. We then consider without any further
mention the spaces EB, E′

M, ΛR and Λ∗
S, where B ⊂ E, M ∈ M, S ∈ S , and R ⊂ Λ are

bounded discs, with R normal.
We refer to [23] for details concerning Köthe theory of sequence spaces and to [24] for

the terminology and notations concerning the general theory of locally convex spaces.
We consider an Orlicz function φ: this is any mapping φ : [0,+∞) → [0,+∞] that is

convex, vanishes at 0, and is non-constant (see [17]). The complement of φ is the function

φ∗(y) := sup{xy − φ(x), x ∈ [0,+∞)}.

Let us observe that φ∗ is also an Orlicz function. Clearly, φ and φ∗ satisfy the Young
inequality; namely,

xy ≤ φ(x) + φ∗(y), x, y ≥ 0.

The function φ is said to satisfy ∆2 for small x (or at 0) if for each k > 1 there exist Rk > 0 and
xk > 0 such that φ(kx) ≤ Rk φ(x) for all x ∈ (0, xk]. The Orlicz sequence class associated
with φ is

ℓ̃φ =

{
x = (xn)n ∈ KN : δ(x, φ) :=

+∞

∑
n=1

φ(|xn|) < +∞
}

.

We denote by B̃φ the set {x = (xn)n ∈ KN : δ(x, φ) ≤ 1}.
The Orlicz sequence space associated with φ is

ℓφ =

{
x := (xn)n ∈ KN : ∑

n≥1
xnyn converges for all y ∈ ℓ̃φ∗

}
.

This is a Banach space with respect to the norm

∥x∥φ = sup

{∣∣∣∣∣∑n≥1
xnyn

∣∣∣∣∣ : δ(y, φ∗) ≤ 1

}

= sup

{
∑
n≥1

|xnyn| : δ(y, φ∗) ≤ 1

}
.

Like in [18], if x ∈ ℓφ and ∥x∥φ ≤ 1, then x ∈ ℓ̃φ and δ(x, φ) ≤ ∥x∥φ.

3. Weakly Köthe–Orlicz Summable Sequences

In this section, we introduce the notion of weakly Köthe–Orlicz summable sequences
in a locally convex space E and investigate some first properties of the linear space of all
such sequences.
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Definition 1. A sequence x = (xn)n ⊂ E is said to be weakly Köthe–Orlicz summable with respect
to φ and Λ (for short, weakly (φ, Λ)-summable) if the sequence (αn f (xn))n belongs to ℓφ for every
f ∈ E′ and every α ∈ Λ∗. The set of all such sequences is denoted by Λφ[E].

Since Λ∗ = (Λ∗∗)∗, we assume with no loss of generality that Λ is perfect, i.e.,
Λ = Λ∗∗.

Here are some examples of Orlicz functions and the corresponding Λφ[E].

Example 1.

1. Let φ be the identity map x 7→ x. Then Λφ[E] coincides with the space Λ[E] of weakly
summable sequence in E (see, e.g., [4]).

2. Assume Λ = ℓ1 and E = K. Then Λφ[E] is nothing but the classical Orlicz sequence
space ℓφ.

3. Let φ be the Orlicz function defined by φ(x) := +∞ if x > 1 and φ(x) := 0 if 0 ≤ x ≤ 1. Let
Λ = c0, the space of all scalar null sequences, and let E be a Hausdorff locally convex space. We
claim that (c0)φ[E] is the set cb(E) of all bounded sequences in E. Indeed, since (c0)

∗∗ = ℓ∞,
(c0)φ[E] = ℓ∞[E]. Let x ∈ ℓ∞

φ [E]. Then for every f ∈ E′ and α ∈ ℓ1 := (ℓ∞)∗, we have
(αn f (xn))n ∈ ℓφ := ℓ∞. Since α is arbitrary in ℓ1, the sequence ( f (xn))n belongs to ℓ∞.
This means that the sequence (xn)n is weakly bounded in E, for f is arbitrary in E′. Hence,
(xn)n belongs to cb(E). The inverse inclusion cb(E) ⊂ ℓ∞

φ [E] is trivial.

Notice that if for every α ∈ Λ∗ and f ∈ E′, ψα, f is the endomorphism of EN defined by
ψα, f ((xn)n) = (αn f (xn))n, then

Λφ[E] =
⋂
{ψ−1

α, f (ℓφ), α ∈ Λ∗, f ∈ E′}.

This shows that Λφ[E] is a linear space.

Lemma 1. For every x = (xn)n ∈ Λφ[E] and S ∈ S , the set Aφ
S below is bounded in E.

Aφ
S =

{
p

∑
n=1

αnynxn : α ∈ S, y ∈ B̃φ∗ , p ∈ N
}

.

Therefore, for every S ∈ S and M ∈ M, a semi-norm ε
φ
S,M is defined on Λφ[E], where

ε
φ
S,M(x) := sup

α∈S, f∈M
∥(αn f (xn))n∥φ, x = (xn)n ∈ Λφ[E].

Proof. Let x = (xn)n ∈ Λφ[E], α ∈ S, y ∈ B̃φ∗ , p ∈ N, and f ∈ E′ be given. Then∣∣∣∣∣ f
( p

∑
n=1

αnynxn

)∣∣∣∣∣ =
∣∣∣∣∣ p

∑
n=1

αnyn f (xn)

∣∣∣∣∣ ≤ ∥(αn f (xn))n∥φ.

Define a linear mapping g f : Λ∗
S −→ ℓφ by g f (β) = (βn f (xn)). Since Λ∗

S is a Banach
space ([4], Lemma 3), g f is continuous by the closed graph theorem. Therefore, it is
bounded on S by the norm ∥g f ∥ of g f . This is∣∣∣∣∣ f

( p

∑
n=1

αnynxn

)∣∣∣∣∣ ≤ ∥(αn f (xn))n∥φ ≤ ∥g f ∥.

Since f was arbitrary in E′, Aφ
S is weakly bounded and is then also bounded in E. The

remainder is trivial.
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We denote by ε
φ
S ,M the locally convex topology defined on Λφ[E] by the family(

ε
φ
S,M

)
S∈S ,

M∈M
of semi-norms.

Example 2.

1. If φ is the identity of R+, the topology ε
φ
S ,M of Λφ[E] is nothing but the topology εS ,M given

in [4].
2. In case Λ = ℓ1 and E = K, the topology ε

φ
S ,M coincides with the norm topology of ℓφ.

3. When φ is the Orlicz function in (3) of Example 1, ε
φ
S ,M is given by the semi-norms

εM(x) := sup
f∈M

∥( f (xn))n∥∞, x ∈ cb(E), M ∈ M.

Lemma 2. The topology ε
φ
S ,M is Hausdorff. Moreover:

1. For every n ∈ N, the projection In : x := (xk)k 7→ xn is a continuous mapping from Λφ[E]
into E;

2. Λφ[E]r is a closed subspace of Λφ[E].

Proof. It is easily seen that ε
φ
S ,M is Hausdorff. To show this:

1. Fix n ∈ N, M ∈ M and choose S ∈ S such that en ∈ S. For all x = (xn)n ∈ Λφ[E], we
have

PM(In(x)) = PM(xn) =
1

∥en∥φ

∥PM(xn)en∥φ

≤ 1
∥en∥φ

ε
φ
S,M(x).

Then In is continuous.
2. Let x ∈ Λφ[E]r. Then for all ε > 0, M ∈ M, and S ∈ S , there is y ∈ Λφ[E]r such

that ε
φ
S,M(x − y) ≤ ε

3
. Since y ∈ Λφ[E]r, there is n0 ∈ N such that for all i ≥ n0,

ε
φ
S,M(y(i) − y) ≤ ε

3
. So for all i ≥ n0:

ε
φ
S,M(x(i) − x) ≤ ε

φ
S,M(x(i) − y(i)) + ε

φ
S,M(y(i) − y) + ε

φ
S,M(x − y)

≤ ε
φ
S,M((x − y)(i)) + ε

φ
S,M(y(i) − y) + ε

φ
S,M(x − y)

≤ 2ε
φ
S,M(x − y) + ε

φ
S,M(y(i) − y) ≤ ε.

Then Λφ[E]r is closed.

Remark 1. According to the proof above, for every S ∈ S , the set {In, en ∈ S} is even equicontin-
uous. In particular, if Λ is a normed space so that ∥en∥Λ∗ ≤ 1 for every n, then {In, n ∈ N} is
equicontinuous and is then also equibounded. An instance where this occurs is Λ = ℓp.

The following lemma shows that not only is E (identified with) a subspace of Λφ[E],
but it is also complemented in it.

Lemma 3. The space E is complemented in both spaces Λφ[E] and Λφ[E]r.

Proof. Set [E] := {te1 : t ∈ E} and consider the mapping p : Λφ[E] → [E] defined for all
(xn)n ∈ Λφ[E] by p((xn)n) = x1e1. This is a projection, and since

ε
φ
S,M(p((xn)n)) ≤ ε

φ
S,M((xn)n), (xn)n ∈ Λφ[E], (S, M) ∈ S ×M,
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p is a continuous. Therefore, [E] is complemented in Λφ[E]. Now, the mapping ϕ : t 7→ te1
is a bicontinuous linear isomorphism from E into [E] because for all t ∈ E and all (S, M) ∈
S ×M,

ε
φ
S,M(te1) = ∥e1∥φPS(e1)PM(t).

Identifying E and [E], E is complemented in Λφ[E].
The same proof also works for Λφ[E]r.

The following theorem shows when Λφ[E] is complete or sequentially complete.

Theorem 1. The space Λφ[E] is (sequentially) complete if and only if E is (sequentially) complete.

Proof. This necessity is derived from Lemma 3. As to the sufficiency, assume E is complete,
and let (xi)i∈I be a Cauchy net in Λφ[E], with (I,≤) being an upwardly directed ordered
set. The continuity of the projection In implies that (xi

n)i is a Cauchy net in E for all n.
Hence, it converges to some xn ∈ E.

We claim that x := (xn)n belongs to Λφ[E]. For every S ∈ S , M ∈ M, and ε > 0,
choose k ∈ I such that for all i, j > k, ε

φ
S,M(xi − xj) < ε. Then, by normality of ℓφ, for every

α ∈ S, f ∈ M, and i, j > k, one has∥∥∥(αn f (xi
n)− αn f (xj

n)
)

n

∥∥∥
φ
≤ ε

φ
S,M(xi − xj) < ε.

Therefore, (αn f (xi
n))i is a Cauchy sequence in the Banach space ℓφ for all n ∈ N. Let

γ := (γn)n be its limit in ℓφ. Then for every n ∈ N, we have

αn f (xn) = αn f (lim
i

xi
n) = lim

i
αn f (xi

n) = γn.

But for i, j ≥ k, α ∈ S , and N ∈ N, we have

sup
δ(y,φ∗)⩽1

N

∑
n=1

∣∣∣ynαn f (xi
n − xj

n)
∣∣∣ ≤ ∥∥∥(αn f (xi

n − xj
n)
)

n

∥∥∥
φ
≤ ε

φ
S,M(xi − xj) < ε.

Passing to the limit on j, we get for all N ≥ n0

sup
δ(y,φ∗)⩽1

N

∑
n=1

∣∣∣ynαn f (xi
n − xn)

∣∣∣ ≤ ε,

and then ε
φ
S,M(xi − x) ≤ ε for every i ≥ k. This shows at once that x belongs to Λφ[E] and

that (xi)i∈I converges to x in Λφ[E].
With a similar proof, one shows that Λφ[E] is sequentially complete if and only if E is

sequentially complete.

Lemma 3 and Theorem 1 show that the three spaces E, Λφ[E], and Λφ[E]r are simulta-
neously complete or simultaneously not complete.

Proposition 1. If E is fast-barrelled, then

Λφ

[
E′

β

]
= {a = (an)n ⊂ E′ : (αnan(x))n ∈ ℓφ, x ∈ E, α ∈ Λ∗}.

Moreover, the topology of Λφ

[
E′

β

]
is given by the semi-norms

ε
φ
S,B(a) = sup

α∈S,x∈B
∥(αnan(x))n∥φ,
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where S runs over S , and B runs over the collection B of all closed and bounded discs in E.

Proof. If
∆ := {a = (an)n ⊂ E′ : (αnan(x))n ∈ ℓφ, x ∈ E, α ∈ Λ∗},

then clearly, Λφ

[
E′

β

]
⊂ ∆.

Conversely, consider a := (an)n ∈ ∆, f ∈ (E′
β)

′, y ∈ B̃φ∗ , and β ∈ Λ∗. Choose x ∈ E.
Then ∣∣∣∣ p

∑
n=1

ynβnan(x)
∣∣∣∣ ≤ +∞

∑
n=1

|ynβnan(x)| < +∞, p ∈ N.

Therefore,

A :=
{ p

∑
n=1

ynβnan, p ∈ N
}

is σ(E′, E)-bounded. Since E is fast-barrelled, A is bounded in E′
β. Hence, there is some

K > 0 such that
+∞

∑
n=1

|ynβn f (an)| ≤ K.

Consequently,
a ∈ Λφ

[
E′

β

]
.

Now, let M be a closed equicontinuous disc in (E′
β)

′. Then the polar M◦ of M is a
0-neighborhood in E′

β. If B is the polar in E of M◦, then B is a closed bounded disc in E
such that

M = M◦◦ ⊂ B◦◦ = Bσ(E′′ ,E′).

Then for every a ∈ E′, we have

sup
f∈M

| f (a)| ≤ sup
x∈B◦◦

|a(x)| ≤ sup
x∈B

|a(x)|.

In particular, for a =
p

∑
n=1

αnynan ∈ E′ with y ∈ B̃φ∗ , α ∈ S and a ∈ Λφ

[
E′

β

]
, we have

sup
f∈M

∣∣∣∣ p

∑
n=1

αnyn f (an)

∣∣∣∣ ≤ sup
x∈B◦◦

∣∣∣∣ p

∑
n=1

αnynan(x)
∣∣∣∣ ≤ sup

x∈B

∣∣∣∣ p

∑
n=1

αnynan(x)
∣∣∣∣.

Passing to the supremum on p, first on y ∈ B̃φ∗ and then on α ∈ S, we get

ε
φ
S,M(a) ≤ ε

φ
S,B(a),

which completes the proof.

4. Continuous Dual Space of Λφ[E]

In the literature, several kinds of duals are considered when dealing with sequence
spaces: mainly the Köthe-dual or the α-dual, the β-dual, the Köthe–Toeplitz dual, the
algebraic dual and, whenever the sequence space is equipped with a linear topology, the
continuous dual (see [4,8,21]). In order to determine the continuous dual space of Λφ[E],
we introduce the notion of strongly Köthe–Orlicz summable sequences.

Definition 2. A sequence x = (xn) ⊂ E is said to be strongly Köthe–Orlicz summable with
respect to φ and Λ (for short, strongly (φ, Λ)-summable), if for every M ∈ M and every a =
(an)n ∈ (Λ∗)φ∗ [E′

M], the sequence (an(xn))n belongs to ℓ1.
The set of all strongly (φ, Λ)-summable sequences is denoted by Λφ⟨E⟩.
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Proposition 2. Let S ∈ S and M ∈ M. Then:

1. The space (Λ∗
S)φ∗ [E′

M] is a Banach space for the norm ε
φ∗

S◦ ,M◦ defined by

ε
φ∗

S◦ ,M◦(a) := sup
f∈M◦ , α∈S◦

∥(αn f (an))n∥φ∗ , a := (an)n ∈ (Λ∗
S)φ∗ [E′

M],

with S◦ being the polar of S in Λ. Moreover, the projections (an)n 7→ an are continuous.
2. The mapping σ

φ
S,M is a semi-norm on Λφ⟨E⟩, where for all x ∈ Λφ⟨E⟩,

σ
φ
S,M(x) = sup

{ +∞

∑
n=1

|an(xn)|; a = (an)n ∈ (Λ∗
S)φ∗

[
E′

M
]
, ε

φ∗

S◦ ,M◦(a) ≤ 1
}

.

Proof. 1. If S ′ := {rS′, r ≥ 0}, where S′ denotes the σ((Λ∗
S)

∗, Λ∗
S)-closure of S◦ in (Λ∗

S)
∗,

then the norm topology of Λ∗
S is nothing but the S ′-topology. Therefore, by Theorem 1,

(Λ∗
S)φ∗ [E′

M] is the Banach space. Moreover, by Lemma 2, the projections are continuous.

2. It suffices to show that σ
φ
S,M(x) is finite for every x ∈ Λφ⟨E⟩. Fix then such an

x and define a linear mapping Tx from (Λ∗
S)φ∗

[
E′

M
]

into ℓ1 by Tx((an)n) = (an(xn))n.
Suppose that (ai)i ∈ (Λ∗

S)φ∗
[
E′

M
]

converges to a := (an)n and (Tx(ai))i converges in ℓ1 to
(γn)n. By continuity of the projections, (ai

n)i converges in E′
M to some an for every n ∈ N.

Then (ai
n(xn))i converges to an(xn) as well. It follows that (an(xn))n = (γn)n: hence, the

closedness of the graph of Tx. Therefore, Tx is continuous and is then bounded on the unit
ball of (Λ∗

S)φ∗
[
E′

M
]
. This yields σ

φ
S,M(x) < +∞.

The following lemma can be shown using a standard argument. Its proof is thus
omitted.

Lemma 4. If γ := (γn)n ∈ c0, then γx = (γnxn)n ∈ Λφ[E]r for every x = (xn)n ∈ Λφ[E].

For a continuous linear functional F on Λφ[E] (or on Λφ[E]r), let Fn(t) := F(ten) for
n ∈ N and t ∈ E. The following lemma shows that in some sense, the topological dual
space of Λφ[E]r is contained in

(
Λφ[E]

)∗.

Lemma 5. Let F be a continuous linear functional on Λφ[E]. Then:

1. There exists M ∈ M such that (Fn)n ∈ E′
M.

2. The sequence (Fn)n belongs to
(
Λφ[E]

)∗.

If, in addition, the family {en, n ∈ N} is τS -bounded, then (Fn)n is equicontinuous.

Proof. By continuity of F, for every x ∈ Λφ[E]r, we have

F(x) = F
(

∑
n≥1

xnen

)
= ∑

n≥1
F(xnen) = ∑

n≥1
Fn(xn).

Moreover, there exist S ∈ S and M ∈ M such that |F(x)| ≤ ε
φ
S,M(x) for all x ∈ Λφ{E}. Fix

n ∈ N and t ∈ E. We have∣∣Fn(t)
∣∣ = ∣∣F(ten)

∣∣ ≤ ε
φ
S,M(ten) = ∥en∥φPS(en)PM(t). (1)

It follows that Fn belongs to E′
M and thus Condition 1 is proved.

For Condition 2, let x ∈ Λφ[E] be arbitrary. For all γ ∈ c0, γx ∈ Λφ[E]r. Choose a
scalar sequence λ = (λn)n such that |λn| = 1 and |γnFn(xn)| = λnγnFn(xn) for all n ∈ N.
Since γλx ∈ Λφ[E]r, we have
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∑
n≥1

|γnFn(xn)| = ∑
n≥1

γnλnFn(xn) = ∑
n≥1

Fn(γnλnxn) = F(λγx) < +∞.

As γ ∈ c0 was arbitrary, this shows that

∑
n≥1

|Fn(xn)| < +∞.

Hence, (Fn)n ∈
(
Λφ[E]

)∗.
Now, if in addition, the family {en, n ∈ N} is τS -bounded, choose s > 0 such that for

every n ∈ N, PS(en) ≤ s, ∥en∥φ ≤ s. We then get

|Fn(t)| ≤ ∥en∥φPM(t)PS(en) ≤ s2PM(t).

Therefore, (Fn)n is equicontinuous.

Now, we give a better description of continuous functionals on Λφ[E].

Theorem 2. If F is a continuous functional on Λφ[E], then there exist M ∈ M and S ∈ S such
that the sequence (Fn)n is strongly (φ∗, Λ∗

S)-summable in E′
M, i.e., (Fn)n ∈ (Λ∗

S)φ∗
〈

E′
M
〉
.

Proof. Let S ∈ S and M ∈ M be such that

|F(x)| ≤ ε
φ
S,M(x), x = (xn)n ∈ Λφ[E].

By Lemma 5, (Fn)n ⊂ E′
M. Now, fix ( fn)n ∈ (Λ∗

S)
∗
φ

[
(E′

M)′
]
. We claim that ( fn(Fn))n belongs

to ℓ1. Indeed, take an arbitrary k ∈ N and δ > 0, and denote by X the completion of the
normed space (E/M⊥, PM) and by Bk the linear span of {F1, F2, . . . , Fk}. Here, M⊥ is the
annihilator of M in E′, and as usual,

PM(x + M⊥) := PM(x).

Since E′
M is isometrically isomorphic to (E/M⊥)′ = X′, we have Bk ⊂ X′. But

( fn)n ∈ (Λ∗
S)

∗
φ

[
(E′

M)′
]
,

hence
( fn)n ⊂ (E′

M)′ = X′′.

Let Ak be the linear span of { f1, f2, . . . , fk}. By the principle of local reflexivity, there exists
a continuous operator Tk : Ak −→ X such that:

1. ∥Tk∥ ≤ 1 + δ with ∥Tk∥ = sup
f∈M◦

∥Tk( f )∥X ;

2. Fn(Tk fn) = fn(Fn), n ∈ {1, 2, . . . , k}.

Since E/M⊥ is dense in X, for any

0 < δn ≤ δ

k(1 + ∥en∥φPS(en))
,

there is xn ∈ E such that:
PM(xn + M⊥ − Tk fn) ≤ δn.
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Next, (1) implies that ∥Fn∥M ≤ ∥en∥φPS(en). Therefore, as Fn is continuous,∣∣∣Fn(xn + M⊥ − Tk fn)
∣∣∣ ≤ ∥Fn∥MPM(xn − Tk fn)

≤ ∥en∥φPS(en)
δ

k(1 + ∥en∥φPS(en))

≤ δ

k
.

Choose λn in the unit complex circle so that |F(xnen)| = λnF(xnen). Then

k

∑
n=1

| fn(Fn)| =
k

∑
n=1

|Fn(Tk fn)|

≤
k

∑
n=1

∣∣Fn(xn + M⊥ − Tk fn)
∣∣+ ∣∣∣∣F( k

∑
n=1

λnxnen

)∣∣∣∣
≤ δ + ε

φ
S,M((x1, x2, . . . , xk, 0, . . . ))

= δ + sup
{∣∣∣∣ k

∑
n=1

ynαna(xn)

∣∣∣∣ : (αn)n ∈ S, a ∈ M, y ∈ B̃φ∗

}
.

But for every (αn)n ∈ S, y ∈ B̃φ∗ , and a ∈ M,∣∣∣∣ k

∑
n=1

ynαna(xn)

∣∣∣∣ ≤ ∣∣∣∣ k

∑
n=1

ynαna(xn + M⊥ − Tk fn)

∣∣∣∣+ ∣∣∣∣ k

∑
n=1

ynαna(Tk fn)

∣∣∣∣
≤

k

∑
n=1

∣∣ynαn
∣∣∣∣a(xn + M⊥ − Tk fn)

∣∣+ ∣∣∣∣a(Tk

( k

∑
n=1

ynαn fn

))∣∣∣∣
≤

k

∑
n=1

|ynαn|∥a∥Mδn + ∥a∥M∥Tk∥ sup
x′∈M

{∣∣∣∣ k

∑
n=1

ynαn fn(x′)
∣∣∣∣}

≤ δ + (1 + δ)ε
φ
S,M(( fn)n).

Consequently,
k

∑
n=1

| fn(Fn)| ≤ 2δ + (1 + δ)ε
φ
S,M(( fn)n), k ∈ N.

Hence, ( fn(Fn))n belongs to ℓ1.

Remark 2. Since in the proof of Theorem 2, δ is arbitrary, it follows that

+∞

∑
n=1

∣∣ fn(Fn)
∣∣ ≤ ε

φ
S,M(( fn)n).

Using the Hahn–Banach theorem, we get:

Corollary 1. If F is a continuous functional on Λφ[E]r, then there exist M ∈ M and S ∈ S such
that (Fn)n ∈ (Λ∗

S)φ∗
〈

E′
M
〉
.

The following proposition is interesting on its own.

Proposition 3. Let S ∈ S and M ∈ M. If (an)n ∈ (Λ∗
S)φ∗

〈
E′

M
〉
, then (∥ynan∥M)n ∈ Λ∗

S for
every y ∈ B̃φ∗ .
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Proof. Fix (an)n ∈ (Λ∗
S)φ∗

〈
E′

M
〉

and y ∈ B̃φ∗ , and let (αn)n ∈ Λ and ε > 0 be given. We
have

∥ynαnan∥M = sup
t∈M◦

|ynαnan(t)|, n ∈ N.

Hence, for every n ∈ N, there is tn ∈ M◦ ⊂ E such that

∥ynαnan∥M ≤ ε

2n + |ynαnan(tn)|.

Fix n ∈ N and a ∈ E′
M and define fn(a) := αna(tn). Then

| fn(a)| = |αna(tn)| ≤ ∥a∥MPM(tn)|αn| ≤ ∥a∥M|αn|.

Since a ∈ E′
M, there is µ > 0 such that a ∈ µM. Therefore, |yn fn(a)| ≤ µ∥y∥∞|αn|, and as Λ

is normal, (yn fn(a))n ∈ Λ. Hence, (yn fn(a))n ∈ (Λ∗
S)

∗ for Λ ⊂ (Λ∗
S)

∗. Using Proposition 1,
we come to

( fn)n ∈ (Λ∗
S)

∗
φ

[
(E′

M)′
]
.

Further, since (an)n ∈ (Λ∗
S)φ∗

〈
E′

M
〉
, the series

+∞

∑
n=1

fn(an) =
+∞

∑
n=1

αnan(tn)

is absolutely convergent. As

+∞

∑
n=1

∥ynαnan∥M ≤ ε +
+∞

∑
n=1

|ynαnan(tn)| ≤ ε + ∥y∥∞

+∞

∑
n=1

| fn(an)|,

the series
+∞

∑
n=1

|αn|∥ynan∥M

is convergent. Hence, (∥ynan∥M)n ∈ Λ∗ because α was arbitrary in Λ.
Now, if (αn)n ∈ S◦ ⊂ Λ, by Remark 2, we have:

+∞

∑
n=1

|ynαnan(tn)| ≤ ∥y∥∞

+∞

∑
n=1

| fn(an)| ≤ ∥y∥∞ε
φ
S,M(( fn)n).

But

ε
φ
S,M(( fn)n) = sup

{ +∞

∑
n=1

|znβn fn(a)| : (βn)n ∈ S, a ∈ M, z ∈ B̃φ∗

}
≤ sup

{
∥a∥Mtφ∗

+∞

∑
n=1

|βnαn| : (βn)n ∈ S, a ∈ M
}

≤ tφ∗ ,

where tφ∗ := sup
{

t ∈ [0;+∞), φ∗(t) ≤ 1
}

. Consequently,

+∞

∑
n=1

|ynαnan(tn)| ≤ ∥y∥∞tφ∗ ,

whereby
+∞

∑
n=1

∥ynαnan∥M ≤ ∥y∥∞tφ∗ + ε.



Mathematics 2024, 12, 88 12 of 16

This means that

(∥ynan∥M)n ∈ (∥y∥∞tφ∗ + ε)S◦◦ = (∥y∥∞tφ∗ + ε)S;

hence (∥ynan∥M)n ∈ Λ∗
S.

Proposition 4. For every S ∈ S , M ∈ M and a = (an)n ∈ (Λ∗
S)φ∗

〈
E′

M
〉
, the mapping

fa : x 7−→
+∞

∑
n=1

an(xn)

defines a continuous linear functional on Λφ[E].

Proof. Fix an arbitrary S ∈ S , M ∈ M, and a = (an)n ∈ (Λ∗
S)φ∗

〈
E′

M
〉
, and for every

t ∈ E, denote by t̂ the continuous linear map on E′
M defined by t̂( f ) := f (t). Next, for

x = (xn)n ∈ Λφ[E], u ∈ E′
M ⊂ E′, and y ∈ B̃φ, we have

(yn x̂n(u))n = (ynu(xn))n ∈ Λ ⊂ (Λ∗
S)

∗.

So using Proposition 1, we get

(x̂n)n ∈ (Λ∗
S)

∗
φ

[
(E′

M)′β

]
.

Consequently,
+∞

∑
n=1

an(xn) =
+∞

∑
n=1

x̂n(an)

is convergent, and therefore, fa is well-defined.
Further, observe also that the mapping ψa : (Λ∗

S)
∗
φ

[
(E′

M)′
]
−→ ℓ1, given by

( fn)n 7−→ ψa(( fn)n) = ( fn(an))n,

is well-defined.
In fact, let ( fn)n ∈ (Λ∗

S)
∗
φ

[
(E′

M)′
]

be given. Since a = (an)n ∈ (Λ∗
S)φ∗

〈
E′

M
〉
, the series

+∞

∑
n=1

fn(an)

is absolutely convergent; hence, ( fn(an))n ∈ ℓ1.
Since (Λ∗

S)
∗ is perfect and (E′

M)′ is a Banach space, ((Λ∗
S)

∗
φ

[
(E′

M)′
]
, ε

φ
S,M) is also a

Banach space. Further, assume that (( fn)
i
n)i is a null sequence in (Λ∗

S)
∗
φ

[
(E′

M)′
]

such that
(ψa(( fn)

i
n))i converges in ℓ1 to (αn)n. As the projections ( fn)n 7→ fn are continuous, ( f i

n)i
converges in (E′

M)′ to 0 for all n ∈ N. Hence, the sequence (ψa(( f i
n)n))i = (( f i

n(an))n)i
converges to 0, whereby αn = 0 for every n. By the closed graph theorem, φa is continuous.
Therefore, there is K > 0 such that for every ( fn)n ∈ (Λ∗

S)
∗
φ

[
(E′

M)′
]
, we have the inequality

∥ψa(( fn)n)∥1 ≤ Kε
φ
S,M(( fn)n),

which means that
+∞

∑
n=1

| fn(an)| ≤ Kε
φ
S,M(( fn)n).

But (x̂n)n ∈ (Λ∗
S)

∗
φ

[
(E′

M)′
]
; hence,

∣∣ fa(x)
∣∣ = ∣∣∣∣ +∞

∑
n=1

x̂n(an)

∣∣∣∣ ≤ Kε
φ
S,M((x̂n)n) ≤ Kε

φ
S,M(x).
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Consequently, fa is continuous.

Theorem 3. The following equality is valid:

(Λφ[E])r)
′ =

⋃
S∈S ,M∈M

(Λ∗
S)φ∗

〈
E′

M
〉
.

Proof. By Proposition 4, for every S ∈ S , M ∈ M, and a := (an)n ∈ (Λ∗
S)φ∗

〈
E′

M
〉
, we have

fa ∈ (Λφ[E]r)′. Therefore, the function

ϕ :
⋃

S∈S ,M∈M
(Λ∗

S)φ∗
〈

E′
M
〉
−→ (Λφ[E]r)′

given by
a 7−→ fa,

is well-defined and linear. Clearly, ϕ is injective.
Moreover, observe that if F ∈ (Λφ[E]r)′, then Corollary 1 implies that there exist

S ∈ S , M ∈ M such that the sequence a := (Fn)n belongs to (Λ∗)φ∗
〈

E′
M
〉
. Next, for each

x ∈ Λφ[E]r, by the continuity of F, we have

F(x) = lim
k

F(x(k)) = lim
k

k

∑
n=1

F(xnen)

=
+∞

∑
n=1

Fn(xn) = fa(x).

This means that ϕ is also surjective. Consequently ϕ is an isomorphism.

In the following, we describe a fundamental base of equicontinuous subsets of
(Λφ[E]r)′. In order to establish it, let us denote for S ∈ S and M ∈ M:

Kφ
S,M =

{
( fn)n ∈ Λφ[(E′

M)′] : (yn fn(a))n ∈ S◦, a ∈ M, y ∈ B̃φ∗
}

.

Theorem 4. The family of sets of the form

Sφ⟨M⟩ =
{
(an)n ∈ (Λ∗

S)φ∗
〈

E′
M
〉

:
+∞

∑
n=1

| fn(an)| ≤ 1, ( fn)n ∈ Kφ
S,M

}
,

with S running over S and M over M yields a fundamental system of equicontinuous subsets of
(Λφ[E]r)′.

Proof. Let us first show that Sφ⟨M⟩ is equicontinuous. If x = (xn)n ∈ Λφ[E] is such that
ε

φ
S,M(x) ≤ 1, then, as in the proof of Proposition 4, one has

+∞

∑
n=1

|ynαn x̂n(u)| =
+∞

∑
n=1

|ynαnu(xn)| ≤ ε
φ
S,M(x) ≤ 1

for all y ∈ B̃φ∗ , u ∈ M and α ∈ S. Hence,

(yn x̂n(u))n ∈ S◦.

Therefore, (x̂n)n ∈ Kφ
S,M. Moreover, if a = (an)n ∈ Sφ⟨M⟩, then∣∣∣∣ +∞

∑
n=1

x̂n(an)

∣∣∣∣ = ∣∣∣∣ +∞

∑
n=1

an(xn)

∣∣∣∣ ≤ 1.
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Consequently, Sφ⟨M⟩ is equicontinuous.
Now, if H ⊂ (Λφ[E]r)′ is equicontinuous, then there are S ∈ S and M ∈ M such that:∣∣∣∣ +∞

∑
n=1

an(xn)

∣∣∣∣ ≤ ε
φ
S,M(x)

for all x = (xn)n ∈ Λφ[E]r and a = (an)n ∈ H. Let f = ( fn)n ∈ Kφ
S,M. Then ε

φ
S,M( f ) ≤ 1,

and by Remark 2, we have:

+∞

∑
n=1

| fn(an)| ≤ ε
φ
S,M( f ) ≤ 1.

Consequently, H ⊂ Sφ⟨M⟩.

Let us consider the collections:

B′ := {B′ ⊂ E′ : B′ is a closed weak*-bounded disc},

R := {R ⊂ Λ : R is a closed bounded and normal disc},

R′ := {R′ ⊂ Λ∗ : R′ is a closed weak*-bounded and normal disc},

and for every R′ ∈ R′ and B′ ∈ B′, the sets:

KR′ ,B′ :=
{
( fn)n ∈ Λφ[(E′

B′)′] : (yn fn(a))n ∈ (R′)◦, a ∈ B′, y ∈ B̃φ∗
}

,

R′
φ

〈
B′〉 :=

{
(an)n ∈ (Λφ[E]r)′ :

+∞

∑
n=1

| fn(an)| ≤ 1, ( fn)n ∈ KR′ ,B′

}
.

The following theorem gives a necessary and sufficient condition for the space Λφ[E]r
to be barrelled or quasi-barrelled.

Theorem 5. Assume that Λ is barrelled (quasi-barrelled). Then Λφ[E]r is barrelled (resp. quasi-
barrelled) if and only if the following two conditions are satisfied:

(i) E is barrelled (resp. quasi-barrelled).
(ii) For each weak* bounded (resp. strongly bounded) subset B of (Λφ[E]r)′, there exist B′ ∈ B′

and R′ ∈ R′ such that B ⊂ R′
φ

〈
B′〉.

Proof. Let T be a barrel (resp. bornivorous barrel) in Λφ[E]r. Then T◦ is a weakly bounded
(resp. strongly bounded) subset of (Λφ[E]r)′. By (ii), there exists R′ ∈ R′ and B′ ∈ B′ such
that T◦ ⊂ R′

φ⟨B′⟩. Since E is barrelled (resp. quasi-barrelled), B′ is equicontinuous. Hence,
it is contained in some M ∈ M.

Similarly, since Λ is barrelled (resp. quasi-barrelled), there exists S ∈ S such that
R′ ⊂ S. Hence, T◦ ⊂ R′

φ⟨B′⟩ ⊂ Sφ⟨M⟩. Therefore, T◦ is equicontinuous and consequently
T is a neighborhood of 0 in Λφ[E]r.

Now, assume that Λφ[E]r is barrelled. By Lemma 3, E is complemented in Λφ[E]r.
Therefore, E is a barrelled (resp. quasi-barrelled) space, whereby (i) is satisfied. Moreover,
Let B be a weakly bounded (resp. strongly bounded) subset of (Λφ[E]r)′. Then B is an
equicontinuous subset of (Λφ[E]r)′. By Theorem 4, there exist S ∈ S and M ∈ M such that
B ⊂ Sφ⟨M⟩. Hence, (ii) is satisfied, too.

Example 3.

1. If φ is the identity of R+, the continuous dual of Λφ[E]r is as given in [4].
2. In case Λ = ℓ1 and E = K, the continuous dual of Λφ[E]r is ℓφ∗ .
3. When φ is the Orlicz function in (3) of Example 1, the continuous dual of (c0)φ[E]r := cb(E)r

is
⋃

M∈M
ℓ1〈E′

M
〉
.
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In order to give further examples as applications of our results, we determine the
duals of some concrete sequence spaces and characterize the barrelledness therein. For

this, let p ≥ 1 be a real number and q its conjugate (i.e.,
1
p
+

1
q
= 1 if p ̸= 1, and q = +∞ if

p = 1) and let (E, ∥.∥E) be a normed space. Then the topology of ℓq
φ∗
〈

E′〉 is defined by the

single norm σ
φ∗

R′ ,B′ ; it is also denoted by σ
φ∗

q,E′ . Here, R′ and B′ are the closed unit bulls of ℓq

and E′, respectively.
We have the following proposition:

Proposition 5. The topological dual of ℓp
φ[E]r is ℓq

φ∗
〈

E′〉. Moreover, ℓp
φ[E]r is barrelled if and only

if E is barrelled.

Proof. The first assertion results immediately from Theorem 3.
For the second one, notice that since ℓp is a Banach space, it is barrelled. As ℓq

φ∗
〈

E′〉 is

a Banach space, it is sufficient to show that if E is barrelled, then the unit ball B of ℓq
φ∗
〈

E′〉
is contained in R′

φ

〈
B′〉, where R′ and B′ are the unit balls of ℓq and E′, respectively.

So choose an arbitrary (an)n ∈ B and ( fn)n ∈ KR′ ,B′ . Then (yn fn(b)) ∈ (R′)◦ for every
b ∈ B′ and every y ∈ B̃φ∗ , whereby

sup
α∈R′ ,b∈B′

sup
δ(y,φ∗)⩽1

∑
n≥1

|ynαn fn(b)| ≤ 1.

This shows that
ε

φ
p,E′′( f ) := ε

φ
R′ ,B′( f ) ≤ 1.

Hence,

∑
n≥1

| fn(an)| ≤ σ
φ∗

q,E′((an)n) ≤ 1,

and consequently, (an)n ∈ R′
φ

〈
B′〉.

In the special case where φ is the identity x 7→ x, the space ℓ
p
φ[E]r is nothing but the

space ℓp[E] introduced by H. Apiola [13]. We then obtain a characterization of barrelledness
in such spaces.

Corollary 2. ℓp[E]r is barrelled if and only if E is barrelled.

5. Conclusions and Future Work

We introduce the notions of weakly (resp. strongly) (φ, Λ)-summable sequences in a
locally convex space E and investigate topological properties of the linear space Λφ[E] of
all such sequences endowed with the topology induced by an appropriate family of semi-
norms. We obtain that E is embedded as a complemented subspace in Λφ[E]. Whenever
Λφ[E] has the property AK, we characterize its continuous dual in terms of strongly (φ, Λ)-
summable sequences in E′, which is the continuous dual of E. We further provide necessary
and sufficient conditions under which Λφ[E] is barrelled or quasi-barrelled. To illustrate
the proposed results, we have included as applications concrete examples of such spaces
(see Proposition 5 and Corollary 2). The outcomes of our paper extend and improve known
results: in particular, of [8]. Our work paves the way for further investigations of these
sequence spaces: namely, for studying reflexivity and distinguishedness.
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