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Abstract: This article is devoted to the formulation and numerical solution of boundary-value
problems in the theory of elasticity with respect to deformations. Similar to the well-known Beltrami–
Michell stress equations, the Saint-Venant compatibility conditions are written in the form of differen-
tial equations for strains. A new version of plane boundary-value problems in strains is formulated.
It is shown that for the correctness of plane boundary value problems, in addition to the usual
conditions, one more special boundary condition is required using the equilibrium equation. To
discretize additional boundary conditions and differential equations, it is convenient to use the finite
difference method. By resolving grid equations and additional boundary conditions with respect to
the desired quantities at the diagonal nodal points, we obtained convergent iterative relations for
the internal and boundary nodes. To solve grid equations, the elimination method was also used.
By comparing with the Timoshenko–Goodyear solution on the tension of a rectangular plate with a
parabolic load, the validity of the formulated boundary value problems in strains and the reliability
of the numerical results are shown. The accuracy of the results has been increased by an average
of 15%.

Keywords: compatibility condition; equilibrium equations; additional boundary conditions; difference
schemes; iteration and variable direction method

MSC: 65-XX

1. Introduction

The development of information technologies in the modern world, as well as their
widespread application in various fields of scientific and technical applications, have set
new goals and more complex innovative tasks for scientists and workers. They must
adequately calculate the safety margins and reliability of structures and their elements,
considering the influence of external factors. The mathematical and numerical modeling of
linear and nonlinear processes of the deformation of engineering structures in mechanical
engineering, nuclear power engineering, aircraft engineering, and astronautics; in the
calculation of dams and the mining industry; as well as the study of the stress–strain state
to determine the safety margins is an urgent problem in solid mechanics.

Typically, the boundary-value problems of the theory of elasticity are formulated
with respect to displacements, and the necessary strains and stresses are calculated from
the displacements.

The formulation of boundary value problems on stresses and strains is an urgent
problem in solid mechanics. The formulation of boundary value problems is usually based
on the conditions of compatibility of Saint-Venant deformations. From a mathematical point
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of view, the conditions for the compatibility of deformations are the result of the triviality
of the components of the Riemann–Christophel tensor and provide an unambiguous
determination of displacements along deformations for simply connected regions [1].
It is known that the compatibility conditions consist of six equations and the question
of the dependence of the compatibility equations remains unresolved [2]. Note that to
formulate plane boundary value problems in the theory of elasticity, one condition for the
compatibility of deformations is sufficient. Plane problems usually reduce to solving a
biharmonic equation with respect to the Airy stress function.

It is known that the conditions for compatibility of deformations, using Hooke’s law
and the equilibrium equation, can be written with respect to the stress tensor in the form of
the Beltrami–Michell equations [3]. The Beltrami–Michell equations, in combination with
three equilibrium equations, represent a boundary value problem with nine equations and
three boundary conditions [4]. The works of Borodachev [5] show that the first group of
three Beltrami–Michell equations depends on the second group of equations. In the works
of Pobedry [6], the compatibility conditions and equilibrium equations are reduced to a
correct boundary value problem consisting of six equations [7]. In this case, the equilibrium
equations on the boundary of a given region are considered as the three missing boundary
conditions. In a particular case, the Beltrami–Michell equations follow from the Pobedry
equations [8]. Issues of equivalence in the formulation of boundary value problems on
displacements and stresses are considered in [9]. Questions of the existence and uniqueness
of solutions to boundary value problems are considered in [10]. The Beltrami–Michell
equations taking into account temperature are considered in the work of Nowatsky [8].
Coupled problems of thermoelasticity are considered in [11]. Dynamic boundary value
problems in stresses are considered in the works of Konovalov [12].

The formulation of boundary value problems regarding deformations is a poorly stud-
ied area of solid mechanics. In this area, the works of Pobedra [3,4] and Borodachev [6,7]
can be noted. In Pobedry’s works, the deformation compatibility equation, in combination
with the equilibrium equation, is written in the form of six differential equations for the com-
ponents of the deformation tensor. In [6,7], within the framework of the Beltrami–Michell
equations, equations about deformations of an infinite half-plane are considered. Despite
the existing effective methods for solving applied problems, such as the finite element
method, FEM, and finite difference methods, there are few numerically solved boundary
value problems regarding stresses. Let us note the works of Filonenko-Borodich [13]. The
problem of equilibrium of a parallelepiped under stress was considered by the variational-
difference method in [3,14,15].

In the studies of [16,17], the regular perturbation method is employed to solve the fun-
damental equations of fluid flow, encompassing continuity, momentum, mode, and energy.
This approach models the distribution of velocity, mode, and temperature. The work’s
novelty stems from treating the particle penetration speed as a perturbation parameter.
Crucially, this rate of particle penetration at the base of the flow channel, which depends
on the porosity of the gas diffusion layer (GDL) and the operational pressure within the
channel, significantly influences the performance metrics, specifically the output voltage at
a given current density, of proton exchange membrane fuel cells (PEMFCs).

This study is concerned with the formulation and numerical solution of boundary-
value problems of the theory of elasticity in strains. Within the framework of the compatibil-
ity conditions, differential equations of deformations are expressed, which, in combination
with the equilibrium equations and the corresponding boundary and additional boundary
conditions, constitute the boundary problem of the theory of elasticity in strains. It is
shown that the first two differential equations of deformation in the plane strain case are
equivalent to the well-known condition ε11,22 + ε22,11 = 2ε12,12, and the third equation can
also be considered as a new compatibility condition. Moreover, these two compatibility
conditions combined with two equilibrium equations allow us to constitute two different
plane strain boundary problems. In addition to the usual boundary conditions, additional
equations are required for the correct formulation of boundary-value problems, which
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are obtained by considering the equilibrium equation on the domain’s boundary. It is
shown that the differentiated equilibrium equations, in conjunction with the compatibility
condition, can also be considered a boundary-value problem in strains.

Grid equations were compiled using the finite difference method for plane boundary-
value problems in the strains, which were solved using the iterative and variable direction
methods. By comparing the numerical results of the plane boundary-value problems with
the well-known Timoshenk-Goodyear [18] solution for stretching a rectangular plane with
a parabolic load applied to opposite sides, the validity of the formulated boundary-value
problems of the theory of elasticity in strains and the reliability of the results obtained were
substantiated [19,20].

2. Formulation of the Boundary-Value Problems of the Theory of Elasticity in Strains

Generally, Refs. [6,8] the boundary-value problem of elasticity theory consists of the
following equilibrium equation:

σij,j + Xi = 0, (1)

Hooke’s law is expressed as follows:

σi j = λθδij + 2µεij, (2)

Cauchy ratio is expressed as follows:

εij =
1
2
(ui,j + uj,i), (3)

Boundary conditions are expressed as follows:

ui |∑1
= u0

i , (4)

σijnj
∣∣
∑2

= Si. (5)

where σij—denotes the stress tensor, εij—denotes the strain tensor, ui—denotes the dis-
placement, λ,µ denotes the elastic Lame constants, eij, θ—denotes spherical part of the
strain tensor, Si—denotes the surface load, Xi denotes the body forces, and δij denotes the
Kronecker symbol.

Substituting Equation (3) into Equation (2) from Equation (1), we can obtain the
following differential equations for displacements in the form of the Lame equation:

µ∇2ui + (λ + µ)θ,i +Xi = 0. (6)

where the ∇2—denotes the Laplace operator and θ = εkk. If necessary, deformations and
stresses can be calculated from the displacements.

The condition for the unique solvability of Equation (3) with respect to the displace-
ments is the Saint-Venant compatibility condition, which is expressed as follows:

εij,kl + εkl,ij − εik,jl − ε jl,ik = 0, (7)

Multiplying the latter by δkl can be reduced to the following six equations:

∇2εij + θ,ij − εik,jk − ε jk,ik = 0, (8)

Using Hooke’s law (2) from the equilibrium Equation (1), one can receive

εij,j = − 1
2µ

(λθ,i +Xi),
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and substitute the last one into Equation (8) to find the differential equations in strain [8]:

µ∇2εij + (λ + µ)θ,i j +
1
2
(Xi,j + Xj,i) = 0, (9)

Setting up a correct boundary value problem using Equation (9) is an unexplored com-
plex mathematical problem. There are several reasons that prevent the correct formulation
of the boundary value problem:

- The boundary value problem consisting of Equation (9) with boundary conditions (4)
and (5) does not describe the process of deformation of the solid bodies under study;

- To formulate a correct boundary value problem, Equation (9) must be considered
in combination with the equilibrium equation; then, the number of equations be-
comes equal to nine and the problem of choosing three independent equations from
six (9) arises;

- Boundary conditions (5) consist of three conditions, and for the correct formulation of
the boundary value problem, three more boundary conditions will be required;

- Equilibrium equations can be considered missing boundary conditions, but their
numerical implementation is still unclear.

Equation (9), taking into account the equilibrium Equation (1) and boundary conditions (5),
can be expressed in terms of deformations

λθ,i δij + 2µεij,j + Xi = 0, (10)

(λθδij + 2µεij)nj
∣∣
Σ2

= Si, (11)

and following additional boundary conditions

(λθ,i δij + 2µεij,j + Xi)|Σ = 0 (12)

that represent the boundary-value problem of the theory of elasticity in strains [15].
Note that in the boundary-value problems of the theory of elasticity in strains, the

boundary conditions do not depend on the derivatives of the desired quantities; that is,
they are fulfilled exactly and, therefore, do not contain errors of numerical differentiation,
in contrast to the boundary-value problems solved for displacements. The boundary-value
problem (9)–(12) is discussed in the two-dimensional case in the next section.

3. Classical Plane Problems of Elasticity Theory in Stresses and Strains

Prior to the discussion of the boundary-value problem in strains (9)–(12), we first
consider the typical plane problem of elasticity theory. In the absence of body forces, it
consists of two equilibrium equations as follows:

∂σ11
∂x + ∂σ12

∂y = 0,
∂σ21
∂x + ∂σ22

∂y = 0,
(13)

It also consists of strain compatibility conditions [21]:

∂2ε11

∂y2 +
∂2ε22

∂x2 = 2
∂2ε12

∂x∂y
. (14)

Hooke’s law for plane problems assumes the following form [8,18]:

ε11 =
1

E1
σ11 −

ν1

E
σ22, ε22 =

1
E1

σ22 −
ν1

E
σ11, ε12 =

1
2µ

σ12 (15)
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where

E1 =

{
E

1−ν2 plane strain state
E plane stress state

ν1 =

{ ν
1−ν p.s.s
ν p.s.s

It is known that the strain compatibility condition (14), with the assistance of the
equilibrium Equation (13) and Hooke’s law (15), can be expressed as a harmonic equation
as follows [22]:

∇2(σ11 + σ22) = 0 (16)

In this case, the boundary conditions have the following form:

(σ11n1 + σ12n2)|Γ = S1,
(σ21n1 + σ22n2)|Γ = S2,

(17)

Equations (13), (16), and (17) represent the classical plane problem of the theory of
elasticity in stress (Problem A). Problem A consists of three equations for the components
of the stress tensor σ11, σ22, σ12, with two boundary conditions. Problem A was typically
reduced to solving a biharmonic equation with respect to the Airy stress function [18].

The classical plane problem can also be formulated with respect to the strain. To
achieve this, using Hooke’s law (2), we express the equilibrium Equation (13) in terms of
deformations, which, together with the compatibility condition (14), constitute a plane
problem of the theory of elasticity in terms of strains (Problem B),

(λ + 2µ) ∂ε11
∂x + λ ∂ε22

∂x + 2µ ∂ε12
∂y = 0,

(λ + 2µ) ∂ε22
∂y + λ ∂ε11

∂y + 2µ ∂2ε12
∂x = 0,

∂2ε11
∂y2 + ∂2ε22

∂x2 = 2 ∂2ε12
∂x∂y

(18)

with appropriate boundary conditions,

(σ11n1 + σ12n2)|Γ = S1,
(σ21n1 + σ22n2)|Γ = S2,

(19)

where
σ11 = (λ + 2µ)ε11 + λε22,
σ22 = λε11 + (λ + 2µ)ε22, σ12 = 2µε12

The boundary-value problem B also consists of three equations for the strain tensor
components, ε11, ε22, ε12, and two boundary conditions.

In boundary-value problems A and B, an additional boundary condition is required
for the correct formulation of the boundary-value problems. In the case of Problem A,
the absence of a boundary condition is compensated for by introducing a stress function
that identically satisfies the equilibrium equation, and the problem is reduced to solving a
biharmonic equation with respect to the Airy stress function [10,21].

In the case of Problems B and A, the missing boundary condition, following [23–25], can
be determined by considering the equilibrium equation on the boundary of the given domain.

4. New Plane Problems of the Theory of Elasticity in Strains

This section discusses the plane boundary-value problems of elasticity theory based
on the boundary-value problem (9)–(12) (in the absence of body forces), that is,

(λ + 2µ)
∂2ε11

∂x2 + µ
∂2ε11

∂y2 + (λ + µ)
∂2ε22

∂x2 = 0, (20)

(λ + 2µ)
∂2ε22

∂y2 + µ
∂2ε22

∂x2 + (λ + µ)
∂2ε11

∂y2 = 0, (21)
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µ(
∂2ε12

∂x2 +
∂2ε12

∂y2 ) + (λ + µ)(
∂2ε11

∂x∂y
+

∂2ε22

∂x∂y
) = 0, (22)

(λ + 2µ)
∂ε11

∂x
+ λ

∂ε22

∂x
+ 2µ

∂ε12

∂y
= 0, (23)

(λ + 2µ)
∂ε22

∂y
+ λ

∂ε11

∂y
+ 2µ

∂2ε12

∂x
= 0. (24)

The differential Equations (20)–(22) are a consequence of the deformation compatibility
condition (7), and they can also, in principle, be considered the Saint-Venant compatibility
conditions. However, the Saint-Venant compatibility condition in the plane case consists of
one well-known condition (14). It appears that there must be some connection between
these Equations (20)–(22) and (14).

To clarify this issue, we differentiate equilibrium Equations (23) and (24) with respect
to x and y, respectively [26]:

(λ + 2µ)
∂2ε11

∂x2 + λ
∂2ε22

∂x2 = −2µ
∂2ε12

∂x∂y
, (25)

(λ + 2µ)
∂2ε22

∂y2 + λ
∂2ε11

∂y2 = −2µ
∂2ε12

∂x∂y
, (26)

Equations (20) and (21), considering relations (25) and (26), can be reduced, respec-
tively, to the following form:

−2µ
∂2ε12

∂x∂y
+ µ

∂2ε11

∂y2 + µ
∂2ε22

∂x2 = 0, (27)

−2µ
∂2ε12

∂x∂y
+ µ

∂2ε22

∂x2 + µ
∂2ε11

∂y2 = 0. (28)

By adding these equations, we can obtain the well-known Saint-Venant compatibility
condition (14) as follows:

∂2ε11

∂y2 +
∂2ε22

∂x2 = 2
∂2ε12

∂x∂y
.

It can be observed that the first two Equations (20) and (21) are equivalent to the
compatibility condition (14). From this, we can conclude that Equation (22) can also be
used as a compatibility condition instead of Equation (14).

Thus, the differential Equations (20)–(24) can be divided into two plane problems
consisting of two equations in combination, in the first case with Equation (14), which is
equivalent to Equations (20) and (21), and in the second case with Equation (24).

The first case, from the equilibrium Equations (23) and (24) in combination with (14),
follows the plane boundary-value problem B, formulated in the previous paragraph by
Equation (18):

(λ + 2µ) ∂ε11
∂x + λ ∂ε22

∂x + 2µ ∂ε12
∂y = 0,

(λ + 2µ) ∂ε22
∂y + λ ∂ε11

∂y + 2µ ∂2ε12
∂x = 0,

∂2ε11
∂y2 + ∂2ε22

∂x2 = 2 ∂2ε12
∂x∂y .

The equilibrium Equations (23) and (24) are considered together with the third differ-
ential Equation (22):

(λ + 2µ) ∂ε11
∂x + λ ∂ε22

∂x + 2µ ∂ε12
∂y = 0,

(λ + 2µ) ∂ε22
∂y + λ ∂ε11

∂y + 2µ ∂2ε12
∂x = 0,

µ( ∂2ε12
∂x2 + ∂2ε12

∂y2 ) + (λ + µ)( ∂2ε11
∂x∂y + ∂2ε22

∂x∂y ) = 0,

(29)
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which constitutes another plane strain problem (Problem C).
When deriving the differential Equation (9), the equilibrium equations are used in

a differentiated form. Therefore, in boundary-value problem C, the use of differentiated
equilibrium equations is beyond doubt. Thus, we obtain an additional boundary-value
problem for the theory of elasticity in strain (Problem D):

(λ + 2µ) ∂2ε11
∂x2 + λ ∂2ε22

∂x2 + 2µ ∂2ε12
∂x∂y = 0,

(λ + 2µ) ∂2ε22
∂y2 + λ ∂2ε11

∂y2 + 2µ ∂2ε21
∂x∂y = 0,

µ( ∂2ε12
∂x2 + ∂2ε12

∂y2 ) + (λ + µ)( ∂2ε11
∂x∂y + ∂2ε22

∂x∂y ) = 0

(30)

For boundary-value problems B, C, and D, the boundary conditions (19) have the
following form:

((λ + 2µ)ε11 + λε22)n1 + 2µε12n2)|Γ = S1,
(2µε12n1 + (λε11 + (λ + 2µ)ε22)n2)|Γ = S2,

(31)

with additional boundary conditions (12)[
(λ + 2µ) ∂ε11

∂x + λ ∂ε22
∂x + 2µ ∂ε12

∂y

]
|Γ = 0,

[
(λ + 2µ) ∂ε22

∂y + λ ∂ε11
∂y + 2µ ∂ε21

∂x

]
|Γ = 0,

(32)

The boundary conditions (19) for a rectangular region (Figure 1) have the following
form:

f or x = 0, l1 : σ11
∣∣x=0,l1 = φ, σ12

∣∣x=0,l1 = 0,
f or y = 0, l2 : σ22

∣∣∣y=0,l2 = 0, σ21

∣∣∣y=0,l2 = 0.
(33)
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Figure 1. Compression of a rectangular plate under load.

Considering Hooke’s law (15), the boundary conditions for deformation can be ex-
pressed in the following form:

ε22|y=0 = 1
E1

σ22, ε12|y=0 = 0, ε22|y=l2 = − 1
E1

σ22, ε12|y=l2 = 0,
ε11

∣∣x=0 = 0, ε21
∣∣x=0 = 0, ε11

∣∣x=l1 = 0, ε21
∣∣x=l1 = 0.

(34)

The additional boundary conditions (12) for a rectangular area can be obtained from
(32) at y = 0, l2 and x = 0, l1 (Figure 1) for ε11 and ε22, respectively.[

∂ε11
∂y

]
|y=0,l2 = −

[
2µ
λ

∂ε21
∂x

]
|y=0,l2 ,

[
∂ε22
∂x

]
|x=0,l1 = −

[
2µ
λ

∂ε12
∂y

]
|x=0,l1

(35)

Boundary conditions (34) and (35) are valid for boundary-value problems B, C, and D.
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5. Finite-Difference Equations of Plane Problems of the Theory of Elasticity in Strains
and Methods for Their Solution

This section describes the construction of numerical models for the plane problems
B, C, and D considered in Sections 3 and 4 and a comparison of their numerical results.

Let us consider the boundary-value problem B in the rectangular region of
Ω = {0 ≤ x ≤ l1 , 0 ≤ y ≤ l2}. To construct a finite-difference scheme, dividing the length
of the sides lk of a rectangle by Nk, it can be observed that hk = lk/Nk, where k = 1, 2.
Subsequently, the nodal points have the following form:

xi = h1 · i , i = 0, N1, yj = h2 · j , j = 0, N2

By replacing the derivatives with the corresponding finite difference relations, the
difference equations for Problem B are obtained:

(λ + 2µ)
ε11

i+1,j − ε11
ij

2h1
+ λ

ε22
i+1,j − ε22

i−1,j

2h1
+ 2µ

ε12
i,j+1 − ε12

i,j−1

2h2
= 0, (36)

(λ + 2µ)
ε22

ij+1 − ε22
i,j

2h2
+ λ

ε11
i,j+1 − ε11

i,j−1

2h2
+ 2µ

ε12
i+1,j − ε12

i−1,j

2h1
= 0, (37)

ε11
i,j+1 − 2ε11

i,j + ε11
i,j−1

h2
2

+
ε22

i+1,j − 2ε22
i,j + ε22

i−1,j

h2
1

= 2
1
h2

(
ε12

i,j+1 − ε12
i−1,j+1

h1
−

ε12
i,j − ε12

i−1,j

h1
) (38)

Resolving these Equations (36)–(38) with respect to ε11
ij , ε22

ij , ε12
ij , we obtain the following:

ε11
ij = ε11

i+1,j +
2h1

λ+2µ (λ
ε22

i+1,j−ε22
i−1,j

2h1
+ 2µ

ε12
i,j+1−ε12

i,j−1
2h2

),

ε22
ij = ε22

i,j+1 +
2h2

λ+2µ (λ
ε11

i,j+1−ε11
i,j−1

2h2
+ 2µ

ε12
i+1,j−ε12

i−1,j
2h1

),

ε12
ij = ε12

i−1,j + h1(
ε12

i,j+1−ε12
i−1,j+1

h1
− h2

2 (
ε11

i,j+1−2ε11
i,j+ε11

i,j−1

h2
2

+
ε22

i+1,j−2ε22
i,j+ε22

i−1,j

h2
1

)).

(39)

Using the following schemes for Equation (36),

ε11
ij = ε11

i+1,j +
2h

λ+2µ1
(λ

ε22
i+1,j−ε22

i−1,j
2h1

+ 2µ
ε12

i,j+1−ε12
i,j−1

2h2
),

ε11
ij = ε11

i−1,j −
2h

λ+2µ1
(λ

ε22
i+1,j−ε22

i−1,j
2h1

+ 2µ
ε12

i,j+1−ε12
i,j−1

2h2
),

(40)

after adding these two equations, we obtain the following relation:

ε11
ij =

ε11
i+1,j + ε11

i−1,j

2
, (41)

Similarly, from (37) for ε22
ij , we can observe the following:

ε22
ij =

ε22
i,j+1 + ε22

i,j−1

2
, (42)

Instead of the first two Equations (39), Equations (41) and (42) can be used.
Equations (36)–(38), in combination with the boundary conditions (34) and (35), con-

stitute a difference analog of the boundary-value problem B. Solving these equations with
respect to ε11, ε22, ε12, we can obtain relation (39), which makes it possible to obtain the
desired values at internal points using the iterative method. The additional boundary
conditions in (35) at the nodal points have the following form:
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for y = 0 and y = l2

ε11
i,0 = ε11

i,1 + µh2
λ

ε12
i+1,0−ε12

i−1,0
h1

,

ε11
i,N2

= ε11
i,N2−1 −

µh2
λ

ε12
i+1,N2

−ε12
i−1,N2

h1
,

(43)

for x = 0 and x = l1

ε22
0,j = ε22

1,j +
µh1
λ

ε12
0,j+1−ε12

0,j−1
h2

,

ε22
N1,j = ε22

N1−1,j −
µh1
λ

ε12
N1,j+1−ε12

N1,j−1
h2

.
(44)

Considering the boundary and additional conditions, the difference analog of
Problem C (29) has the following form:

(λ + 2µ)
ε11

i+1,j − ε11
ij

2h1
+ λ

ε22
i+1,j − ε22

i−1,j

2h1
+ 2µ

ε12
i,j+1 − ε12

i,j−1

2h2
= 0, (45)

(λ + 2µ)
ε22

ij+1 − ε22
i,j

2h2
+ λ

ε11
i,j+1 − ε11

i,j−1

2h2
+ 2µ

ε12
i+1,j − ε12

i−1,j

2h1
= 0, (46)

µ(
ε12

i+1,j−2ε12
i,j+ε12

i,j

h2
1

+
ε12

i,j+1−2ε12
i,j+ε12

i,j−1

h2
2

) + (λ + µ)(
ε11

i+1,j+1−ε11
i+1,j−1−ε11

i−1,j+1+ε11
i−1,j−1

4h1h2

+
ε22

i+1,j+1−ε22
i+1,j−1−ε22

i−1,j+1+ε22
i−1,j−1

4h1h2
) = 0.

(47)

Solving these equations for ε11, ε22, ε12, similar to Problem B, we can obtain the
following expressions solved by the iteration method:

ε11
ij =

ε11
i+1,j + ε11

i−1,j

2
, (48)

ε22
ij =

ε22
i,j+1 + ε22

i,j−1

2
, (49)

ε12
i,j = ((λ + µ)(

ε11
i+1,j+1−ε11

i+1,j−1−ε11
i−1,j+1+ε11

i−1,j−1
4h1h2

+
ε22

i+1,j+1−ε22
i+1,j−1−ε22

i−1,j+1+ε22
i−1,j−1

4h1h2
)

+µ(
ε12

i+1,j+ε12
i−1,j

h2
1

+
ε12

i,j+1+ε12
i,j−1

h2
2

))/( 2µ

h2
1
+ 2µ

h2
2
).

(50)

We now discuss the solution to Problem D (30). The finite-difference analog of
Problem D (30) has the following form:

(λ + 2µ)
ε11

i+1,j − 2ε11
i,j + ε11

i−1,j

h2
1

+ λ
ε22

i+1,j − 2ε22
i,j + ε22

i−1,j

h2
1

+ 2µ
ε12

i+1,j+1 − ε12
i−1,j+1 − ε12

i+1,j−1 + ε12
i−1,j−1

4h1h2
= 0, (51)

(λ + 2µ)
ε22

i,j+1 − 2ε22
i,j + ε22

i,j−1

h2
2

+ λ
ε11

i,j+1 − 2ε11
i,j + ε11

i,j−1

h2
2

+ 2µ
ε12

i+1,j+1 − ε12
i−1,j+1 − ε12

i+1,j−1 + ε12
i−1,j−1

4h1h2
= 0, (52)

µ(
ε12

i+1,j−2ε12
i,j+ε12

i,j

h2
1

+
ε12

i,j+1−2ε12
i,j+ε12

i,j−1

h2
2

) + (λ + µ)(
ε11

i+1,j+1−ε11
i+1,j−1−ε11

i−1,j+1+ε11
i−1,j−1

4h1h2

+
ε22

i+1,j+1−ε22
i+1,j−1−ε22

i−1,j+1+ε22
i−1,j−1

4h1h2
) = 0,

(53)

To solve the difference Equations (51)–(53), taking into account the boundary condi-
tions (34) and (35), it is convenient to use the elimination method. To solve this, we express
Equation (51) in the following tridiagonal form [27]:

aiε
11
i+1,j

+ biε
11
i,j
+ ciε

11
i−1,j

= f x
ij (54)
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{
α01ε11

0,j
+ β01ε11

1,j
= γ01

α02ε11
n−1,j

+ β02ε11
n,j

= γ02
(55)

where

ai =
λ + 2µ

h2
1

, bi =
−2(λ + 2µ)

h2
1

, ci =
λ + 2µ

h2
1

,

f x
ij = −λ

ε22
i+1,j − 2ε22

i,j + ε22
i−1,j

h2
1

− 2µ
ε12

i+1,j+1 − ε12
i−1,j+1 − ε12

i+1,j−1 + ε12
i−1,j−1

4h1h2

Considering (55) and the boundary conditions in (34), we observe the following [28]:

α01 = 1, β01 = 0, γ01 = 0,
α02 = 0, β02 = 1, γ02 = 0

(56)

Equations (52) and (53), similarly to (54), can be reduced to a tridiagonal form with
different coefficients as follows:

a′iε
22
i,j+1 + b′iε

22
i,j + c′iε

22
i,j−1 = f y

ij ,
.
aiε

12
i+1,j

+
.
biε

12
i,j
+

.
ciε

12
i−1,j

= f xx
ij ,

ãiε
12
i,j+1

+ b̃iε
12
i,j
+ c̃iε

12
i,j−1

= f yy
ij

(57)

From Equations (54) and (57), the solution of the difference Equations (51) and (53)
follows a successive fourfold application of the elimination method. The first two equations
were solved using the elimination method over the indices i and j, respectively, and the
third equation was solved using i, j. According to [29], this solution method is called the
variable-direction method.

6. Numerical Examples

This section describes the numerical solution of the plane boundary-value problems
B, C, and D in strains and a comparison of the results with each other as well as with the
well-known Timoshenko solution [18].

Let a rectangular plate with dimensions (2a, 2b) be under the action of a uniaxial
parabolic load applied from opposite sides perpendicular to the OX axis [18]. The remaining
sides were free from loads as follows Figure 2:
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2
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0.6805 (1 )(1 ).

y y xS S
a a a

x yS
a a

xy x yS
a a a

σ

σ

σ

= − − − −

= − − −

= − − −

 (60)

The initial data have the following dimensionless values: 

1 2 1 20.8,  0.5,  2 ,  2 ,  1,  10.l a l b a b N Nλ μ= = = = = = = =  

Figure 2. Stretching of a rectangular plate under the action of a parabolic load.

f or x = ±a : σ11 = S0(1 −
y2

a2 ), σ12 = 0, (58)

f or y = ±b : σ22 = 0, σ21 = 0. (59)
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For the problem under consideration in the study by Timoshenko–Goodier [18], based
on the condition for minimizing the strain energy using the Airy stress function, the
following expressions were obtained for the components of the stress tensor:

σ11 = S(1 − y2

a2 )− 0.1702S(1 − 3y2

a2 )(1 − x2

a2 )
2
,

σ22 = −0.1702S(1 − 3x2

a2 )(1 − y2

a2 )
2
,

σ12 = −0.6805S xy
a2 (1 − x2

a2 )(1 −
y2

a2 ).

(60)

The initial data have the following dimensionless values:

λ = 0.8, µ = 0.5, l1 = 2a, l2 = 2b, a = b = 1, N1 = N2 = 10.

Table 1 lists the stress values σ11 in one-quarter of a rectangular plate based on the
results of Timoshenko–Goodier [18]. Table 2 lists the strain distribution ε11 of the slabs.
Deformations were calculated from the stress (60) based on Hooke’s law.

Table 1. Stress values σ11 according to Problem A: (60) [18].

x = −1 x = −0.8 x = −0.6 x = −0.4 x = −0.2 x = 0

y = −1 0.0000 0.0441 0.1394 0.2402 0.3137 0.3404
y = −0.8 0.3600 0.3803 0.4241 0.4705 0.5043 0.5166
y = −0.6 0.6400 0.6418 0.6456 0.6496 0.6525 0.6536
y = −0.4 0.8400 0.8285 0.8037 0.7776 0.7584 0.7515
y = −0.2 0.9600 0.9406 0.8987 0.8543 0.8220 0.8102

y = 0 1.0000 0.9779 0.9303 0.8799 0.8431 0.8298

Table 2. Strain values ε11 according to Problem A: (60) [18].

x = −1 x = −0.8 x = −0.6 x = −0.4 x = −0.2 x = 0

y = −1 0.0000 0.0300 0.0948 0.1633 0.2132 0.2314
y = −0.8 0.2297 0.2516 0.2877 0.3237 0.3494 0.3586
y = −0.6 0.3876 0.4144 0.4369 0.4644 0.4680 0.4644
y = −0.4 0.4893 0.5256 0.5431 0.5498 0.5515 0.5516
y = −0.2 0.5459 0.5903 0.6066 0.6084 0.6056 0.6041

y = 0 0.5640 0.6115 0.6277 0.6282 0.6240 0.6219

Table 3 lists the stress values σ11 in the section y = 0 of a rectangular plate, obtained
as a result of the numerical solution of boundary-value problems A, B, and C. Boundary-
value problems B and C were solved by the iterative method and required 68 and
62 iterations, respectively.

Table 3. Stress distribution σ11 in the plate at y = 0, according to Problems A, B, and C.

y = 0 x = −1 x = −0.8 x = −0.6 x = −0.4 x = −0.2 x = 0

Problem A 1.0000 0.9779 0.9303 0.8799 0.8431 0.8298
Problem B (k = 68) 1.0000 0.9714 0.9434 0.8751 0.8522 0.8378
Problem C (k = 62) 1.0000 0.9691 0.9424 0.8769 0.8542 0.8404

The values of the stresses σ11 and strains ε11 in section y = 0, provided in the first
two rows of Tables 4 and 5, were obtained by solving Problems B and C using the iterative
method, where k denotes the number of iterations. The stress values from σ11 are provided
in the third line of the table. Four is determined by solving Problem D using the variable
direction method [30]. According to the variable direction method [21], the solution of finite
difference Equations (51)–(53) was reduced to the sequential application of the elimination
method to solve Equations (54)–(57). As can be observed from Table 4, the stress values σ11
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at y = 0 tend to be the maximum value of the specified load S0 = 1. Figures 3 and 4 show
the distribution of stresses in the plate based on the results of Timoshenko–Goodier [18]
(Problem A) and the solution of the boundary-value problem D. Figure 4 shows that the
stress distribution based on the results of task D is more accurate and closer to the maximum
value of the given load.

Table 4. Stress distribution σ11 in the plate at y = 0, according to Problems B, C, and D.

y = 0 x = −1 x = −0.8 x = −0.6 x = −0.4 x = −0.2 x = 0

Problem B (k = 80) 1.0000 0.9928 0.9869 0.9789 0.9766 0.9789
Problem C (k = 84) 1.0000 0.9908 0.9813 0.9722 0.979 0.9751

Problem D 1.0000 0.9818 0.9818 0.9818 0.9818 0.9818

Table 5. Strain distribution ε11 in the plate at y = 0, according to Problems B, C, and D.

y = 0 x = −1 x = −0.8 x = −0.6 x = −0.4 x = −0.2 x = 0

Problem B (80) 0.6797 0.6709 0.6621 0.6618 0.6605 0.6589
Problem C (84) 0.6797 0.6737 0.6689 0.6640 0.6622 0.6603

Problem D 0.6797 0.6797 0.6797 0.6797 0.6797 0.6797

Mathematics 2024, 12, x FOR PEER REVIEW 13 of 15 
 

 

Problem C (k = 84) 1.0000 0.9908 0.9813 0.9722 0.979 0.9751 
Problem D 1.0000 0.9818 0.9818 0.9818 0.9818 0.9818 

Table 5. Strain distribution 11ε  in the plate at y = 0, according to Problems B, C, and D. 

y = 0 x = −1 x = −0.8 x = −0.6 x = −0.4 x = −0.2 x = 0 
Problem B (80) 0.6797 0.6709 0.6621 0.6618 0.6605 0.6589 
Problem C (84) 0.6797 0.6737 0.6689 0.6640 0.6622 0.6603 

Problem D 0.6797 0.6797 0.6797 0.6797 0.6797 0.6797 

 
Figure 3. Stress distribution 11σ  in the plate according to Problem A [18]. 

 
Figure 4. Stress distribution 11σ  in the plate according to Problem D. 

7. Conclusions 
To formulate a spatial boundary value problem during deformation, it is sufficient to 

consider the first or second group of differential deformation equations in combination 
with three equilibrium equations with the corresponding three surfaces and three addi-
tional boundary conditions; 
• Equilibrium equations expressed with respect to deformations can be considered as 

additional boundary conditions at the boundary of a given region; 
• The correct formulation of plane boundary value problems, consists of two equilib-

rium equations and compatibility conditions 11,22 22,11 12,122ε ε ε+ =  or a third equation of the 
two-dimensional strain differential equations with two-boundary and one additional 
boundary conditions; 

Figure 3. Stress distribution σ11 in the plate according to Problem A [18].

Mathematics 2024, 12, x FOR PEER REVIEW 13 of 15 
 

 

Problem C (k = 84) 1.0000 0.9908 0.9813 0.9722 0.979 0.9751 
Problem D 1.0000 0.9818 0.9818 0.9818 0.9818 0.9818 

Table 5. Strain distribution 11ε  in the plate at y = 0, according to Problems B, C, and D. 

y = 0 x = −1 x = −0.8 x = −0.6 x = −0.4 x = −0.2 x = 0 
Problem B (80) 0.6797 0.6709 0.6621 0.6618 0.6605 0.6589 
Problem C (84) 0.6797 0.6737 0.6689 0.6640 0.6622 0.6603 

Problem D 0.6797 0.6797 0.6797 0.6797 0.6797 0.6797 

 
Figure 3. Stress distribution 11σ  in the plate according to Problem A [18]. 

 
Figure 4. Stress distribution 11σ  in the plate according to Problem D. 

7. Conclusions 
To formulate a spatial boundary value problem during deformation, it is sufficient to 

consider the first or second group of differential deformation equations in combination 
with three equilibrium equations with the corresponding three surfaces and three addi-
tional boundary conditions; 
• Equilibrium equations expressed with respect to deformations can be considered as 

additional boundary conditions at the boundary of a given region; 
• The correct formulation of plane boundary value problems, consists of two equilib-

rium equations and compatibility conditions 11,22 22,11 12,122ε ε ε+ =  or a third equation of the 
two-dimensional strain differential equations with two-boundary and one additional 
boundary conditions; 

Figure 4. Stress distribution σ11 in the plate according to Problem D.



Mathematics 2024, 12, 71 13 of 14

7. Conclusions

To formulate a spatial boundary value problem during deformation, it is sufficient to
consider the first or second group of differential deformation equations in combination with
three equilibrium equations with the corresponding three surfaces and three additional
boundary conditions;

• Equilibrium equations expressed with respect to deformations can be considered as
additional boundary conditions at the boundary of a given region;

• The correct formulation of plane boundary value problems, consists of two equilibrium
equations and compatibility conditions ε11,22 + ε22,11 = 2ε12,12 or a third equation
of the two-dimensional strain differential equations with two-boundary and one
additional boundary conditions;

• The plane boundary value problems formulated using two equilibrium equations and
third strain differential equation with a corresponding boundary condition are more
suitable for numerical solutions direct the strain tensor components;

• In the formulation of the plane boundary value problems in strains the equilibrium
equations expressed with a strain may be used in a differentiated form, which allows
to increase in the order of approximation of finite-difference equations;

• The finite difference method is convenient for satisfying additional boundary conditions;
• Grid equations for plane problems (B, C, and D) in strains were compiled using the

finite difference method and solved using the iteration and variable direction methods;
• The validity of the formulated plane boundary-value problems in strains and the relia-

bility of the results obtained were substantiated by comparing the numerical results of
Problems B, C, and D and with the well-known Timoshenko–Goodier solution for the
tension of a rectangular plate with a parabolic load applied on opposite sides.

• The considered methodology can be used in formulating and solving coupled ther-
moelasticity and thermoplasticity problems, as well as considering strain rates and
specifying boundary conditions regarding strains.
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