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Abstract: Count data arise in inference, modeling, prediction, anomaly detection, monitoring, re-
source allocation, evaluation, and performance measurement. This paper focuses on a one-parameter
discrete distribution obtained by compounding the Poisson and new X-Lindley distributions. The
probability-generating function, moments, skewness, kurtosis, and other properties are derived in
the closed form. The maximum likelihood method, method of moments, least squares method, and
weighted least squares method are used for parameter estimation. A simulation study is carried out.
The proposed distribution is applied as the innovation in an INAR(1) process. The importance of the
proposed model is confirmed through the analysis of two real datasets.

Keywords: discrete statistical model; dispersion index; hazard rate function; parameter estimation;
simulation; INAR(1)
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1. Introduction

Count data find diverse applications across various fields, such as the frequency of
typing errors on a page or the quantity of lice present on the heads of Hindu male prisoners
in Cannanore [1]. Count data modeling provides a powerful framework for understanding
and analyzing discrete events or occurrences. It allows researchers, policymakers, and orga-
nizations to quantify and interpret patterns, identify influential factors, make predictions,
and inform evidence-based decision-making. The most typical models for count data are
the Poisson and negative binomial distributions. Because of its equi-dispersive character,
the Poisson distribution should not be applied when an over-dispersion issue arises. Note
that count data commonly exhibit either over-dispersion or under-dispersion, and this has
driven the development of more versatile models over the past few decades.

Recall that real data are often over-dispersed. Many researchers have developed
mixed Poisson distributions such as the Poisson Weibull distribution [2], Conway–Maxwell–
Poisson distribution [3], Poisson transmuted Lindley distribution [4], Poisson transmuted
exponential distribution [5], Poisson quasi-Lindley distribution [6], Poisson Bilal distribu-
tion [7], Poisson Xgamma distribution [8], Poisson extended exponential distribution [9]
and the Poisson generalized Lindley distribution [10].

Moreover, count data are prevalent in numerous applied research domains. Examples
include the number of hospital admissions over time, monitoring the number of stock
trades per minute or daily transaction volumes in financial markets, and analyzing the
number of reported crimes per month in different regions. A nonnegative integer-valued
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autoregressive process of order one (INAR(1)) is a discrete-time autoregressive model
where the current value of the process depends on its previous value and is restricted to
take nonnegative integer values. The INAR(1) process with Poisson innovations due to [11]
was the pioneering work of INAR(1) processes. But Poisson distribution assumes that
the variance is equal to the mean (equi-dispersion). In over-dispersed count data, this
assumption is violated, as the variance is larger than the mean. Since [11], many researchers
have suggested INAR(1) processes under non-Poisson innovations. Some examples of
other innovations are geometric innovations [12], discrete three-parameter Lindley inno-
vations [13], Bell innovations [14], and discrete Bilal innovations [15]. We list also some
mixed Poisson innovations, as follows: Poisson–Lindley innovations [16], new Poisson
weighted exponential innovations [17], Poisson quasi-Xgamma innovations [18], discrete
pseudo-Lindley innovations [19], Poisson transmuted exponential innovations [20], and
Poisson generalized Lindley innovations [10].

Lindley distribution has found applications in various fields such as finance, envi-
ronmental studies, and medical research, among many others. Due to its ability to handle
various types of data, Lindley distribution has become a valuable tool in statistical model-
ing, particularly in situations where traditional distributions may not provide an adequate
fit. Researchers have often used Lindley distribution to gain insights into different datasets
and make more accurate predictions and inferences. Here, we consider the continuous new
X-Lindley (NXL) distribution [21]. It is a novel one-parameter distribution that incorporates
the advantages of both Lindley and exponential distributions. It has potential applications
in diverse fields such as biology, engineering, astronomy, actuarial science, and medicine.
Moreover, this distribution exhibits an elevated risk rate and a diminishing average residual
life function.

In this paper, we compound the Poisson and new X-Lindley distributions, resulting
in a new one-parameter distribution, which is referred to as the Poisson new X-Lindley
(PNXL) distribution. This new one-parameter distribution can handle over-dispersed
count data.

The remainder of the paper is structured as follows. In Section 2, the one-parameter
PNXL distribution is introduced and its statistical properties are derived. Estimation
techniques utilized to estimate the unknown parameter are described in Section 3, and their
finite sample performance is evaluated through a simulation study. A new INAR(1)PNXL
process is described in Section 4. Two real datasets are analyzed in Section 5 to demonstrate
the effectiveness of the suggested distribution. Conclusions are provided in Section 6.

2. Poisson New X-Lindley Distribution
2.1. The Poisson New X-Lindley Distribution and Its Statistical Properties

The NXL distribution is a special case of one-parameter polynomial exponential distri-
bution (NPED) proposed in [22]. The probability density function (pdf) and cumulative
distribution function (cdf) of the NXL distribution are given, respectevely, by

p(x; θ) =
θ(1 + θx)e−θx

2
and F(x; θ) = 1−

(
1
2

θx + 1
)

e−θx,

respectively, for x > 0 and θ > 0. Our suggested one-parameter discrete compound
distribution is built on the basis of the NXL distribution. That is, the PNXL distribution is a
mixed-Poisson distribution obtained by compounding the Poisson and NXL distributions.
Its probability mass function (pmf) is formulated as follows:

Definition 1. Let X denote a random variable having the PNXL distribution such that X|λ ∼
P(λ) and λ|θ ∼ NXL(θ), where λ > 0 and θ > 0. The unconditional pmf of X is

p(x; θ) =
∫ ∞

0

e−λλx

x!
θe−θλ(1 + θλ)

2
dλ =

θ(2θ + θx + 1)
2(θ + 1)x+2 (1)



Mathematics 2024, 12, 81 3 of 14

for x = 0, 1, 2, . . . and θ > 0.

The corresponding cdf is

F(x; θ) =
2θ2(1 + θ)x + 2[(1 + θ)x − 1] + θ[4(1 + θ)x − x− 3]

2(1 + θ)x+2 .

The pmf (1) is log concave since

p(x + 1; θ)

p(x; θ)
=

1 + (3 + x)θ
(1 + θ)(1 + (2 + x)θ)

is a decreasing function in x for all parameter values. Furthermore,
p(x + 1; θ)

p(x; θ)
< 1 for all

x = 0, 1, . . . and θ > 0, so the pmf is unimodal.
Figure 1 plots the pmf of the PNXL distribution.

Figure 1. Pmf of the PNXL distribution for θ = 0.25.

The survival function (sf) and hazard rate function (hrf) of X are

S(x; θ) =
2 + 3θ + θx
2(1 + θ)x+2

and
H(x; θ) =

θ(1 + 2θ + θx)
2 + 3θ + xθ

,

respectively.

2.2. Moments, Skewness, and Kurtosis

The probability generating function (pgf) of X is

p(s; θ) =
θ(1− s + 2θ)

2(1− s + θ)2 . (2)

By replacing s in (2) with et, the moment-generating function (mgf) of X is

M(t) =
θ
(
1− et + 2θ

)
2(1− et + θ)2 . (3)

Using (3), we obtain the mean, variance, skewness, and kurtosis of X as

E(X) =
3
2θ
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and
V(X) =

7 + 6θ

4θ2 ,

skew(X) =
36
(
2θ2 + 13θ − 4

)2

(7 + 6θ)3

and

kurt(X) =
333 + 612θ + 304θ2 + 24θ3

(7 + 6θ)2 ,

respectively. The dispersion index (DI) is 1 + 7
6θ , which implies that the PNXL distribution

is over-dispersed.
We see that moments, mean, variance, skewness, kurtosis, and generating functions are

all in closed form. The mean and variance decrease as θ increases. The PNXL distribution
has positive skewness, which increases as θ increases. Kurtosis decreases as θ approaches 1,
and thereafter, it increases.

3. Estimation of Parameters

Various techniques are employed to estimate unknown parameters. We consider the
maximum likelihood (ML) method, method of moments (MM), least squares (LS) method,
and weighted least squares (WLS) method. We suppose that {x1, x2, . . . , xn} is a random
sample of size n from the PNXL distribution with ordered values x(1) < x(2) < · · · < x(n).

3.1. Maximum Likelihood Estimation

The likelihood function is given by

L(θ) =
(

θ

2

)n
{

n

∏
i=1

[
2θ + θxi + 1
(θ + 1)xi+2

]}

and the log-likelihood function is given by

log L(θ) = n log θ − n log 2 +
n

∑
i=1

log
{

2θ + θxi + 1
(θ + 1)xi+2

}
.

The ML estimate (MLE) of θ is obtained by maximizing L(θ) or log L(θ) with respect to θ.
The first derivative of log L(θ) with respect to θ is

∂

∂θ
log L(θ) =

n(1− θx− θ)

θ(1 + θ)
+

n

∑
i=1

{
xi + 2

2θ + θxi + 1

}
,

where x =
1
n ∑n

i=1 xi. The MLE of θ, denoted by θ̂MLE, can be obtained by solving
∂
∂θ log L(θ) = 0, provided that the root corresponds to a maximum. We can use the
optim function in the R software (R 4.2.1) to obtain θ̂MLE numerically.

3.2. Method of Moments

The MM estimate (MME) can be obtained by equating theoretical and empirical
moments. The MME of θ, denoted by θ̂MME, is

θ̂MME =
3

2x
.
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Proposition 1. The MME θ̂MME has positive bias.

Proof. Note that θ̂MME = g(x), where g(t) =
3
2t

, t > 0, is strictly convex. Using Jensen’s

inequality, E
(

g
(
X
))

> g
(
E
(
X
))

, where g
(
E
(
X
))

= g
(

3
2θ

)
= θ. Hence, θ̂MME has

positive bias.

3.3. Least Squares and Weighted Least Squares Estimation

The LS estimate (LSE) of θ, denoted by θ̂LSE, is obtained by minimizing

Q(θ) =
n

∑
i=1

[
F
(

x(i)
)
− i

n + 1

]2
.

The WLS estimate (WLSE) of θ, denoted by θ̂WLSE, is obtained by minimizing

Qw(θ) =
n

∑
i=1

(n + 1)2(n + 2)
i(n− i + 1)

[
F
(

x(i)
)
− i

n + 1

]2
.

The LSE and WLSE can be evaluated numerically using the optim function in the R software (R 4.2.1).

3.4. Simulation Study

This section compares various estimates of θ using simulation. The average absolute
biases (biases) and mean square errors (MSEs) were calculated for θ = 0.3, 0.5, 1.2 and n = 50,
100, 200, 250, 500 with replicates N = 1000:

Bias =
1
N

N

∑
j=1
|θ̂j − θ| and MSE =

1
N

N

∑
j=1

(
θ̂j − θ

)2
,

where θ̂j denotes either the MLEs, MMEs, LSEs, or the WLSEs of θ, computed from the jth
sample. Table 1 gives the values of biases and MSEs.

Table 1. Simulation results for the PNXL distribution.

n MLE MME LSE WLSE
Bias MSE Bias MSE Bias MSE Bias MSE

θ = 0.5

50 0.065 0.004 0.067 0.004 0.141 0.020 0.158 0.025

100 0.055 0.003 0.052 0.003 0.127 0.016 0.161 0.026

200 0.044 0.002 0.044 0.002 0.126 0.016 0.165 0.027

250 0.008 0.000 0.005 0.000 0.085 0.007 0.145 0.021

500 0.004 0.000 0.002 0.000 0.103 0.011 0.052 0.020

θ = 0.3

50 0.034 0.001 0.037 0.001 0.087 0.008 0.074 0.006

100 0.013 0.000 0.015 0.000 0.058 0.003 0.059 0.004

200 0.008 0.000 0.008 0.000 0.050 0.003 0.060 0.004

250 0.007 0.000 0.008 0.000 0.032 0.001 0.045 0.002

500 0.001 0.000 0.001 0.000 0.003 0.001 0.035 0.001
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Table 1. Cont.

n MLE MME LSE WLSE
Bias MSE Bias MSE Bias MSE Bias MSE

θ = 1.2

50 0.107 0.011 0.108 0.012 0.511 0.261 0.635 0.403

100 0.048 0.002 0.046 0.002 0.485 0.235 0.611 0.373

200 0.046 0.002 0.046 0.002 0.485 0.235 0.642 0.412

250 0.007 0.005 0.006 0.000 0.471 0.222 0.645 0.416

500 0.004 0.000 0.006 0.001 0.483 0.234 0.560 0.314

θ = 1.5

50 0.055 0.003 0.052 0.003 0.684 0.468 0.897 0.804

100 0.030 0.001 0.029 0.001 0.677 0.458 0.868 0.754

200 0.025 0.001 0.026 0.001 0.689 0.475 0.880 0.775

250 0.021 0.000 0.025 0.001 0.699 0.489 0.864 0.747

500 0.020 0.000 0.021 0.002 0.666 0.444 0.889 0.790

We can see that MLE and MME perform almost equally well. For large values of θ, LSE
and WLSE do not perform well. For MLEs, there is a noticeable decline in both absolute
bias and MSE as the sample size increases. Consequently, the performance of MLE proves
to be consistently reliable.

4. The INAR(1) Process with PNXL Innovations

According to [11], as an innovation for INAR(1) processes for over-dispersed count
data, we employ the PNXL distribution, which is suitable for over-dispersed data. The
INAR(1) process is given by

Xt = α ◦ Xt−1 + εt, t ∈ Z,

where α ∈ [0, 1), {εt}t∈Z is a sequence of iid nonnegative integer-valued random variables
from the PNXL distribution with mean E(εt) = µε and variance V(εt) = σ2

ε . The binomial
thinning operator denoted by ‘◦’ is defined as

α ◦ Xt−1 =
Xt−1

∑
j=1

Wj,

where
{

Wj
}

j≥1 is a sequence of iid Bernoulli random variables with probability of success
p. The one-step transition probability matrix for the INAR(1) process is defined by

Pr(Xt = k|Xt−1 = l) =
min(k,l)

∑
i=1

(
l
i

)
αi(1− α)l−i Pr(εt = k− i), k, l ≥ 0.

PNXL innovations are used to propose a new INAR(1) process for over-dispersed data.
Let {εt}t∈Z follow the PNXL distribution. Then, the one-step transition probability matrix
of the corresponding process is

Pr(Xt = k|Xt−1 = l) =
min(k,l)

∑
i=1

(
l
i

)
αi(1− α)l−i

{
θ[2θ + θ(k− i) + 1]

2(θ + 1)k−i+2

}
, k, l ≥ 0.
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This new process is denoted by INAR(1)PNXL. We can obtain the joint probability function as

f (i1, i2, . . . , in) = Pr(X1 = i1, X2 = i2, . . . , Xn = in)

= Pr(X1 = i1)Pr(X2 = i2|X1 = i1) · · ·Pr(Xn = in|Xn−1 = in−1)

= Pr(X1 = i1)
n−1

∏
k=1

[
min(ik ,ik+1)

∑
m=0

(
ik
m

)
αm(1− α)ik−m Pr(εk+1 = ik+1 −m)

]
.

The (conditional or unconditional) mean/variance, DI, and autocovariance/autocorrelation
(ACF/PACF) at lag k of {Xt}t∈Z [23] are

E(Xt|Xt−1) = αXt−1 + µε = αXt−1 +
3
2θ

, (4)

V(Xt|Xt−1) = α(1− α)Xt−1 + σ2
ε = α(1− α)Xt−1 +

7 + 6θ

4θ2 , (5)

E(Xt) =
µε

1− α
=

3
2θ(1− α)

,

V(Xt) =
σ2

ε + αµε

1− α2 =
7 + 6(1 + α)θ

4(1− α2)θ2 ,

DI(Xt) =
DIε + α

1 + α
=

1 +
7
6θ

+ α

1− α
,

γk = Cov(Xk, Xk+1) = αkV(Xt)

and

ρk = Corr(Xk, Xk+1) = αk,

respectively.

4.1. Estimation of INAR(1)PNXL Process

We utilize the conditional maximum likelihood (CML), conditional least squares (CLS),
and Yule–Walker (YW) methods. Let {x1, . . . , xT} be the observed count time series of
length T.

4.1.1. Conditional Maximum Likelihood

The conditional log likelihood function of the INAR(1) process is

l(α, θ) =
T

∑
t=2

log[Pr(Xt = k|Xt−1 = l)]

=
T

∑
t=2

log

{
min(xt ,xt−1)

∑
i=1

(
xt−1

i

)
αi(1− α)xt−1−i θ[2θ + θ(k− i) + 1]

2(θ + 1)k−i+2

}
. (6)

The CML estimates of α and θ, denoted by α̂CML and θ̂CML, respectively, can be obtained
numerically by maximizing (6) with respect to α and θ.

4.1.2. Yule–Walker

The YW estimates of α and θ, denoted by α̂YW and θ̂YW , respectively, can be computed
by equating theoretical and empirical moments of the INAR(1)PNXL process, as follows:
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α̂YW =
∑T

t=2(xt − x)(xt−1 − x)

∑T
t=1(xt − x)2

and
θ̂YW =

3
2(1− α̂YW)x

, (7)

where x =
1
N ∑T

t=1 xt.

4.1.3. Conditional Least Squares

The CLS estimates of α and θ, denoted by α̂CLS and θ̂CLS, respectively, can be obtained
by minimizing

Q(η) =
T

∑
t=2

[Xt − E(Xt|Xt−1)]
2

=
T

∑
t=2

(
Xt − αXt−1 −

3
2θ

)2
, (8)

as follows

α̂CLS =
(T − 1)∑T

t=2 XtXt−1 −∑T
t=2 Xt ∑T

t=2 Xt−1

(T − 1)∑T
t=2 X2

t−1 −
(

∑T
t=2 Xt−1

)2

and

θ̂CLS =
3(T − 1)

2
(

∑T
t=2 Xt − α̂CLS ∑T

t=2 Xt−1

) .

4.2. Simulation of INAR(1)PNXL Process

A simulation study was carried out to assess the performances of CML, CLS, and YW
estimates. The biases and MSEs were calculated for the three estimates for α = 0.4, 0.8,
θ = 0.8, 3, and n = 50, 100, 200, 250, 500 with replication N = 1000. The results are given
in Table 2.

Table 2. Simulation results for the INAR(1)PNXL process.

Parameter n

α = 0.4 and θ = 0.8

CML CLS YW

Bias MSE Bias MSE Bias MSE

α

50 0.063 0.006 0.109 0.019 0.110 0.020

100 0.044 0.003 0.080 0.010 0.081 0.010

200 0.032 0.002 0.054 0.005 0.053 0.005

250 0.029 0.001 0.049 0.004 0.049 0.004

500 0.019 0.001 0.035 0.002 0.035 0.002

θ

50 0.130 0.029 0.164 0.044 0.162 0.043

100 0.094 0.015 0.122 0.025 0.122 0.025

200 0.063 0.007 0.084 0.012 0.083 0.012

250 0.058 0.005 0.078 0.010 0.078 0.010

500 0.041 0.003 0.056 0.005 0.056 0.005
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Table 2. Cont.

Parameter n

α = 0.4 and θ = 0.8

CML CLS YW

Bias MSE Bias MSE Bias MSE

α = 0.8 and θ = 3

α

50 0.041 0.003 0.098 0.017 0.105 0.019

100 0.028 0.001 0.061 0.007 0.065 0.008

200 0.022 0.001 0.047 0.004 0.049 0.004

250 0.018 0.001 0.036 0.002 0.036 0.002

500 0.012 0.000 0.025 0.001 0.025 0.001

θ

50 0.745 0.978 1.024 1.722 1.008 1.691

100 0.512 0.455 0.764 0.923 0.761 0.925

200 0.391 0.241 0.648 0.652 0.655 0.665

250 0.299 0.148 0.499 0.405 0.500 0.407

500 0.212 0.070 0.377 0.223 0.377 0.222

Biases and MSEs of the CML estimate tend to zero more quickly than those of YW and
CLS estimates, making them effective for both small and large sample sizes.

5. Data Analysis

In this section, two real datasets are analyzed using the PNXL distribution.

5.1. Corn Borer Data

Corn borer data are biological experiment data representing the number of European
corn borer larvae pyrausta in a field (see [24]). This dataset is taken to compare the perfor-
mance of the PNXL distribution with the discrete Burr (DB) distribution [25], the discrete
Pareto (DP) distribution [25], the discrete inverse Weibull distribution [26], the COM-
Poisson (CMP) distribution [3], the discrete Gumbel (DG) distribution [27], the discrete
inverse Rayleigh (DIR) distribution [28], the discrete log-logistic (DLL) distribution [29],
and the discrete Bilal (DBL) distribution [15].

These distributions were compared using the Akaike information criterion (AIC)
and Bayesian information criterion (BIC). Moreover, a χ2 test and its p-value were used to
determine the goodness of fit of each fitted distribution. The MLEs with their corresponding
standard errors (SEs) and confidence intervals (CIs) (lower bound of CI, upper bound of
CI) are provided in Table 3.

Table 3. Corn borer data: MLEs, SEs, and CIs.

Statistic PNXL DIW DG DLL DB DIR DBL DP CMP

MLEθ 1.012 0.345 3.106 1.943 2.357 0.320 0.657 0.329 0.672

SEθ 0.111 0.043 0.367 0.188 0.366 0.042 0.019 0.034 0.090

95% CI
lower 0.794 0.261 2.388 1.575 1.641 0.237 0.620 0.263 0.496

upper 1.230 0.429 3.825 2.311 3.073 0.402 0.693 0.395 0.847

MLEβ - 1.541 0.407 1.401 0.519 - - - 0.107

SEβ - 0.156 0.029 0.121 0.051 - - - 0.116

95% CI
lower - 1.235 0.349 1.163 0.419 - - - 0.121

upper - 1.847 0.464 1.638 0.619 - - - 0.334
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Table 4 shows that the PNXL distribution gives the best fit as it gives the lowest AIC,
the lowest BIC, and the highest p-value along with observed frequencies (of).

Table 4. Corn borer data: log L, χ2-value, p-value, AIC, and BIC for the competitive models.

X Of PNXL DIW DG DLL DB DIR DBL DP CMP

0 43 45.355 41.370 28.553 41.032 43.836 38.352 32.734 64.447 44.995

1 35 30.088 41.850 37.861 38.938 39.601 51.874 39.586 20.149 30.221

2 17 18.705 15.420 25.585 17.775 15.622 15.489 24.277 9.686 18.855

3 11 11.161 7.170 12.852 8.432 7.206 6.028 12.508 5.647 11.266

4 5 6.474 3.940 5.700 4.485 3.910 2.905 5.970 3.681 6.529

5 4 3.678 2.420 2.402 2.630 2.376 1.610 2.738 2.580 3.695

6 1 2.057 1.610 0.991 1.663 1.563 0.981 1.227 1.904 2.051

7 2 1.136 1.130 0.405 1.115 1.089 0.641 0.542 1.461 1.120

8 2 1.347 5.090 5.651 3.930 4.798 2.120 0.420 10.446 1.271

Total 120 120 120 120 120 120 120 120 120 120

log L -
200.432

-
204.810

-
231.191

-
202.630

-
204.293

-
208.440

-
204.675

-
220.618

-
200.415

AIC 402.863 413.621 430.382 409.261 412.587 418.881 411.351 443.236 404.830

BIC 405.651 419.195 435.957 414.836 418.162 421.668 414.138 446.024 410.405

χ2 1.115 5.511 7.615 1.311 2.674 14.295 6.996 30.518 1.063

df 3 3 2 2 2 3 3 3 2

p-value 0.774 0.138 0.022 0.519 0.263 0.003 0.072 0.000 0.588

5.2. Weekly Number of Syphilis Cases Data

Weekly number of syphilis cases data, available in the tsinteger package of the R
software, were fitted to the INAR(1)PNXL process. The effectiveness of this process was
evaluated against the INAR(1)P process [30], the INAR(1)G process [12], the INAR(1)ZIP
process [31], and the INAR(1)PWE process [17]. The dataset has a mean of 24.632 and a
variance of 105.676, which shows significant over-dispersion.

The Pearson residuals are employed in residual analysis to assess statistical precision
of the fitted INAR(1)PNXL process. These were calculated using

rt =
xt − E(xt|Xt−1 = xt−1)

V(xt|Xt−1 = xt−1)
1
2

,

where E(xt|Xt−1 = xt−1) and V(xt|Xt−1 = xt−1) are given in (4) and (5), respectively.
When the fitted INAR(1) process was statistically valid, the Pearson residuals had to
be uncorrelated and should have zero mean and unit variance. The Pearson residuals
are evaluated for correlation by generating a plot of their ACF. The randomness of the
INAR(1)PNXL process can be examined by plotting cumulative periodograms (cpgrams)
of the Pearson residuals for the series under consideration.

The ACF plot, partial ACF (PACF) plot, histogram, and time series plot of the data are
shown in Figure 2. Only the first lag is noticeable in the PACF plot. So, the INAR(1) process
could be a viable process for these data. The results of the INAR(1) process fitted to the
data are shown in Table 5, together with parameter estimates, SEs, AICs, BICs, theoretical
means, variances, and DIs.
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Figure 2. ACF plot, PACF plot, time series plot, and histogram of weekly number of syphilis
cases data.

Table 5. Estimates and model adequacy statistics of the fitted models for the number of syphilis
cases data.

Model Parameters Estimate S.E. AIC BIC µ σ2 DI

INAR(1)PNXL
α 0.316 0.034

1660.869 1667.554 23.943 255.917 10.689
θ 0.092 0.007

INAR(1)P
α 0.148 0.026

2016.534 2023.224 25.349 25.349 1.000
λ 21.063 0.709

INAR(1)G
α 0.347 0.032

1686.428 1693.112 23.895 252.431 10.564
λ 0.058 0.005

INAR(1)PWE

α 0.058 0.159

1688.428 1698.455 24.990 369.211 14.774λ 0.060 2.883

β 0.347 0.032

INAR(1)ZIP

α 20.552 0.595

1732.296 1742.323 25.332 58.543 2.307λ 0.113 0.024

β 0.262 0.024

The INAR(1)PNXL process offers a better fit than other INAR(1) processes as it gives
the lowest AIC and lowest BIC values. The accuracy of the fitted INAR(1)PNXL process was
assessed using standardized Pearson residuals. Figure 3 presents the ACF for the Pearson
residuals, revealing the absence of autocorrelation. To confirm this, a Ljung–Box test was
conducted with 10 degrees of freedom, resulting in a p-value of 0.1119, which is greater
than 0.05. This test unequivocally establishes the lack of correlation among the residuals,
providing strong evidence for the accuracy and excellent fit of the INAR(1)PNXL process
to the weekly number of syphilis cases dataset. Figure 4 shows that the INAR(1)PNXL
process is random for the weekly number of syphilis cases data.

The INAR(1)PNXL model for the weekly number of syphilis cases data is given by

Xt = 0.316Xt−1 + εt,
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where εt ∼ PNXL(0.092). The predicted values for the weekly number of syphilis cases
data obtained by the INAR(1)PNXL process are the following:

X̂1 = E(Xt)θ̂cml
= 23.943,

X̂t = E(Xt|Xt−1)θ̂cml
= 0.316Xt−1 + 16.388, t = 2, 3, . . . , n.

Figure 5 plots the predicted versus the original values of the weekly number of syphilis cases.

Figure 3. The ACF plot of the Pearson residuals.

Figure 4. The cpgrams of the Pearson residuals of the weekly number of syphilis cases data.
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Figure 5. The predicted versus the original values of the weekly number of syphilis cases data.

6. Conclusions

The PNXL distribution, a one-parameter discrete compound distribution capable of
modeling data with over-dispersion, was proposed in this paper. Various probabilistic
and statistical aspects, almost all of which have closed forms, show how adaptable and
straightforward the one-parameter distribution is. Various methods were used to estimate
its parameter. Simulation studies showed that ML and MM methods performed equally
well in finite samples. Also, a new INAR(1)PNXL model was proposed. The better
performance of the PNXL distribution or the INAR(1)PNXL model was illustrated using
two real datasets, which was superior to several existing two-parameter models.
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