

Issam Aboutaib ¹, Janusz Brzdek ^{2,*} and Lahbib Oubbi ³

- ¹ Laboratory LMSA, Department of Mathematics, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta 4, Rabat 10108, Morocco; issam_aboutaib@um5.ac.ma
- ² Faculty of Applied Mathematics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
- ³ Department of Mathematics, Ecole Normale Superieure, Mohammed V University in Rabat, Avenue Mohamed Bel Hassan El Ouazzani, Takaddoum, Rabat 10105, Morocco; oubbi@daad-alumni.de
- * Correspondence: brzdek@agh.edu.pl

Abstract: Let *E* be a Hausdorff locally convex space. We investigate the space $\Lambda_{\varphi}[E]$ of weakly Köthe–Orlicz summable sequences in *E* with respect to an Orlicz function φ and a perfect sequence space Λ . We endow $\Lambda_{\varphi}[E]$ with a Hausdorff locally convex topology and determine the continuous dual of the so-obtained space in terms of strongly Köthe–Orlicz summable sequences from the dual space *E'* of *E*. Next, we give necessary and sufficient conditions for $\Lambda_{\varphi}[E]$ to be barrelled or quasibarrelled. This contributes to the understanding of different spaces of vector-valued sequences and their topological properties.

Keywords: summable sequences; vector-valued sequence spaces; Orlicz function; AK-space; duality; barrelled space

MSC: 46A45; 46A03; 46E30

1. Introduction

Let *E* be a locally convex space. The spaces $\ell^p(E)$ and $\ell^p\{E\}$ of weakly *p*-summable and absolutely *p*-summable sequences in *E*, respectively, were introduced by Pietsch in [1]. The same author investigated applications of these spaces in the study of absolutely *p*summing operators. In addition, he investigated the spaces $\Lambda\{E\}$ and $\Lambda(E)$ of absolutely Λ -summable and weakly Λ -summable sequences in *E*, respectively, where Λ is a sequence space endowed with its Köthe normal topology. Building upon Pietsch's work, Rosier [2] extended the study to the general case, wherein Λ is equipped with a general polar topology (instead of the Köthe normal topology). Rosier obtained notable results, which included a comprehensive description of the dual space of $\Lambda\{E\}_r$.

Employing the *AK* property, Florencio and Paúl [3] determined a representation of the elements of $\Lambda \bigotimes_{\varepsilon} E$ (the completion of the injective tensor product $\Lambda \bigotimes_{\varepsilon} E$) as weakly Λ -summable sequences in *E*.

Later, Oubbi and Ould Sidaty extended in [4] the concept of strong summability, initially introduced by Cohen [5] for normed spaces, to the locally convex spaces. This extension allowed them to obtain a description of the continuous dual space of $\Lambda(E)_r$. Further results and properties for $\Lambda(E)$ were obtained in [6–8]. Recently, Ould Sidaty investigated in [9] the nuclearity (as a convex bornological space) of $\Lambda_b(E)$, i.e., the space of all totally Λ -summable sequences within the context defined by [10], where *E* represents a convex bornological space. Furthermore, Ghosh and Srivastava explored in [11] the notion of absolute Λ -summability (using an Orlicz function φ). They introduced and investigated the space $F(E, \varphi)$, consisting of all sequences $(x_n)_n$ in a Banach space *E* that satisfy the condition

Citation: Aboutaib, I.; Brzdęk, J.; Oubbi, L. Barrelled Weakly Köthe–Orlicz Summable Sequence Spaces. *Mathematics* **2024**, *12*, 88. https://doi.org/10.3390/ math12010088

Academic Editors: Lakshmi Kanta Dey and Pratulananda Das

Received: 17 October 2023 Revised: 21 December 2023 Accepted: 24 December 2023 Published: 26 December 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

$$\left(\varphi\left(\frac{\|x_n\|_E}{\rho}\right)\right)_n \in F$$

for some $\rho > 0$, where *F* denotes a normal sequence space.

It is worth noting that several kinds of sequence spaces have already been investigated in the literature. Descriptions of some of them rely on infinite Köthe matrices $(a_{i,j})_{i,j\in\mathbb{N}}$, some others rely on Cesàro operators, and others rely on different kinds of convergence or summability (see [1–4,6–20]).

Of course, Orlicz functions yield natural sequence spaces in the scalar-valued case. They are also used to construct vector-valued sequence spaces (see for example [11,17,19] and the references therein). The characterization of continuous dual or Köthe–Toeplitz dual are examples of the main issues authors are interested in (see, e.g., [21]). But first of all, a linear topology must be defined on the sequence space in consideration.

In this paper, for an Orlicz function φ and a locally convex space E, we introduce the notion of a weakly (φ, Λ) -summable sequence $(x_n)_n$ in E and examine some properties of the linear space $\Lambda_{\varphi}[E]$ consisting of all such sequences. Actually, weakly (φ, Λ) -summable sequences and the corresponding sequence spaces were investigated in [8] for a Banach space E. There, the author gave necessary and sufficient conditions for $\Lambda_{\varphi}[E]$ to be reflexive. The situation in a locally convex space is quite complicated, for the topology is no more given by a single norm but by a family of infinitely many semi-norms, which means that a bounded neighborhood of 0 may not exist there.

The outcomes of this paper extend and improve some results in the literature, especially those in [8]. We first equip $\Lambda_{\varphi}[E]$ with a Hausdorff locally convex topology, and then we investigate the completeness and the continuity of projections of the so-obtained locally convex space. We embed E in $\Lambda_{\varphi}[E]$ as a complemented subspace. In order to investigate the topological dual of $\Lambda_{\varphi}[E]$, we define the notion of strongly (φ, Λ) -summable sequences and the space $\Lambda_{\varphi}\langle E \rangle$ of all such sequences. Actually, we prove that whenever $\Lambda_{\varphi}[E]$ is AK, its topological dual can be given in terms of strongly summable sequences. Next, we characterize the property of barrelledness in $\Lambda_{\varphi}[E]$. To address this issue, we examine equicontinuous sets of the dual space of $\Lambda_{\varphi}[E]$. For ample information on barrelled locally convex spaces, we refer to the monograph [22].

2. Preliminaries

Throughout this paper, \mathbb{K} denotes the field of real or complex numbers, \mathbb{N} is the set of positive integers, and (E, τ) is a Hausdorff locally convex space over \mathbb{K} , for which the continuous dual is denoted by E'. If M runs over the collection \mathcal{M} of all $\sigma(E', E)$ -closed and equicontinuous discs of E', the topology τ is generated by the semi-norms

$$P_M(x) := \sup\{|a(x)|, a \in M\}, \qquad x \in E, \qquad M \in \mathcal{M}.$$

For any nonempty set X, $X^{\mathbb{N}}$ denotes the set of all sequences from X, and $X^{(\mathbb{N})}$ is the subset of $X^{\mathbb{N}}$ consisting of all sequences with finite support. If $\Omega \subset E^{\mathbb{N}}$ is a linear space, its Köthe dual, as defined in [23], is the set

$$\Omega^* := \left\{ (a_n)_n \subset E' : \sum_{n=1}^{+\infty} |a_n(x_n)| < +\infty, \quad (x_n)_n \in \Omega \right\}.$$

If $t \in E$, we write te_n to mean the sequence for which the entrees are all zero, but the *n*th one equals *t*. The *k*th finite section of a sequence $x := (x_n)_n \in \Omega$ is defined by

$$x^{(k)} = \sum_{n=1}^{k} x_n e_n = (x_1, x_2, \dots, x_k, 0, 0, \dots).$$

If a topology is given on Ω , we denote by Ω_r the linear subspace of Ω consisting of those sequences x such that $x^{(k)} \in \Omega$ for all $k \in \mathbb{N}$, and $x = \lim_{k \to \infty} x^{(k)}$ in Ω .

If Λ is a normal linear subspace of $\mathbb{K}^{\mathbb{N}}$, then Λ contains the set Λ_F of all finite sections of its elements. Unless the contrary is clearly stated, it is equipped with a polar topology τ_S defined by a topologizing family $S \subset \Lambda^*$ consisting of normal closed and bounded discs with respect to the weak topology $\sigma(\Lambda^*, \Lambda)$. Such a topology is given by the semi-norms

$$P_{S}((\alpha_{n})_{n}) := \sup \left\{ \sum_{n=1}^{+\infty} |\alpha_{n}\beta_{n}|, \quad (\beta_{n})_{n} \in S \right\}, \quad (\alpha_{n})_{n} \in \Lambda, \qquad S \in \mathcal{S}.$$

For a bounded disc *A* in a Hausdorff topological vector space *F*, *F*_{*A*} is the linear span of *A*. When no topology is specified on *F*_{*A*}, it is endowed with the gauge $||.||_A$ of *A* as a norm, where $||t||_A := \inf\{r > 0, t \in rA\}, t \in F_A$. We then consider without any further mention the spaces E_B , E'_M , Λ_R and Λ_S^* , where $B \subset E$, $M \in \mathcal{M}$, $S \in S$, and $R \subset \Lambda$ are bounded discs, with *R* normal.

We refer to [23] for details concerning Köthe theory of sequence spaces and to [24] for the terminology and notations concerning the general theory of locally convex spaces.

We consider an Orlicz function φ : this is any mapping $\varphi : [0, +\infty) \rightarrow [0, +\infty]$ that is convex, vanishes at 0, and is non-constant (see [17]). The complement of φ is the function

$$\varphi^*(y) := \sup\{xy - \varphi(x), x \in [0, +\infty)\}.$$

Let us observe that φ^* is also an Orlicz function. Clearly, φ and φ^* satisfy the Young inequality; namely,

$$xy \le \varphi(x) + \varphi^*(y), \qquad x, y \ge 0.$$

The function φ is said to satisfy Δ_2 for small x (or at 0) if for each k > 1 there exist $R_k > 0$ and $x_k > 0$ such that $\varphi(kx) \le R_k \varphi(x)$ for all $x \in (0, x_k]$. The Orlicz sequence class associated with φ is

$$\widetilde{\ell}_{\varphi} = \bigg\{ x = (x_n)_n \in \mathbb{K}^{\mathbb{N}} : \delta(x, \varphi) := \sum_{n=1}^{+\infty} \varphi(|x_n|) < +\infty \bigg\}.$$

We denote by \widetilde{B}_{φ} the set $\{x = (x_n)_n \in \mathbb{K}^{\mathbb{N}} : \delta(x, \varphi) \leq 1\}$. The Orlicz sequence space associated with φ is

$$\ell_{\varphi} = \bigg\{ x := (x_n)_n \in \mathbb{K}^{\mathbb{N}} : \sum_{n \ge 1} x_n y_n \text{ converges for all } y \in \widetilde{\ell}_{\varphi^*} \bigg\}.$$

This is a Banach space with respect to the norm

$$\|x\|_{\varphi} = \sup\left\{\left|\sum_{n\geq 1} x_n y_n\right| : \delta(y,\varphi^*) \le 1\right\}$$
$$= \sup\left\{\sum_{n\geq 1} |x_n y_n| : \delta(y,\varphi^*) \le 1\right\}.$$

Like in [18], if $x \in \ell_{\varphi}$ and $||x||_{\varphi} \leq 1$, then $x \in \ell_{\varphi}$ and $\delta(x, \varphi) \leq ||x||_{\varphi}$.

3. Weakly Köthe–Orlicz Summable Sequences

In this section, we introduce the notion of weakly Köthe–Orlicz summable sequences in a locally convex space *E* and investigate some first properties of the linear space of all such sequences.

Definition 1. A sequence $x = (x_n)_n \subset E$ is said to be weakly Köthe–Orlicz summable with respect to φ and Λ (for short, weakly (φ, Λ) -summable) if the sequence $(\alpha_n f(x_n))_n$ belongs to ℓ_{φ} for every $f \in E'$ and every $\alpha \in \Lambda^*$. The set of all such sequences is denoted by $\Lambda_{\varphi}[E]$.

Since $\Lambda^* = (\Lambda^{**})^*$, we assume with no loss of generality that Λ is perfect, i.e., $\Lambda = \Lambda^{**}$.

Here are some examples of Orlicz functions and the corresponding $\Lambda_{\varphi}[E]$.

Example 1.

- 1. Let φ be the identity map $x \mapsto x$. Then $\Lambda_{\varphi}[E]$ coincides with the space $\Lambda[E]$ of weakly summable sequence in E (see, e.g., [4]).
- 2. Assume $\Lambda = \ell^1$ and $E = \mathbb{K}$. Then $\Lambda_{\varphi}[E]$ is nothing but the classical Orlicz sequence space ℓ_{φ} .
- 3. Let φ be the Orlicz function defined by $\varphi(x) := +\infty$ if x > 1 and $\varphi(x) := 0$ if $0 \le x \le 1$. Let $\Lambda = c_0$, the space of all scalar null sequences, and let E be a Hausdorff locally convex space. We claim that $(c_0)_{\varphi}[E]$ is the set $c_b(E)$ of all bounded sequences in E. Indeed, since $(c_0)^{**} = \ell^{\infty}$, $(c_0)_{\varphi}[E] = \ell^{\infty}[E]$. Let $x \in \ell^{\infty}_{\varphi}[E]$. Then for every $f \in E'$ and $\alpha \in \ell^1 := (\ell^{\infty})^*$, we have $(\alpha_n f(x_n))_n \in \ell_{\varphi} := \ell^{\infty}$. Since α is arbitrary in ℓ^1 , the sequence $(f(x_n))_n$ belongs to ℓ^{∞} . This means that the sequence $(x_n)_n$ is weakly bounded in E, for f is arbitrary in E'. Hence, $(x_n)_n$ belongs to $c_b(E)$. The inverse inclusion $c_b(E) \subset \ell^{\infty}_{\varphi}[E]$ is trivial.

Notice that if for every $\alpha \in \Lambda^*$ and $f \in E'$, $\psi_{\alpha,f}$ is the endomorphism of $E^{\mathbb{N}}$ defined by $\psi_{\alpha,f}((x_n)_n) = (\alpha_n f(x_n))_n$, then

$$\Lambda_{\varphi}[E] = \bigcap \{ \psi_{\alpha,f}^{-1}(\ell_{\varphi}), \, \alpha \in \Lambda^*, \, f \in E' \}.$$

This shows that $\Lambda_{\varphi}[E]$ is a linear space.

Lemma 1. For every $x = (x_n)_n \in \Lambda_{\varphi}[E]$ and $S \in S$, the set A_S^{φ} below is bounded in E.

$$A_{S}^{\varphi} = \left\{ \sum_{n=1}^{p} \alpha_{n} y_{n} x_{n} : \alpha \in S, \ y \in \widetilde{B}_{\varphi^{*}}, \ p \in \mathbb{N} \right\}.$$

Therefore, for every $S \in S$ *and* $M \in M$ *, a semi-norm* $\varepsilon_{SM}^{\varphi}$ *is defined on* $\Lambda_{\varphi}[E]$ *, where*

$$\varepsilon_{S,M}^{\varphi}(x) := \sup_{\alpha \in S, f \in M} \|(\alpha_n f(x_n))_n\|_{\varphi}, \quad x = (x_n)_n \in \Lambda_{\varphi}[E].$$

Proof. Let $x = (x_n)_n \in \Lambda_{\varphi}[E]$, $\alpha \in S$, $y \in \widetilde{B}_{\varphi^*}$, $p \in \mathbb{N}$, and $f \in E'$ be given. Then

$$\left| f\left(\sum_{n=1}^p \alpha_n y_n x_n\right) \right| = \left| \sum_{n=1}^p \alpha_n y_n f(x_n) \right| \le \| (\alpha_n f(x_n))_n \|_{\varphi}.$$

Define a linear mapping $g_f : \Lambda_S^* \longrightarrow \ell_{\varphi}$ by $g_f(\beta) = (\beta_n f(x_n))$. Since Λ_S^* is a Banach space ([4], Lemma 3), g_f is continuous by the closed graph theorem. Therefore, it is bounded on *S* by the norm $||g_f||$ of g_f . This is

$$\left| f\left(\sum_{n=1}^p \alpha_n y_n x_n\right) \right| \leq \|(\alpha_n f(x_n))_n\|_{\varphi} \leq \|g_f\|.$$

Since *f* was arbitrary in *E'*, A_S^{φ} is weakly bounded and is then also bounded in *E*. The remainder is trivial. \Box

We denote by $\varepsilon_{S,M}^{\varphi}$ the locally convex topology defined on $\Lambda_{\varphi}[E]$ by the family $(\varepsilon_{S,M}^{\varphi})_{M\in\mathcal{M}} \stackrel{S\in\mathcal{S}}{\longrightarrow}$ of semi-norms.

Example 2.

- 1. If φ is the identity of \mathbb{R}_+ , the topology $\varepsilon_{S,M}^{\varphi}$ of $\Lambda_{\varphi}[E]$ is nothing but the topology $\varepsilon_{S,M}$ given in [4].
- 2. In case $\Lambda = \ell^1$ and $E = \mathbb{K}$, the topology $\varepsilon^{\varphi}_{S,\mathcal{M}}$ coincides with the norm topology of ℓ_{φ} .
- 3. When φ is the Orlicz function in (3) of Example 1, $\varepsilon_{S,M}^{\varphi}$ is given by the semi-norms

$$\varepsilon_M(x) := \sup_{f \in M} \|(f(x_n))_n\|_{\infty}, \quad x \in c_b(E), \ M \in \mathcal{M}.$$

Lemma 2. The topology $\varepsilon_{S,\mathcal{M}}^{\varphi}$ is Hausdorff. Moreover:

- 1. For every $n \in \mathbb{N}$, the projection $\mathcal{I}_n : x := (x_k)_k \mapsto x_n$ is a continuous mapping from $\Lambda_{\varphi}[E]$ into E;
- 2. $\Lambda_{\varphi}[E]_r$ is a closed subspace of $\Lambda_{\varphi}[E]$.

Proof. It is easily seen that $\varepsilon_{S,M}^{\varphi}$ is Hausdorff. To show this:

1. Fix $n \in \mathbb{N}$, $M \in \mathcal{M}$ and choose $S \in S$ such that $e_n \in S$. For all $x = (x_n)_n \in \Lambda_{\varphi}[E]$, we have

$$P_M(\mathcal{I}_n(x)) = P_M(x_n) = \frac{1}{\|e_n\|_{\varphi}} \|P_M(x_n)e_n\|_{\varphi}$$
$$\leq \frac{1}{\|e_n\|_{\varphi}} \varepsilon^{\varphi}_{S,M}(x).$$

Then \mathcal{I}_n is continuous.

2. Let $x \in \overline{\Lambda_{\varphi}[E]_r}$. Then for all $\varepsilon > 0$, $M \in \mathcal{M}$, and $S \in S$, there is $y \in \Lambda_{\varphi}[E]_r$ such that $\varepsilon_{S,M}^{\varphi}(x-y) \leq \frac{\varepsilon}{3}$. Since $y \in \Lambda_{\varphi}[E]_r$, there is $n_0 \in \mathbb{N}$ such that for all $i \geq n_0$, $\varepsilon_{S,M}^{\varphi}(y^{(i)}-y) \leq \frac{\varepsilon}{3}$. So for all $i \geq n_0$:

$$\begin{split} \varepsilon^{\varphi}_{S,M}(x^{(i)}-x) &\leq \varepsilon^{\varphi}_{S,M}(x^{(i)}-y^{(i)}) + \varepsilon^{\varphi}_{S,M}(y^{(i)}-y) + \varepsilon^{\varphi}_{S,M}(x-y) \\ &\leq \varepsilon^{\varphi}_{S,M}((x-y)^{(i)}) + \varepsilon^{\varphi}_{S,M}(y^{(i)}-y) + \varepsilon^{\varphi}_{S,M}(x-y) \\ &\leq 2\varepsilon^{\varphi}_{S,M}(x-y) + \varepsilon^{\varphi}_{S,M}(y^{(i)}-y) &\leq \varepsilon. \end{split}$$

Then $\Lambda_{\varphi}[E]_r$ is closed.

Remark 1. According to the proof above, for every $S \in S$, the set $\{\mathcal{I}_n, e_n \in S\}$ is even equicontinuous. In particular, if Λ is a normed space so that $||e_n||_{\Lambda^*} \leq 1$ for every n, then $\{\mathcal{I}_n, n \in \mathbb{N}\}$ is equicontinuous and is then also equibounded. An instance where this occurs is $\Lambda = \ell^p$.

The following lemma shows that not only is *E* (identified with) a subspace of $\Lambda_{\varphi}[E]$, but it is also complemented in it.

Lemma 3. The space *E* is complemented in both spaces $\Lambda_{\varphi}[E]$ and $\Lambda_{\varphi}[E]_r$.

Proof. Set $[E] := \{te_1 : t \in E\}$ and consider the mapping $p : \Lambda_{\varphi}[E] \to [E]$ defined for all $(x_n)_n \in \Lambda_{\varphi}[E]$ by $p((x_n)_n) = x_1e_1$. This is a projection, and since

$$\varepsilon_{S,M}^{\varphi}(p((x_n)_n)) \le \varepsilon_{S,M}^{\varphi}((x_n)_n), \qquad (x_n)_n \in \Lambda_{\varphi}[E], \qquad (S,M) \in \mathcal{S} \times \mathcal{M},$$

p is a continuous. Therefore, [*E*] is complemented in $\Lambda_{\varphi}[E]$. Now, the mapping $\phi : t \mapsto te_1$ is a bicontinuous linear isomorphism from *E* into [*E*] because for all $t \in E$ and all $(S, M) \in S \times M$,

$$\varepsilon_{S,M}^{\varphi}(te_1) = \|e_1\|_{\varphi} P_S(e_1) P_M(t).$$

Identifying *E* and [*E*], *E* is complemented in $\Lambda_{\varphi}[E]$. The same proof also works for $\Lambda_{\varphi}[E]_r$. \Box

The following theorem shows when $\Lambda_{\varphi}[E]$ is complete or sequentially complete.

Theorem 1. The space $\Lambda_{\varphi}[E]$ is (sequentially) complete if and only if E is (sequentially) complete.

Proof. This necessity is derived from Lemma 3. As to the sufficiency, assume *E* is complete, and let $(x^i)_{i \in I}$ be a Cauchy net in $\Lambda_{\varphi}[E]$, with (I, \leq) being an upwardly directed ordered set. The continuity of the projection \mathcal{I}_n implies that $(x_n^i)_i$ is a Cauchy net in *E* for all *n*. Hence, it converges to some $x_n \in E$.

We claim that $x := (x_n)_n$ belongs to $\Lambda_{\varphi}[E]$. For every $S \in S$, $M \in M$, and $\varepsilon > 0$, choose $k \in I$ such that for all i, j > k, $\varepsilon_{S,M}^{\varphi}(x^i - x^j) < \varepsilon$. Then, by normality of ℓ_{φ} , for every $\alpha \in S$, $f \in M$, and i, j > k, one has

$$\left\|\left(\alpha_n f(x_n^i) - \alpha_n f(x_n^j)\right)_n\right\|_{\varphi} \leq \varepsilon_{S,M}^{\varphi}(x^i - x^j) < \varepsilon.$$

Therefore, $(\alpha_n f(x_n^i))_i$ is a Cauchy sequence in the Banach space ℓ_{φ} for all $n \in \mathbb{N}$. Let $\gamma := (\gamma_n)_n$ be its limit in ℓ_{φ} . Then for every $n \in \mathbb{N}$, we have

$$\alpha_n f(x_n) = \alpha_n f(\lim_i x_n^i) = \lim_i \alpha_n f(x_n^i) = \gamma_n.$$

But for $i, j \ge k, \alpha \in S$, and $N \in \mathbb{N}$, we have

$$\sup_{\delta(y,\varphi^*)\leqslant 1} \sum_{n=1}^N \left| y_n \alpha_n f(x_n^i - x_n^j) \right| \le \left\| \left(\alpha_n f(x_n^i - x_n^j) \right)_n \right\|_{\varphi} \le \varepsilon_{S,M}^{\varphi}(x^i - x^j) < \varepsilon.$$

Passing to the limit on *j*, we get for all $N \ge n_0$

$$\sup_{\delta(y,\varphi^*)\leqslant 1} \sum_{n=1}^N \left| y_n \alpha_n f(x_n^i - x_n) \right| \le \varepsilon_n$$

and then $\varepsilon_{S,M}^{\varphi}(x^i - x) \leq \varepsilon$ for every $i \geq k$. This shows at once that x belongs to $\Lambda_{\varphi}[E]$ and that $(x^i)_{i \in I}$ converges to x in $\Lambda_{\varphi}[E]$.

With a similar proof, one shows that $\Lambda_{\varphi}[E]$ is sequentially complete if and only if *E* is sequentially complete. \Box

Lemma 3 and Theorem 1 show that the three spaces E, $\Lambda_{\varphi}[E]$, and $\Lambda_{\varphi}[E]_r$ are simultaneously complete or simultaneously not complete.

Proposition 1. If E is fast-barrelled, then

$$\Lambda_{\varphi}\left[E'_{\beta}\right] = \{a = (a_n)_n \subset E' : (\alpha_n a_n(x))_n \in \ell_{\varphi}, x \in E, \alpha \in \Lambda^*\}.$$

Moreover, the topology of $\Lambda_{\varphi} \left[E'_{\beta} \right]$ is given by the semi-norms

$$\varepsilon_{S,B}^{\varphi}(a) = \sup_{\alpha \in S, x \in B} \|(\alpha_n a_n(x))_n\|_{\varphi},$$

where S runs over S, and B runs over the collection B of all closed and bounded discs in E.

Proof. If

$$\Delta := \{a = (a_n)_n \subset E' : (\alpha_n a_n(x))_n \in \ell_{\varphi}, x \in E, \alpha \in \Lambda^*\},\$$

then clearly, $\Lambda_{\varphi} \Big[E'_{\beta} \Big] \subset \Delta$.

Conversely, consider $a := (a_n)_n \in \Delta$, $f \in (E'_{\beta})'$, $y \in \widetilde{B}_{\varphi^*}$, and $\beta \in \Lambda^*$. Choose $x \in E$. Then

$$\left|\sum_{n=1}^{p} y_n \beta_n a_n(x)\right| \leq \sum_{n=1}^{+\infty} |y_n \beta_n a_n(x)| < +\infty, \qquad p \in \mathbb{N}.$$

Therefore,

$$A:=\left\{\sum_{n=1}^p y_n\beta_na_n, p\in\mathbb{N}\right\}$$

is $\sigma(E', E)$ -bounded. Since *E* is fast-barrelled, *A* is bounded in E'_{β} . Hence, there is some K > 0 such that

$$\sum_{n=1}^{+\infty} |y_n \beta_n f(a_n)| \le K$$

Consequently,

$$a \in \Lambda_{\varphi}\left[E'_{\beta}\right]$$

Now, let *M* be a closed equicontinuous disc in $(E'_{\beta})'$. Then the polar M° of *M* is a 0-neighborhood in E'_{β} . If *B* is the polar in *E* of M° , then *B* is a closed bounded disc in *E* such that

$$M = M^{\circ\circ} \subset B^{\circ\circ} = \overline{B}^{\sigma(E^{\circ},E^{\circ})}.$$

Then for every $a \in E'$, we have

$$\sup_{f \in M} |f(a)| \le \sup_{x \in B^{\circ \circ}} |a(x)| \le \sup_{x \in B} |a(x)|.$$

In particular, for $a = \sum_{n=1}^{p} \alpha_n y_n a_n \in E'$ with $y \in \widetilde{B}_{\varphi^*}$, $\alpha \in S$ and $a \in \Lambda_{\varphi} \left[E'_{\beta} \right]$, we have

$$\sup_{f\in M}\left|\sum_{n=1}^{p}\alpha_{n}y_{n}f(a_{n})\right|\leq \sup_{x\in B^{\circ\circ}}\left|\sum_{n=1}^{p}\alpha_{n}y_{n}a_{n}(x)\right|\leq \sup_{x\in B}\left|\sum_{n=1}^{p}\alpha_{n}y_{n}a_{n}(x)\right|.$$

Passing to the supremum on *p*, first on $y \in \widetilde{B}_{\varphi^*}$ and then on $\alpha \in S$, we get

$$\varepsilon_{S,M}^{\varphi}(a) \leq \varepsilon_{S,B}^{\varphi}(a),$$

which completes the proof. \Box

4. Continuous Dual Space of $\Lambda_{\varphi}[E]$

In the literature, several kinds of duals are considered when dealing with sequence spaces: mainly the Köthe-dual or the α -dual, the β -dual, the Köthe–Toeplitz dual, the algebraic dual and, whenever the sequence space is equipped with a linear topology, the continuous dual (see [4,8,21]). In order to determine the continuous dual space of $\Lambda_{\varphi}[E]$, we introduce the notion of strongly Köthe–Orlicz summable sequences.

Definition 2. A sequence $x = (x_n) \subset E$ is said to be strongly Köthe–Orlicz summable with respect to φ and Λ (for short, strongly (φ, Λ)-summable), if for every $M \in \mathcal{M}$ and every $a = (a_n)_n \in (\Lambda^*)_{\varphi^*}[E'_M]$, the sequence $(a_n(x_n))_n$ belongs to ℓ^1 .

The set of all strongly (φ , Λ)*-summable sequences is denoted by* $\Lambda_{\varphi} \langle E \rangle$ *.*

Proposition 2. Let $S \in S$ and $M \in M$. Then:

1. The space $(\Lambda_S^*)_{\varphi^*}[E'_M]$ is a Banach space for the norm $\varepsilon_{S^\circ,M^\circ}^{\varphi^*}$ defined by

$$\varepsilon_{S^{\circ},M^{\circ}}^{\varphi^{*}}(a) := \sup_{f \in M^{\circ}, \ \alpha \in S^{\circ}} \|(\alpha_{n}f(a_{n}))_{n}\|_{\varphi^{*}}, \quad a := (a_{n})_{n} \in (\Lambda_{S}^{*})_{\varphi^{*}}[E'_{M}],$$

with S° being the polar of S in Λ . Moreover, the projections $(a_n)_n \mapsto a_n$ are continuous. 2. The mapping $\sigma_{S,M}^{\varphi}$ is a semi-norm on $\Lambda_{\varphi}\langle E \rangle$, where for all $x \in \Lambda_{\varphi}\langle E \rangle$,

$$\sigma_{S,M}^{\varphi}(x) = \sup\bigg\{\sum_{n=1}^{+\infty} |a_n(x_n)|; a = (a_n)_n \in (\Lambda_S^*)_{\varphi^*}[E'_M], \varepsilon_{S^\circ,M^\circ}^{\varphi^*}(a) \le 1\bigg\}.$$

Proof. 1. If $S' := \{rS', r \ge 0\}$, where S' denotes the $\sigma((\Lambda_S^*)^*, \Lambda_S^*)$ -closure of S° in $(\Lambda_S^*)^*$, then the norm topology of Λ_S^* is nothing but the S'-topology. Therefore, by Theorem 1, $(\Lambda_S^*)_{\varphi^*}[E'_M]$ is the Banach space. Moreover, by Lemma 2, the projections are continuous.

2. It suffices to show that $\sigma_{S,M}^{\varphi}(x)$ is finite for every $x \in \Lambda_{\varphi}\langle E \rangle$. Fix then such an x and define a linear mapping T_x from $(\Lambda_S^*)_{\varphi^*}[E'_M]$ into ℓ^1 by $T_x((a_n)_n) = (a_n(x_n))_n$. Suppose that $(a^i)_i \in (\Lambda_S^*)_{\varphi^*}[E'_M]$ converges to $a := (a_n)_n$ and $(T_x(a^i))_i$ converges in ℓ^1 to $(\gamma_n)_n$. By continuity of the projections, $(a_n^i)_i$ converges in E'_M to some a_n for every $n \in \mathbb{N}$. Then $(a_n^i(x_n))_i$ converges to $a_n(x_n)$ as well. It follows that $(a_n(x_n))_n = (\gamma_n)_n$: hence, the closedness of the graph of T_x . Therefore, T_x is continuous and is then bounded on the unit ball of $(\Lambda_S^*)_{\varphi^*}[E'_M]$. This yields $\sigma_{S,M}^{\varphi}(x) < +\infty$. \Box

The following lemma can be shown using a standard argument. Its proof is thus omitted.

Lemma 4. If $\gamma := (\gamma_n)_n \in c_0$, then $\gamma x = (\gamma_n x_n)_n \in \Lambda_{\varphi}[E]_r$ for every $x = (x_n)_n \in \Lambda_{\varphi}[E]$.

For a continuous linear functional *F* on $\Lambda_{\varphi}[E]$ (or on $\Lambda_{\varphi}[E]_r$), let $F_n(t) := F(te_n)$ for $n \in \mathbb{N}$ and $t \in E$. The following lemma shows that in some sense, the topological dual space of $\Lambda_{\varphi}[E]_r$ is contained in $(\Lambda_{\varphi}[E])^*$.

Lemma 5. Let *F* be a continuous linear functional on $\Lambda_{\varphi}[E]$. Then:

- 1. There exists $M \in \mathcal{M}$ such that $(F_n)_n \in E'_M$.
- 2. The sequence $(F_n)_n$ belongs to $(\Lambda_{\varphi}[E])^*$.

If, in addition, the family $\{e_n, n \in \mathbb{N}\}$ is τ_S -bounded, then $(F_n)_n$ is equicontinuous.

Proof. By continuity of *F*, for every $x \in \Lambda_{\varphi}[E]_r$, we have

$$F(x) = F\left(\sum_{n\geq 1} x_n e_n\right) = \sum_{n\geq 1} F(x_n e_n) = \sum_{n\geq 1} F_n(x_n).$$

Moreover, there exist $S \in S$ and $M \in M$ such that $|F(x)| \leq \varepsilon_{S,M}^{\varphi}(x)$ for all $x \in \Lambda_{\varphi}\{E\}$. Fix $n \in \mathbb{N}$ and $t \in E$. We have

$$F_n(t) = |F(te_n)| \le \varepsilon_{S,M}^{\varphi}(te_n) = ||e_n||_{\varphi} P_S(e_n) P_M(t).$$
(1)

It follows that F_n belongs to E'_M and thus Condition 1 is proved.

For Condition 2, let $x \in \Lambda_{\varphi}[E]$ be arbitrary. For all $\gamma \in c_0$, $\gamma x \in \Lambda_{\varphi}[E]_r$. Choose a scalar sequence $\lambda = (\lambda_n)_n$ such that $|\lambda_n| = 1$ and $|\gamma_n F_n(x_n)| = \lambda_n \gamma_n F_n(x_n)$ for all $n \in \mathbb{N}$. Since $\gamma \lambda x \in \Lambda_{\varphi}[E]_r$, we have

$$\sum_{n\geq 1} |\gamma_n F_n(x_n)| = \sum_{n\geq 1} \gamma_n \lambda_n F_n(x_n) = \sum_{n\geq 1} F_n(\gamma_n \lambda_n x_n) = F(\lambda \gamma x) < +\infty.$$

As $\gamma \in c_0$ was arbitrary, this shows that

$$\sum_{n\geq 1}|F_n(x_n)|<+\infty.$$

Hence, $(F_n)_n \in (\Lambda_{\varphi}[E])^*$.

Now, if in addition, the family $\{e_n, n \in \mathbb{N}\}$ is τ_S -bounded, choose s > 0 such that for every $n \in \mathbb{N}$, $P_S(e_n) \leq s$, $||e_n||_{\varphi} \leq s$. We then get

$$|F_n(t)| \le ||e_n||_{\mathscr{O}} P_M(t) P_S(e_n) \le s^2 P_M(t).$$

Therefore, $(F_n)_n$ is equicontinuous.

Now, we give a better description of continuous functionals on $\Lambda_{\varphi}[E]$.

Theorem 2. If *F* is a continuous functional on $\Lambda_{\varphi}[E]$, then there exist $M \in \mathcal{M}$ and $S \in \mathcal{S}$ such that the sequence $(F_n)_n$ is strongly (φ^*, Λ_S^*) -summable in E'_M , i.e., $(F_n)_n \in (\Lambda_S^*)_{\varphi^*} \langle E'_M \rangle$.

Proof. Let $S \in S$ and $M \in M$ be such that

$$|F(x)| \le \varepsilon_{S,M}^{\varphi}(x), \qquad x = (x_n)_n \in \Lambda_{\varphi}[E].$$

By Lemma 5, $(F_n)_n \subset E'_M$. Now, fix $(f_n)_n \in (\Lambda_S^*)^*_{\varphi}[(E'_M)']$. We claim that $(f_n(F_n))_n$ belongs to ℓ^1 . Indeed, take an arbitrary $k \in \mathbb{N}$ and $\delta > 0$, and denote by X the completion of the normed space $(E/M^{\perp}, \overline{P_M})$ and by B_k the linear span of $\{F_1, F_2, \ldots, F_k\}$. Here, M^{\perp} is the annihilator of M in E', and as usual,

$$\overline{P_M}(x+M^{\perp}) := P_M(x)$$

Since E'_M is isometrically isomorphic to $(E/M^{\perp})' = X'$, we have $B_k \subset X'$. But

$$(f_n)_n \in (\Lambda_S^*)^*_{\varphi} \lfloor (E'_M)' \rfloor$$

hence

$$(f_n)_n \subset (E'_M)' = X''.$$

Let A_k be the linear span of $\{f_1, f_2, ..., f_k\}$. By the principle of local reflexivity, there exists a continuous operator $T_k : A_k \longrightarrow X$ such that:

1.
$$||T_k|| \le 1 + \delta$$
 with $||T_k|| = \sup_{f \in M^\circ} ||T_k(f)||_X;$

2.
$$F_n(T_k f_n) = f_n(F_n), \quad n \in \{1, 2, ..., k\}.$$

Since E/M^{\perp} is dense in *X*, for any

$$0 < \delta_n \leq \frac{\delta}{k(1+\|e_n\|_{\varphi}P_S(e_n))},$$

there is $x_n \in E$ such that:

$$\overline{P_M}(x_n + M^{\perp} - T_k f_n) \le \delta_n.$$

Next, (1) implies that $||F_n||_M \le ||e_n||_{\varphi} P_S(e_n)$. Therefore, as F_n is continuous,

$$\begin{aligned} \left| F_n(x_n + M^{\perp} - T_k f_n) \right| &\leq \|F_n\|_M P_M(x_n - T_k f_n) \\ &\leq \|e_n\|_{\varphi} P_S(e_n) \frac{\delta}{k(1 + \|e_n\|_{\varphi} P_S(e_n))} \\ &\leq \frac{\delta}{k}. \end{aligned}$$

Choose λ_n in the unit complex circle so that $|F(x_n e_n)| = \lambda_n F(x_n e_n)$. Then

$$\sum_{n=1}^{k} |f_n(F_n)| = \sum_{n=1}^{k} |F_n(T_k f_n)|$$

$$\leq \sum_{n=1}^{k} |F_n(x_n + M^{\perp} - T_k f_n)| + \left|F\left(\sum_{n=1}^{k} \lambda_n x_n e_n\right)\right|$$

$$\leq \delta + \varepsilon_{S,M}^{\varphi}((x_1, x_2, \dots, x_k, 0, \dots))$$

$$= \delta + \sup\left\{\left|\sum_{n=1}^{k} y_n \alpha_n a(x_n)\right| : (\alpha_n)_n \in S, a \in M, y \in \widetilde{B}_{\varphi^*}\right\}$$

But for every $(\alpha_n)_n \in S$, $y \in \widetilde{B}_{\varphi^*}$, and $a \in M$,

$$\begin{split} \left|\sum_{n=1}^{k} y_n \alpha_n a(x_n)\right| &\leq \left|\sum_{n=1}^{k} y_n \alpha_n a(x_n + M^{\perp} - T_k f_n)\right| + \left|\sum_{n=1}^{k} y_n \alpha_n a(T_k f_n)\right| \\ &\leq \sum_{n=1}^{k} \left|y_n \alpha_n\right| \left|a(x_n + M^{\perp} - T_k f_n)\right| + \left|a\left(T_k\left(\sum_{n=1}^{k} y_n \alpha_n f_n\right)\right)\right| \\ &\leq \sum_{n=1}^{k} \left|y_n \alpha_n\right| \left\|a\right\|_M \delta_n + \left\|a\right\|_M \|T_k\| \sup_{x' \in M} \left\{\left|\sum_{n=1}^{k} y_n \alpha_n f_n(x')\right|\right\} \\ &\leq \delta + (1+\delta) \varepsilon_{S,M}^{\varphi}((f_n)_n). \end{split}$$

Consequently,

$$\sum_{n=1}^{k} |f_n(F_n)| \le 2\delta + (1+\delta)\varepsilon_{S,M}^{\varphi}((f_n)_n), \quad k \in \mathbb{N}.$$

Hence, $(f_n(F_n))_n$ belongs to ℓ^1 . \Box

Remark 2. Since in the proof of Theorem 2, δ is arbitrary, it follows that

$$\sum_{n=1}^{+\infty} |f_n(F_n)| \leq \varepsilon_{S,M}^{\varphi}((f_n)_n).$$

Using the Hahn–Banach theorem, we get:

Corollary 1. If *F* is a continuous functional on $\Lambda_{\varphi}[E]_r$, then there exist $M \in \mathcal{M}$ and $S \in S$ such that $(F_n)_n \in (\Lambda_S^*)_{\varphi^*} \langle E'_M \rangle$.

The following proposition is interesting on its own.

Proposition 3. Let $S \in S$ and $M \in M$. If $(a_n)_n \in (\Lambda_S^*)_{\varphi^*} \langle E'_M \rangle$, then $(||y_n a_n||_M)_n \in \Lambda_S^*$ for every $y \in \widetilde{B}_{\varphi^*}$.

Proof. Fix $(a_n)_n \in (\Lambda_S^*)_{\varphi^*} \langle E'_M \rangle$ and $y \in \widetilde{B}_{\varphi^*}$, and let $(\alpha_n)_n \in \Lambda$ and $\varepsilon > 0$ be given. We have

$$\|y_n\alpha_na_n\|_M = \sup_{t\in M^\circ} |y_n\alpha_na_n(t)|, \quad n\in\mathbb{N}.$$

Hence, for every $n \in \mathbb{N}$, there is $t_n \in M^\circ \subset E$ such that

$$\|y_n\alpha_na_n\|_M\leq \frac{\varepsilon}{2^n}+|y_n\alpha_na_n(t_n)|.$$

Fix $n \in \mathbb{N}$ and $a \in E'_M$ and define $f_n(a) := \alpha_n a(t_n)$. Then

$$|f_n(a)| = |\alpha_n a(t_n)| \le ||a||_M P_M(t_n) |\alpha_n| \le ||a||_M |\alpha_n|.$$

Since $a \in E'_M$, there is $\mu > 0$ such that $a \in \mu M$. Therefore, $|y_n f_n(a)| \le \mu ||y||_{\infty} |\alpha_n|$, and as Λ is normal, $(y_n f_n(a))_n \in \Lambda$. Hence, $(y_n f_n(a))_n \in (\Lambda_S^*)^*$ for $\Lambda \subset (\Lambda_S^*)^*$. Using Proposition 1, we come to

$$(f_n)_n \in (\Lambda_S^*)^*_{\varphi}[(E'_M)'].$$

Further, since $(a_n)_n \in (\Lambda_S^*)_{\varphi^*} \langle E'_M \rangle$, the series

$$\sum_{n=1}^{+\infty} f_n(a_n) = \sum_{n=1}^{+\infty} \alpha_n a_n(t_n)$$

is absolutely convergent. As

$$\sum_{n=1}^{+\infty} \|y_n \alpha_n a_n\|_M \leq \varepsilon + \sum_{n=1}^{+\infty} |y_n \alpha_n a_n(t_n)| \leq \varepsilon + \|y\|_{\infty} \sum_{n=1}^{+\infty} |f_n(a_n)|,$$

the series

$$\sum_{n=1}^{+\infty} |\alpha_n| \|y_n a_n\|_M$$

is convergent. Hence, $(\|y_n a_n\|_M)_n \in \Lambda^*$ because α was arbitrary in Λ . Now, if $(\alpha_n)_n \in S^\circ \subset \Lambda$, by Remark 2, we have:

$$\sum_{n=1}^{+\infty} |y_n \alpha_n a_n(t_n)| \le \|y\|_{\infty} \sum_{n=1}^{+\infty} |f_n(a_n)| \le \|y\|_{\infty} \varepsilon_{S,M}^{\varphi}((f_n)_n).$$

But

$$\varepsilon_{S,M}^{\varphi}((f_n)_n) = \sup\left\{\sum_{n=1}^{+\infty} |z_n\beta_n f_n(a)| : (\beta_n)_n \in S, a \in M, z \in \widetilde{B}_{\varphi^*}\right\}$$
$$\leq \sup\left\{\|a\|_M t_{\varphi^*} \sum_{n=1}^{+\infty} |\beta_n \alpha_n| : (\beta_n)_n \in S, a \in M\right\}$$
$$\leq t_{\varphi^*},$$

where $t_{\varphi^*} := \sup \{ t \in [0; +\infty), \varphi^*(t) \le 1 \}$. Consequently,

$$\sum_{n=1}^{+\infty} |y_n \alpha_n a_n(t_n)| \le \|y\|_{\infty} t_{\varphi^*}$$

whereby

$$\sum_{n=1}^{+\infty} \|y_n \alpha_n a_n\|_M \le \|y\|_{\infty} t_{\varphi^*} + \varepsilon.$$

This means that

$$(\|y_na_n\|_M)_n \in (\|y\|_{\infty}t_{\varphi^*} + \varepsilon)S^{\circ\circ} = (\|y\|_{\infty}t_{\varphi^*} + \varepsilon)S;$$

hence $(||y_n a_n||_M)_n \in \Lambda_S^*$. \Box

(

Proposition 4. For every $S \in S$, $M \in M$ and $a = (a_n)_n \in (\Lambda_S^*)_{\varphi^*} \langle E'_M \rangle$, the mapping

$$f_a: x \longmapsto \sum_{n=1}^{+\infty} a_n(x_n)$$

defines a continuous linear functional on $\Lambda_{\varphi}[E]$ *.*

Proof. Fix an arbitrary $S \in S$, $M \in M$, and $a = (a_n)_n \in (\Lambda_S^*)_{\varphi^*} \langle E'_M \rangle$, and for every $t \in E$, denote by \hat{t} the continuous linear map on E'_M defined by $\hat{t}(f) := f(t)$. Next, for $x = (x_n)_n \in \Lambda_{\varphi}[E]$, $u \in E'_M \subset E'$, and $y \in \tilde{B}_{\varphi}$, we have

$$(y_n\widehat{x}_n(u))_n = (y_nu(x_n))_n \in \Lambda \subset (\Lambda_S^*)^*.$$

So using Proposition 1, we get

$$(\widehat{x}_n)_n \in (\Lambda_S^*)_{\varphi}^* \Big[(E'_M)'_{\beta} \Big].$$

Consequently,

$$\sum_{n=1}^{+\infty} a_n(x_n) = \sum_{n=1}^{+\infty} \widehat{x}_n(a_n)$$

is convergent, and therefore, f_a is well-defined.

Further, observe also that the mapping $\psi_a : (\Lambda_S^*)_{\varphi}^*[(E'_M)'] \longrightarrow \ell^1$, given by

$$(f_n)_n \longmapsto \psi_a((f_n)_n) = (f_n(a_n))_n,$$

is well-defined.

In fact, let $(f_n)_n \in (\Lambda_S^*)^*_{\varphi}[(E'_M)']$ be given. Since $a = (a_n)_n \in (\Lambda_S^*)_{\varphi^*}\langle E'_M \rangle$, the series

$$\sum_{n=1}^{+\infty} f_n(a_n)$$

is absolutely convergent; hence, $(f_n(a_n))_n \in \ell^1$.

Since $(\Lambda_S^*)^*$ is perfect and $(E'_M)'$ is a Banach space, $((\Lambda_S^*)_{\varphi}^*[(E'_M)'], \varepsilon_{\mathcal{G},M}^{\varphi})$ is also a Banach space. Further, assume that $((f_n)_n^i)_i$ is a null sequence in $(\Lambda_S^*)_{\varphi}^*[(E'_M)']$ such that $(\psi_a((f_n)_n^i))_i$ converges in ℓ^1 to $(\alpha_n)_n$. As the projections $(f_n)_n \mapsto f_n$ are continuous, $(f_n^i)_i$ converges in $(E'_M)'$ to 0 for all $n \in \mathbb{N}$. Hence, the sequence $(\psi_a((f_n^i)_n))_i = ((f_n^i(a_n))_n)_i$ converges to 0, whereby $\alpha_n = 0$ for every n. By the closed graph theorem, φ_a is continuous. Therefore, there is K > 0 such that for every $(f_n)_n \in (\Lambda_S^*)_{\varphi}^*[(E'_M)']$, we have the inequality

$$\|\psi_a((f_n)_n)\|_1 \leq K\varepsilon_{S,M}^{\varphi}((f_n)_n),$$

which means that

$$\sum_{n=1}^{+\infty} |f_n(a_n)| \le K \varepsilon_{S,M}^{\varphi}((f_n)_n).$$

But $(\widehat{x}_n)_n \in (\Lambda_S^*)^*_{\varphi}[(E'_M)']$; hence,

$$\left|f_{a}(x)\right| = \left|\sum_{n=1}^{+\infty} \widehat{x}_{n}(a_{n})\right| \leq K\varepsilon_{S,M}^{\varphi}((\widehat{x}_{n})_{n}) \leq K\varepsilon_{S,M}^{\varphi}(x).$$

Consequently, f_a is continuous. \Box

Theorem 3. The following equality is valid:

$$(\Lambda_{\varphi}[E])_{r})' = \bigcup_{S \in \mathcal{S}, M \in \mathcal{M}} (\Lambda_{S}^{*})_{\varphi^{*}} \langle E'_{M} \rangle.$$

Proof. By Proposition 4, for every $S \in S$, $M \in M$, and $a := (a_n)_n \in (\Lambda_S^*)_{q^*} \langle E'_M \rangle$, we have $f_a \in (\Lambda_{\varphi}[E]_r)'$. Therefore, the function

 $\phi: \bigcup_{S \in \mathcal{S}, M \in \mathcal{M}} (\Lambda_S^*)_{\varphi^*} \langle E'_M \rangle \longrightarrow (\Lambda_{\varphi}[E]_r)'$

given by

$$a \longmapsto f_a$$
,

is well-defined and linear. Clearly, ϕ is injective.

Moreover, observe that if $F \in (\Lambda_{\varphi}[E]_r)'$, then Corollary 1 implies that there exist $S \in S$, $M \in \mathcal{M}$ such that the sequence $a := (F_n)_n$ belongs to $(\Lambda^*)_{\varphi^*} \langle E'_M \rangle$. Next, for each $x \in \Lambda_{\varphi}[E]_r$, by the continuity of F, we have

$$F(x) = \lim_{k} F(x^{(k)}) = \lim_{k} \sum_{n=1}^{k} F(x_n e_n)$$
$$= \sum_{n=1}^{+\infty} F_n(x_n) = f_a(x).$$

This means that ϕ is also surjective. Consequently ϕ is an isomorphism. \Box

In the following, we describe a fundamental base of equicontinuous subsets of $(\Lambda_{\varphi}[E]_r)'$. In order to establish it, let us denote for $S \in S$ and $M \in M$:

$$K^{\varphi}_{S,M} = \left\{ (f_n)_n \in \Lambda_{\varphi}[(E'_M)'] : (y_n f_n(a))_n \in S^\circ, \quad a \in M, \ y \in \widetilde{B}_{\varphi^*} \right\}$$

Theorem 4. *The family of sets of the form*

$$S_{\varphi}\langle M\rangle = \left\{ (a_n)_n \in (\Lambda_S^*)_{\varphi^*} \langle E'_M \rangle : \sum_{n=1}^{+\infty} |f_n(a_n)| \le 1, \quad (f_n)_n \in K_{S,M}^{\varphi} \right\},$$

with *S* running over *S* and *M* over *M* yields a fundamental system of equicontinuous subsets of $(\Lambda_{\varphi}[E]_r)'$.

Proof. Let us first show that $S_{\varphi}\langle M \rangle$ is equicontinuous. If $x = (x_n)_n \in \Lambda_{\varphi}[E]$ is such that $\varepsilon_{S,M}^{\varphi}(x) \leq 1$, then, as in the proof of Proposition 4, one has

$$\sum_{n=1}^{+\infty} |y_n \alpha_n \widehat{x}_n(u)| = \sum_{n=1}^{+\infty} |y_n \alpha_n u(x_n)| \le \varepsilon_{S,M}^{\varphi}(x) \le 1$$

for all $y \in \widetilde{B}_{\varphi^*}$, $u \in M$ and $\alpha \in S$. Hence,

$$(y_n\widehat{x}_n(u))_n\in S^\circ$$

Therefore, $(\widehat{x}_n)_n \in K^{\varphi}_{S,M}$. Moreover, if $a = (a_n)_n \in S_{\varphi} \langle M \rangle$, then

$$\left|\sum_{n=1}^{+\infty}\widehat{x}_n(a_n)\right| = \left|\sum_{n=1}^{+\infty}a_n(x_n)\right| \le 1.$$

Consequently, $S_{\varphi}\langle M \rangle$ is equicontinuous.

Now, if $\mathbb{H} \subset (\Lambda_{\varphi}[E]_r)'$ is equicontinuous, then there are $S \in S$ and $M \in \mathcal{M}$ such that:

$$\left|\sum_{n=1}^{+\infty}a_n(x_n)\right|\leq\varepsilon_{S,M}^{\varphi}(x)$$

for all $x = (x_n)_n \in \Lambda_{\varphi}[E]_r$ and $a = (a_n)_n \in \mathbb{H}$. Let $f = (f_n)_n \in K^{\varphi}_{S,M}$. Then $\varepsilon^{\varphi}_{S,M}(f) \leq 1$, and by Remark 2, we have:

$$\sum_{n=1}^{+\infty} |f_n(a_n)| \le \varepsilon_{S,M}^{\varphi}(f) \le 1.$$

Consequently, $\mathbb{H} \subset S_{\varphi} \langle M \rangle$. \Box

Let us consider the collections:

 $\mathcal{B}' := \{B' \subset E' : B' \text{ is a closed weak*-bounded disc}\},$ $\mathcal{R} := \{R \subset \Lambda : R \text{ is a closed bounded and normal disc}\},$ $\mathcal{R}' := \{R' \subset \Lambda^* : R' \text{ is a closed weak*-bounded and normal disc}\},$

and for every $R' \in \mathcal{R}'$ and $B' \in \mathcal{B}'$, the sets:

$$K_{R',B'} := \left\{ (f_n)_n \in \Lambda_{\varphi}[(E'_{B'})'] : (y_n f_n(a))_n \in (R')^{\circ}, \quad a \in B', \ y \in \widetilde{B}_{\varphi^*} \right\}$$
$$R'_{\varphi} \langle B' \rangle := \left\{ (a_n)_n \in (\Lambda_{\varphi}[E]_r)' : \sum_{n=1}^{+\infty} |f_n(a_n)| \le 1, \quad (f_n)_n \in K_{R',B'} \right\}.$$

The following theorem gives a necessary and sufficient condition for the space $\Lambda_{\varphi}[E]_r$ to be barrelled or quasi-barrelled.

Theorem 5. Assume that Λ is barrelled (quasi-barrelled). Then $\Lambda_{\varphi}[E]_r$ is barrelled (resp. quasibarrelled) if and only if the following two conditions are satisfied:

- *(i) E is barrelled (resp. quasi-barrelled).*
- (ii) For each weak* bounded (resp. strongly bounded) subset \mathbb{B} of $(\Lambda_{\varphi}[E]_r)'$, there exist $B' \in \mathcal{B}'$ and $R' \in \mathcal{R}'$ such that $\mathbb{B} \subset R'_{\varphi}\langle B' \rangle$.

Proof. Let *T* be a barrel (resp. bornivorous barrel) in $\Lambda_{\varphi}[E]_r$. Then T° is a weakly bounded (resp. strongly bounded) subset of $(\Lambda_{\varphi}[E]_r)'$. By (*ii*), there exists $R' \in \mathcal{R}'$ and $B' \in \mathcal{B}'$ such that $T^{\circ} \subset R'_{\varphi}\langle B' \rangle$. Since *E* is barrelled (resp. quasi-barrelled), *B'* is equicontinuous. Hence, it is contained in some $M \in \mathcal{M}$.

Similarly, since Λ is barrelled (resp. quasi-barrelled), there exists $S \in S$ such that $R' \subset S$. Hence, $T^{\circ} \subset R'_{\varphi} \langle B' \rangle \subset S_{\varphi} \langle M \rangle$. Therefore, T° is equicontinuous and consequently T is a neighborhood of 0 in $\Lambda_{\varphi}[E]_r$.

Now, assume that $\Lambda_{\varphi}[E]_r$ is barrelled. By Lemma 3, *E* is complemented in $\Lambda_{\varphi}[E]_r$. Therefore, *E* is a barrelled (resp. quasi-barrelled) space, whereby (*i*) is satisfied. Moreover, Let \mathbb{B} be a weakly bounded (resp. strongly bounded) subset of $(\Lambda_{\varphi}[E]_r)'$. Then \mathbb{B} is an equicontinuous subset of $(\Lambda_{\varphi}[E]_r)'$. By Theorem 4, there exist $S \in S$ and $M \in \mathcal{M}$ such that $\mathbb{B} \subset S_{\varphi}\langle M \rangle$. Hence, (*ii*) is satisfied, too. \Box

Example 3.

- 1. If φ is the identity of \mathbb{R}_+ , the continuous dual of $\Lambda_{\varphi}[E]_r$ is as given in [4].
- 2. In case $\Lambda = \ell^1$ and $E = \mathbb{K}$, the continuous dual of $\Lambda_{\varphi}[E]_r$ is ℓ_{φ^*} .
- 3. When φ is the Orlicz function in (3) of Example 1, the continuous dual of $(c_0)_{\varphi}[E]_r := c_b(E)_r$ is $\bigcup_{M \in \mathcal{M}} \ell^1 \langle E'_M \rangle$.

In order to give further examples as applications of our results, we determine the duals of some concrete sequence spaces and characterize the barrelledness therein. For this, let $p \ge 1$ be a real number and q its conjugate (i.e., $\frac{1}{p} + \frac{1}{q} = 1$ if $p \ne 1$, and $q = +\infty$ if p = 1) and let $(E, ||.||_E)$ be a normed space. Then the topology of $\ell_{\varphi^*}^q \langle E' \rangle$ is defined by the single norm $\sigma_{R',B'}^{\varphi^*}$; it is also denoted by $\sigma_{q,E'}^{\varphi^*}$. Here, R' and B' are the closed unit bulls of ℓ^q and E', respectively.

We have the following proposition:

Proposition 5. The topological dual of $\ell_{\varphi}^{p}[E]_{r}$ is $\ell_{\varphi^{*}}^{q} \langle E' \rangle$. Moreover, $\ell_{\varphi}^{p}[E]_{r}$ is barrelled if and only *if E* is barrelled.

Proof. The first assertion results immediately from Theorem 3.

For the second one, notice that since ℓ^p is a Banach space, it is barrelled. As $\ell_{\varphi^*}^q \langle E' \rangle$ is a Banach space, it is sufficient to show that if *E* is barrelled, then the unit ball \mathbb{B} of $\ell_{\varphi^*}^q \langle E' \rangle$ is contained in $R'_{\varphi} \langle B' \rangle$, where *R'* and *B'* are the unit balls of ℓ^q and *E'*, respectively.

So choose an arbitrary $(a_n)_n \in \mathbb{B}$ and $(f_n)_n \in K_{R',B'}$. Then $(y_n f_n(b)) \in (R')^\circ$ for every $b \in B'$ and every $y \in \widetilde{B}_{\varphi^*}$, whereby

$$\sup_{\alpha\in R', b\in B'} \sup_{\delta(y,\varphi^*)\leqslant 1} \sum_{n\geq 1} |y_n\alpha_n f_n(b)| \leq 1.$$

This shows that

$$\varepsilon^{\varphi}_{p,E''}(f):=\varepsilon^{\varphi}_{R',B'}(f)\leq 1.$$

Hence,

$$\sum_{n\geq 1} |f_n(a_n)| \leq \sigma_{q,E'}^{\varphi^*}((a_n)_n) \leq 1,$$

and consequently, $(a_n)_n \in R'_{\varphi} \langle B' \rangle$. \Box

In the special case where φ is the identity $x \mapsto x$, the space $\ell_{\varphi}^{p}[E]_{r}$ is nothing but the space $\ell^{p}[E]$ introduced by H. Apiola [13]. We then obtain a characterization of barrelledness in such spaces.

Corollary 2. $\ell^p[E]_r$ is barrelled if and only if *E* is barrelled.

5. Conclusions and Future Work

We introduce the notions of weakly (resp. strongly) (φ, Λ) -summable sequences in a locally convex space *E* and investigate topological properties of the linear space $\Lambda_{\varphi}[E]$ of all such sequences endowed with the topology induced by an appropriate family of seminorms. We obtain that *E* is embedded as a complemented subspace in $\Lambda_{\varphi}[E]$. Whenever $\Lambda_{\varphi}[E]$ has the property *AK*, we characterize its continuous dual in terms of strongly (φ, Λ) -summable sequences in *E'*, which is the continuous dual of *E*. We further provide necessary and sufficient conditions under which $\Lambda_{\varphi}[E]$ is barrelled or quasi-barrelled. To illustrate the proposed results, we have included as applications concrete examples of such spaces (see Proposition 5 and Corollary 2). The outcomes of our paper extend and improve known results: in particular, of [8]. Our work paves the way for further investigations of these sequence spaces: namely, for studying reflexivity and distinguishedness.

Author Contributions: Conceptualization, I.A. and L.O.; methodology, I.A., J.B., and L.O.; software, I.A., J.B., and L.O.; validation, I.A., J.B., and L.O.; formal analysis, I.A., J.B., and L.O.; investigation, I.A. and L.O.; data curation, I.A., J.B., and L.O.; writing—original draft preparation, I.A. and L.O.; writing—review and editing, I.A., J.B., and L.O.; visualization, I.A., J.B., and L.O.; project administration, I.A. and L.O.; funding acquisition, I.A., J.B., and L.O. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Conflicts of Interest: The authors declare no conflicts of interest.

References

- 1. Pietsch, A. Nuclear Locally Convex Spaces; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1972.
- 2. Rosier, R.C. Dual space of certain vector sequence spaces. Pac. J. Math. 1973, 46, 487–501.
- Florencio, M.; Paúl, P.J. Una representacione de cietros ε-productos tensoriales. Actas Jornadas Mat. Hisp.-Lusas. Murcia 1985, 191, 191–203.
- 4. Oubbi, L.; Sidaty, M.A.O. Dual space of certain locally convex spaces. *Rev. Acad. Cienc. Exactas FíSicas Quím. Nat. Zaragoza* 2004, 59, 79–88.
- 5. Cohen, J.S. Absolutely p-summing, p-nuclearoperators and their conjugates. *Math. Ann.* 1973, 201, 177–200.
- 6. Oubbi, L.; Sidaty, M.A.O. Reflexivity of spaces of weakly summable sequences. Rev. R. Acad. Cien. Ser. A Mat. 2007, 101, 51–62.
- 7. Sidaty, M.A.O. Nuclearity of certain vector-valued sequence spaces. *Rev. R. Acad. Cienc. Zaragoza* 2007, 62, 81–89.
- 8. Sidaty, M.A.O. Reflexivity of vector-valued Köthe-Orlicz sequence spaces. Turk. J. Math. 2018, 42, 911–923.
- 9. Sidaty, M.A.O. Nuclearity of a Class of Vector-valued Sequence Spaces. Eur. J. Pure Appl. Math. 2023, 16, 1762–1771.
- 10. Florencio, M.; Paúl, P.J. Barrelledness conditions on vector valued sequence spaces. Arch. Math. 1987, 48, 153–164.
- 11. Ghosh, D.; Srivastava, P.D. On some vector valued sequence space using Orlicz function. *Glansik Mat.* **1999**, *34*, 253–261.
- 12. Aboutaib, I.; Oubbi, L. Reflexivity in weighted vector-valued sequence spaces. Mat. Vesn. 2023, accepted.
- 13. Apiola, H. Duality between spaces of p-summing operators and characterization of nuclearity. Math. Ann. 1974, 219, 53–64.
- 14. Bonet, J.; Defant, A. Projective tensor products of distinguished Fréchet spaces. *Proc. R. Ir. Acad. Sect. A Math. Phys. Sci.* **1985**, *85*, 193–199.
- 15. Bonet, J.; Ricker, W.J. Operators acting in sequence spaces generated by dual Banach spaces of discrete Cesàro spaces. *Proc. Funct. Approx. Comment. Math.* **2021**, *64*, 109–139.
- 16. Duyar, O. On some new vector valued sequence spaces $E(X, \lambda, p)$. *AIMS Math.* **2023**, *8*, 13306–13316. https://doi.org/10.3934/math.2023673.
- 17. Foralewski, P.; Kończak, J. Orlicz-Lorentz function spaces equipped with the Orlicz norm. *Rev. Real Acad. Cienc. Exactas Físicas y Nat. Ser. A Mat.* 2023, 117, 120.
- 18. Kamthan, P.; Gupta, M. Sequence Spaces and Series; Lecture Notes in Pure and Applied Mathematics; M. Dekker: New York, NY, USA, 1981.
- 19. Raj, K.; Choudhry, A. Köthe-Orlicz vector-valued weakly sequence spaces of difference operators. *Methods Funct. Anal. Topol.* **2019**, 25, 161–176.
- 20. Soualmia, R.; Achour, D.; Dahia, E. Strongly (p, q)-Summable Sequences. *Filomat* **2020**, *34*, 3627–3637. https://doi.org/10.2298/ FIL2011627S.
- 21. Chandra, P.; Tripathy, B.C. On generalized Köthe-Toeplitz duals of some sequence spaces. *Indian J. Pure Appl. Math.* 2002, 33, 1301–1306.
- 22. Carreras, P.P.; Bonet, J. *Barrelled Locally Convex Spaces*; North-Holland Mathematics Studies; Elsevier Science: Amsterdam, The Netherlands, 1987; p. 131.
- 23. Köthe, G. *Topological Vector Spaces I*; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1979.
- 24. Jarchow, H. Locally Convex Spaces; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.