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Abstract: To promote sustainable growth and minimize the greenhouse effect, rice husk fly ash can
be used instead of a certain amount of cement. The research models the effects of using rice fly ash
as a substitute for regular Portland cement on the compressive strength of concrete. In this study,
different machine-learning techniques are investigated and a procedure to determine the optimal
model is provided. A database of 909 analyzed samples forms the basis for creating forecast models.
The derived models are assessed using the accuracy criteria RMSE, MAE, MAPE, and R. The research
shows that artificial intelligence techniques can be used to model the compressive strength of concrete
with acceptable accuracy. It is also possible to evaluate the importance of specific input variables and
their influence on the strength of such concrete.
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1. Introduction

In the field of concrete composition, cement is a costly material that is in constant
demand worldwide. To effectively manage construction costs, it is therefore essential to
utilize modern waste materials, mineral additives and other resources to meet the growing
demand for concrete. In 2018, the global production of concrete exceeded 10 billion cubic
meters [1], and the production of cement, a key constituent, reached 4 billion tons by
2020 [2].

Reducing reliance on cement, a key component of concrete, offers an opportunity to
tackle the pollution associated with the cement industry, which is responsible for around
8–10% of global CO2 emissions [3]. Rice husk, a notable by-product of agriculture, is gener-
ated by removing husks from paddy rice. The total production of milled rice worldwide
for 2023 was 512,983 thousand metric tons. The largest producer in the world is China,
with a production of 145,846 thousand metric tons; the second is India, with a production
of 135,755 thousand metric tons. The total milled rice production in these two countries
amounts to almost 55% of world production, according to the United States Department of
Agriculture (USDA) report from 2023 [4].

The global market for rice husk ash is expected to witness significant growth over
the projected timeframe of 2022 to 2029. According to an analysis by Data Bridge Market
Research, the market is registering a compound annual growth rate (CAGR) of 4.9% during
this period and will reach a value of USD 21,381.45 thousand by 2029. The major catalyst
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for the growth of the global rice husk ash market is its wide applicability in the construction
sector, which can be attributed to its high silica content [5].

Numerous agricultural and industrial residues, including rice husk ash (RHA), sugar-
cane bagasse ash, silica fume and others, are used as supplementary cementitious materials
in concrete production, leading to a substantial decrease in the reliance on conventional
Portland cement [6]. The study by Ramagiri et al. in 2019 evaluated the shrinkage behavior
of three alkali-activated binder (AAB) mixtures activated by sodium hydroxide and sodium
silicate, containing varying proportions of fly ash and slag. Multiple linear regression
models are developed to predict shrinkage strains, considering age and fly ash percentage.
The objective is to establish a generalized equation for predicting shrinkage in different
AAB mixes cured at room temperature. The proposed models, ranked by Root Mean Square
Error (RMSE), show a high correlation (R2 = 0.937) and offer a reliable tool for estimating
shrinkage in similar AAB mixtures [7]. The considered procedure is recommended for
similar prediction problems.

The study of Ramagiri et al. in 2021 is focused on understanding factors influencing
the compressive strength of AAB concrete and compared the accuracy of different Random
Forest (RF) configurations in predicting the compressive strength of ambient-cured AAB
concrete. The ranger algorithm with reliefF feature selection exhibited the most accurate
predictions based on MAE and RMSE values. The paper recommends the application of the
mentioned RF algorithm for the prediction of compressive strength and the determination
of important input variables for AAB concrete [8].

RHA comprises amorphous silicon oxide (SiO2), commonly known as silica. This high
pozzolanic characteristic renders it a viable candidate for partially substituting Portland
cement in concrete blends [9–12]. Studies have indicated that the incorporation of RHA
as a substitute for cement can effectively reduce the hydration temperature in concrete
compared to traditional Portland cement concrete [13]. Furthermore, the utilization of RHA
enhances various properties of the concrete mixture, including strength, shrinkage, and
durability, surpassing the performance achieved with pure Portland cement as a binding
agent [13]. In particular, the substitution of up to 50% of Portland cement with RHA
demonstrated superior mechanical strength compared to the standard concrete mixture
utilizing pure Portland cement within the initial 3 to 7 days of aging [14].

Nasir [15] investigated the variation tendencies of compressive strength (CS) of con-
crete with different proportions of RHA. The results showed that the strength of the concrete
exceeded that of the control group up to 30% RHA and peaked at 15%, after which it began
to decrease.

Moreover, existing research has indicated that the compressive strength (CS) of con-
crete containing RHA is influenced by factors such as age, cement content, water-cement
ratio, water content, coarse aggregate content, fine aggregate content, and the presence of
superplasticizer [16–18].

While widespread, the conventional practice of open burning of rice husks results
in an undesirable increase in crystalline particles unsuitable for concrete applications, as
highlighted in the work of Hwang and Chandra [19]. To counter this issue, specialized
combustion techniques, as recommended in prior investigations [20,21], regulate tem-
perature and manage carbon content—critical factors influencing the quality of concrete.
Research suggests that maintaining combustion temperatures within the range of 500 to
700 ◦C produces the optimal content of amorphous particles, and the specific surface area
of up to 150 m2/g is maximized at this temperature, a conclusion supported by multiple
studies [21–26]. The combustion of rice husk yields 20–25% of RHA [27,28].

In the study conducted by Chindaprasirt et al. [29], concrete incorporating RHA
demonstrated significant resistance to sulfate attacks. Additionally, Thomas et al. [1], in a
comprehensive review, noted that RHA-infused concrete exhibits a dense microstructure,
resulting in a substantial reduction of water absorption, potentially by as much as 30 percent.
With a silica content exceeding 90%, RHA proves effective as a supplementary cementitious
material (SCM) in concrete production [30].
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Iqtidar et al. explored 2021 sustainable alternatives for eco-friendly concrete by lever-
aging machine learning to predict compressive strength in RHA concrete [31]. Employ-
ing 192 data points and four machine learning methods (ANN, ANFIS, NLR, and linear
regression), the research assesses RHA concrete properties, highlighting the superior per-
formance of ANN and ANFIS. The findings advocate for the application of these ML
models in the construction sector to efficiently evaluate material properties and input
parameter influences.

Nasir Amin et al. in 2022 investigated the positive influence of RHA in concrete and
employed supervised machine learning techniques, including decision trees (DT), bagging
regressors, and AdaBoost regressors, to predict the compressive strength of RHA-based
concrete [32]. The models were developed using a database containing 192 data points from
the available literature. Age, RHA content, cement, superplasticizer, water, and aggregate
were the variables employed in the modeling of RHAC. Model evaluation involved metrics
such as R2, mean absolute error (MAE), root mean square error (RMSE), and root mean
square log error (RMSLE), alongside k-fold cross-validation to ensure accuracy. The bagging
regressor model outperformed DT and Adaboost, achieving an R2 value of 0.93.

Amlashi et al. in 2022 introduced machine learning-based models, including Artificial
Neural Network (ANN), Multivariate Adaptive Regression Spline (MARS), and M5P
Model Tree, to predict compressive strength (CS) in RHA-containing concretes [33]. For
this purpose, the models were developed employing 909 data records collected through
technical literature. The findings reveal that all models provide reliable CS estimations, with
the ANN model outperforming the others. A parametric study identifies factors influencing
CS, showing that increasing cement, coarse aggregate, and age while decreasing water,
fine aggregate, RHA, and superplasticizer enhance CS. Additionally, sensitivity analysis
highlights coarse aggregate content as the most influential parameter affecting CS values.

Bassi et al. in 2023 explored the use of six Machine Learning (ML) algorithms—Linear
Regression, Decision Tree, Gradient Boost, Artificial Neural Network, Random Forest, and
Support Vector Machines—to predict the compressive strength of RHA-based concrete [34].
With 462 data points and twelve input features, the Decision Tree, Gradient Boost, and
Random Forest models exhibit superior accuracy (R2 > 0.92) and minimal errors in pre-
dicting compressive strength. Sensitivity analysis highlights the significant impact (more
than 95%) of the specific gravity of RHA and water–cement ratio on compressive strength,
distinguishing them as key parameters.

The paper written by Li et al. in 2023 introduces an innovative hybrid artificial neural
network model optimized using a reptile search algorithm with circle mapping to predict
the compressive strength of RHA concrete [35]. The proposed model utilizes 192 concrete
data points with six input parameters (age, cement, rice husk ash, superplasticizer, ag-
gregate, and water) and is trained and compared with five other models. Four statistical
indices assess predictive performance. The results indicate that the hybrid artificial neu-
ral network model excels in prediction accuracy with R2 (0.9709), Variance Accounted
For—VAF (97.0911%), RMSE (3.4489), and MAE (2.6451).

The study conducted by Nasir Amin et al. in 2023 investigated the application of
modern machine intelligence techniques, specifically multi-expression programming (MEP)
and gene expression programming (GEP), for predicting the compressive strength (CS)
of RHA concrete [36]. Additionally, Shapley Additive Explanations (SHAP) analysis is
employed to assess the impact and interaction of raw materials on the CS of RHA concrete.
Utilizing a comprehensive dataset of 192 data points with six inputs (cement, specimen
age, RHA, superplasticizer, water, and fine aggregate), the researchers find that both GEP
and MEP models provide reliable CS predictions, aligning closely with actual values. In
comparing their performance, MEP, boasting an R2 of 0.89, outperforms the GEP model,
which achieves an R2 of 0.83. SHAP analysis identifies specimen age as the most crucial
factor, followed by cement, positively correlating with the CS of RHA.

With their ability to consider diverse parameters and data from varied concrete sam-
ples, machine learning models surpass the limitations of empirical formulas, offering a
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robust framework for CS prediction. Despite the widespread application of artificial intelli-
gence algorithms in concrete CS prediction, more studies need to focus on RHA concrete.
This study aims to fill this void by analyzing different machine learning algorithms and
proposing the best one to enhance CS prediction, specifically in RHA concrete. This contri-
bution aims to advance the field of intelligent optimization models for concrete properties.

The contribution of this research can be seen in the fact that it has attempted to analyze
a large number of machine learning algorithms on a basis that is significantly larger than
the majority of similar research mentioned in the literature. Each analyzed model was
optimized in terms of the hyperparameters and then evaluated using the test dataset. In
this way, the models offering the highest accuracy in predicting the compressive strength
in the case considered were defined. In addition, the influence of certain variables on the
compressive strength of concrete with RHA addition was analyzed.

2. Materials and Methods

The research employs various machine learning methods, including multiple linear
regression model, regression trees and created ensemble models (tree bagger, random
forests, and boosted trees), support vector machines, neural networks, an ensemble of
neural networks, and Gaussian process regression models. The objective is to establish
relationships between input variables and the compressive strength of Rice Husk Ash
Concrete (RHAC).

2.1. Multiple Linear Regression Model

If the observed problem can be treated as a problem of one dependent and several in-
dependent variables, it is a suitable situation for data analysis using the multiple regression
method. If the relationship between variables is linear, the case is reduced to a multiple
linear model.

Let them be Y dependent variable, x1, x2, . . . , xp independent variables, then the linear
model can be written in the following form:

Y = β0 + β1x1 + β2x2 + . . . + βpxp + ε. (1)

In the previous expression, β0, β1, β2, . . . , βp are the unknown parameters to be
estimated and ε are the residuals. The Y variable is also called the response variable, that is,
the output variable, while the x-variables are called inputs, that is, explanatory variables.

If there are n experiments or measurements, the model can be written as follows:

yi = β0 + β1xi1 + β2xi2 + . . . + βpxip + εi, i = 1, 2, . . . , n. (2)

If the following notation is introduced:

Y =

y1
. . .
yn

, X =


1 x11 x12 . . . x1p
1 x21 x22 . . . x2p
1 x31 x31 . . . x3p

. . . . . . . . . . . . . . .
1 xn1 xn2 . . . xnp

, β =

β0
. . .
βp

, ε =

 ε1
. . .
εn

, (3)

a shorter notation in matrix form can be obtained

Y = Xβ + ε, (4)

where Xβ is the system component of the model, and ε is the random component of the
model.
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One of the ways to determine the parameters consists in taking the value for which
the sum of the residuals is minimal, which can be expressed as follows:

S =
n

∑
i=1

ε2
i = εTε = (Y − Xβ)T(Y − Xβ) (5)

∂S
∂β

= 0 (6)

Applying the previous expressions gives an estimate for β equal to:

β̂ =
(

XTX
)−1

XTY (7)

and estimate of the system component βX is equal to

Ŷ = Xβ̂ = X
(

XTX
)−1

XTY = HY. (8)

Assesment of error ε is equal to

ε̂ = Y − Xβ̂ = (E − H)Y. (9)

2.2. Regression Trees Ensembles: Bagging, Random Forest, and Boosted Trees

The core idea underlying regression trees is to partition the input space into distinct
regions and allocate predictive values to these segments, facilitating predictions based on
pertinent conditions and data characteristics. This machine learning model, applicable
to regression and classification tasks, adopts a tree-like structure composed of nodes and
branches (Figure 1). Each node represents a specific condition related to the input data,
evaluated as data progresses through the tree.
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Figure 1. Demonstration of the segmentation of input space into unique regions and the 3D regression
surface encapsulated within the structure of a regression tree [37].

The process begins at the root node to predict outcomes, where the initial condition
associated with input features is considered. Based on the truth value of this condition,
branches are followed to reach subsequent nodes recursively until a leaf node is reached.
At the leaf node, a value is obtained, serving as the predicted result, typically numeric for
regression tasks.

As the tree is traversed, the input space changes, initially represented by a single set at
the root node. The algorithm progressively divides the input space into smaller subsets
based on conditions, tailoring predictions to different regions.

Constructing regression trees involves determining optimal split variables and points
to partition the input space effectively. These variables are identified by minimizing a spe-
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cific expression (Equation (10)) considering all input features, aiming to minimize the sum
of squared differences between observed and predicted values in resulting regions [38–41].

min
j,s

min
c1

∑
xi∈R1(j,s)

(yi − c1)
2 + min

c2
∑

xi∈R2(j,s)
(yi − c2)

2

 (10)

Once identified, the tree-building process iteratively divides regions in a “greedy
approach”, emphasizing local optimality at each step [40]. The binary recursive seg-
mentation divides the input space into non-overlapping regions characterized by mean
values. Ensemble methods like Bagging, Random Forest, and Boosted Trees further enhance
predictive capabilities.

Bagging involves creating subsets of the training dataset through random sampling
with replacement, training separate regression tree models, and aggregating predictions
to reduce variance (Figure 2). Random Forests introduce diversity by creating multiple
regression trees trained using different subsets of variables randomly chosen for splitting on
distinct bootstrap samples, decorrelating individual trees, and reducing variance [41]. The
ensemble’s final prediction is generated by aggregating predictions from these decorrelated
trees, resulting in a robust and high-performing model (Figure 2).
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Utilizing Boosting Trees involves a sequential training approach where each subse-
quent regression tree added to the ensemble is introduced to improve the overall model’s
performance (Figure 3). Within the context of Gradient Boosting, a widely employed
technique, submodels are introduced iteratively and chosen based on their effectiveness in
estimating the residuals or errors of the prior model in the sequence [43–45]. This iterative
process culminates in a conclusive ensemble model comprising multiple submodels that
collectively produce highly accurate predictions.
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Within the gradient-boosting tree domain, the learning rate’s significance, commonly
represented as “lambda” (λ), becomes apparent as a pivotal hyperparameter influencing
each tree’s impact on the ensemble’s ultimate prediction. This learning rate is crucial in
dictating how swiftly the model adapts to errors introduced by preceding trees throughout
the boosting process.

To evaluate the proportional impact of predictor variables, using the BT method relies
on the frequency with which a variable is chosen for splitting. This selection frequency
is then weighted by the squared enhancement to the model attributable to each split and
averaged across all trees [43–45].

2.3. Support Vector Machine for Regression (SVR)

Consider a training dataset {(x1, y1), (x2, y2), . . . , (xl , yl)} ∈ Rn ×R, where xi ∈ Rn

is the n-dimensional vector representing the model’s inputs, and yi corresponds to the
observed responses. The approximation function is given by the expression (11):

f (x) =
l

∑
i=1

(αi
∗ − αi)K(xi, x) + b. (11)

Here, K denotes the kernel function, and αi, αi
∗ and b are parameters obtained by

minimizing the error function. The SVR regression employs the empirical risk function
(12) [46–48]:

Rε
emp(w, b) =

1
l

l

∑
i=1

|yi − f (xi, w)|ε. (12)

The SVR algorithm aims to minimize both the empirical risk Rε
emp and the ∥w∥2 value

concurrently. Vapnik’s linear loss function (13) introduces a ε-insensitivity zone, defined
by:

|y − f (x, w)|ε =


0 i f |y − f (x, w)| ≤ ε

|y − f (x, w)| − ε otherwise.
(13)

This leads to the minimization problem expressed as (14):

R =
1
2
∥w∥2 + C

l

∑
i=1

|yi − f (xi, w)|ε. (14)

The minimization is equivalent to minimizing following function (15):

Rw,ξ,ξ∗ =
1
2

[
∥w∥2 + C

(
l

∑
i=1

ξ +
l

∑
i=1

ξ∗

)]
, (15)

where ξ and ξ∗ are slack variables. Figure 4 illustrates the nonlinear SVR with a ε-
insensitivity zone.
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Linear, RBF, and sigmoid kernels were employed in this study [46–48]. The LIBSVM
software, utilizing the SMO optimization algorithm implemented within the MATLAB
program, was utilized for this purpose [49,50].

2.4. Artificial Neural Network and Artificial Neural Networks Ensemble

Artificial neural networks emulate the parallel processing observed in the human
brain, employing interconnected artificial neurons within a parallel structure. Among
neural network architectures, the multilayer perceptron is notable, characterized by its
forward signal propagation through three essential layers: input, hidden, and output layers.

In a general configuration, each neuron within one layer connects with every neuron in
the subsequent layer (Figure 5a). This connectivity is illustrated in Figure 4, representing a
three-layer multilayer perceptron network with n inputs and a single output. The network’s
behavior is influenced by factors such as the number of neurons and the choice of activa-
tion function. To achieve the ability to approximate any function, neural networks must
incorporate nonlinear activation functions in the hidden layer. This enables the network to
effectively capture and approximate the often complex and nonlinear relationships between
input and output variables.
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For instance, a model featuring a single hidden layer with neurons employing a
sigmoid activation function, coupled with output layer neurons utilizing a linear activation
function, can successfully approximate arbitrary functions given a sufficient number of
neurons in the hidden layer.

Determining the optimal neural network structure entails finding the right balance,
especially when dealing with multilayer perceptron (MLP) architectures as universal
approximators (Figure 5). While an exact method for pinpointing the minimum necessary
number of neurons remains elusive, a practical approach involves approximating the upper
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limit. This upper limit signifies the maximum number of hidden layer neurons suitable for
modeling a system based on a specific dataset.

A precise and reliable method for determining the minimum required number of
neurons has not been established. It is recommended to choose a smaller value for NH
from the set of inequalities (16) and (17), where Ni represents the number of neural network
inputs, and Ns represents the number of training samples. The proposed criteria are
outlined as follows:

NH ≤ 2×Ni (16)

NH ≤ Ns

Ni + 1
(17)

In cases where it is desired to increase the accuracy of the model, the synergistic effect
of the combination of a number of models that form an ensemble of neural networks can
be examined (Figure 5b).

The individual models that make up the structure of the ensemble are called base
models or submodels. To improver model robustness, it is essential to generate a collection
of base models using the Bootstrap method for creating different sets of data for training.
This involves employing an ensemble approach, training multiple neural networks on these
sets, and subsequently averaging their outputs.

2.5. Gaussian Process for Regression (GPR)

Gaussian processes offer a versatile approach to modeling functions in regression tasks,
allowing for uncertainty incorporation and effective prediction. The selection of covariance
functions and hyperparameters adds adaptability to capture variable relationships [51].

In Gaussian process modeling, the task involves estimating an unknown function,
denoted as f (·), in nonlinear regression scenarios. This function adheres to a Gaussian dis-
tribution characterized by a mean function µ(·) and a covariance function k(·,·). The pivotal
Gaussian process regression (GPR) component, the covariance matrix K, is influenced by
the chosen kernel function (k) [51].

The kernel function (k) is fundamental for assessing covariance or similarity between
input data points (x and x′). A frequently employed squared exponential kernel takes the
form (18):

k
(
x, x′

)
= σ2exp

(
− (x − x′)2

2l2

)
(18)

In this expression, σ2 signifies signal variance, the exponential function “exp” models
the similarity between x and x′, and the parameter l, termed the lengthscale, regulates
smoothness and spatial extent.

Data observations in a dataset, denoted as y = {y1, . . . , yn}, are viewed as a sample
from a multivariate Gaussian distribution (19):

(y1, . . . , yn)
T ∼ N(µ, K), (19)

Gaussian processes are applied to model the connection between input variables x
and target variable y, accounting for additive noise ε ∼ N

(
0, σ2). The primary aim is to

estimate the unknown function f(·). The conditional distribution of a test point’s response
value y*, given observed data y = (y1, . . . , yn)

T , is presented, (20), (21) as N(ŷ*, σ̂*2):

ŷ* = µ(x∗) + K∗T K−1(y − µ), (20)

σ̂*2 = K∗∗ + σ2 − K∗T K−1K∗. (21)

Hyperparameters could play a crucial role in unveiling the significance of individual
inputs through an approach known as Automatic Relevance Determination (ARD). For
instance, the squared exponential covariance function (22), which employs distinct length
scale parameters for each input (ARD SE):
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k
(
xp, xq

)
= v2exp

−1
2

n

∑
i=1

(
xi

p − xi
q

ri

)2
. (22)

In the domain of covariance functions, ri designates the length scale associated with
input dimension i. It is imperative to acknowledge that a significantly large value of ri re-
sults in a diminished importance of the i-th input [51]. The hyperparameters {v, r1, . . . , rn},
in conjunction with the noise variance σ2, are subject to estimation through the maximum
likelihood method. The log-likelihood of the training data is expressed as (23):

L
(

v, r1, . . . , rn, σ2
)
= −1

2
log det K − 1

2
yT K−1y − n

2
log 2π. (23)

3. Dataset

A comprehensive dataset concerning concretes incorporating RHA was compiled
through extensive documentation, with specific details outlined in Table 1. The compiled
dataset encompassed information related to mixture proportions, age, and compressive
strength values for 909 concrete samples [33]. The compressive strength values ranged
from 2.4 to 118.8 MPa. To ensure consistency in the conditions of all concrete samples, the
compressive strength values for samples were converted to equivalent cubic compressive
strength using UNESCO conversion factors [52]. This process was carried out according to
the methodology presented in the study conducted by Elwell and Fu in 1995 [52].

Table 1. Descriptive statistics for the variables [33].

Num. of
Data Water (kg/m3) Cement

(kg/m3)

Fine
Aggregate

(FA)
(kg/m3)

Coarse
Aggregate

(CA) (kg/m3)

RHA
(kg/m3) Age (Days) SP (kg/m3) CS (MPa) Ref.

48 215–255 300–2351 580–710 1160–1185 0–134 7–90 0 13.27–47.6 [53]
16 138–207 400–571 578–612 1027–1088 0–171 3–150 10–14.275 31.5–85 [54]
14 153–154 345–385 667–674 1086–1102 0–38 1–365 2.5–3.9 25.34–60.74 [55]
24 128 356–410 786 1044–1062 0–72 3–365 0 42–92 [19]
18 210 280–350 844–870 854–881 0–70 1–180 0 2.4–39.4 [27]
28 178–180 356–600 570–636 906–968 0–153 3–90 0.89–12.48 36.86–106.82 [56]
60 160–170 400–550 540–567 1261–1324 0–110 1–90 5–6.22 18.9–86.8 [57]
36 205–228 228–325 890–900 927–940 0–97 1–180 0–3.67 9.2–45.8 [58]
27 164–204 327–534 690–758 983–1050 0–85 7–91 0.462–4.33 29.22–77.96 [17]
20 150 375 770 1200 0–75 7–90 0–15 30–64 [59]
16 138–173 322–513 720–845 975–1045 0–34 28–90 0–10.26 37–82.1 [16]
20 150–153 392–560 735–764 943–981 0–168 7–180 1.5–9 103.06–118.82 [10]
21 201 266–380 570 1140 0–114 7–28 0 27.22–39.55 [60]
32 203 249–383 561 1148 0–134 7–90 0 27.22–45.98 [61]
32 131.97–202.99 249–383 575 1150 0–134 1–28 0 10.4–46.7 [15]
60 137–190 304–500 745–868 933–995 0–100 1–28 0–3.88 19–68.6 [62]
12 207 313–391 750 994 0–78 1– 180 0 19.1–48.1 [26]
16 157–173 492–518 484–510 983–1025 0–52 7–180 0 66.3–93.5 [63]
20 207 313–391 750 994 0–78 1–28 0 17.2–50.2 [20]
24 122.4–150.5 340–430 332–335 1012–1014 0–64.5 7–90 0 30.36–62.5 [14]
20 210 297–396 844 951 0–99 28–360 0 29.7–47.8 [64]
42 212–221 383–783 344–737 933 0–171 1–90 0.3–3.7 19.4–89.725 [65]
76 154–165 280–550 490–560 1200–1345 0–165 3–60 0.87–9.75 30.5–92 [66]
50 166 336–474 433.72–636 1108–1113 0–108 7–180 0–9.4 5.87–73 [67]
60 132.4–178.4 378.8–553.8 543.8–720.7 951.6–1048.3 25–71.7 28 5.3–93.0 51.5–111.8 [68]
5 192 278.7–348.4 573 1189.5 0–69.6 28 0 16.03–29.3 [69]

10 125–156 312–390 713 1079 0–78 7–28 1.85–3.51 30.22–48.53 [70]
5 130 418.5–465 556–562 1268.3–1280.9 0–46.5 14 0 46.2–52.6 [71]

27 185 261.37–461.25 582–623.79 1204–1287.9 0–69.19 7–28 0 19.76–43.16 [72]
8 153 238–340 763 1144 0–102 28 3.4–9.2 28.38–34.98 [73]

35 140–167 456–537 516–669 1055 0–80.6 1–128 5.1–5.37 25–103.5 [74]
12 153 325.1–382.5 482 1394.1 0–57.37 7–28 3.25–3.82 25.9–42.45 [75]
15 138 240–300 660 1290 0–60 7–28 2.4 19.86–31.88 [76]
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The input variables encompassed the quantities of fine aggregate, coarse aggregate,
Portland cement, RHA, superplasticizer, and water, along with the age of the concrete sam-
ples (Table 2). In this study, the division into training and test datasets was accomplished
using the randperm function in Matlab. The aim was to create two subsets with similar
statistical indicators, adhering to an 80% training and 20% testing ratio. The randperm
function was employed, followed by calculations of key statistical parameters, including
maximum (Max.), minimum (Min.), average (Mean), mode (Mode), and standard deviation
(St.Dev.).

Table 2. Statistical summaries for the variables.

Statistical Analysis of Input and Output Parameters for Training Set

Max. Min. Mean Mode St.Dev. Count

Water (W) [kg/m3] 255.00 122.40 175.51 165.00 29.14 727.00
Cement (C) [kg/m3] 2351.00 228.00 441.95 400.00 262.71 727.00

Sand (S) [kg/m3] 900.00 332.00 640.99 750.00 129.94 727.00
Coarse aggregate (CA) [kg/m3] 1394.06 854.00 1090.30 933.00 127.54 727.00
Rice Husk Ash (RHA) [kg/m3] 171.00 0.00 51.23 0.00 41.28 727.00

Age of samples (A) [days} 365.00 1.00 39.85 28.00 58.90 727.00
Superplasticizer (SP) [kg/m3] 72.60 0.00 3.46 0.00 6.74 727.00

Compressive strength (CS) [MPa] 118.83 2.40 50.08 52.00 22.66 727.00

Statistical analysis of input and output parameters for Test set

Max. Min. Mean Mode St.Dev. Count

Water (W) [kg/m3] 252.00 125.00 176.36 165.00 30.91 182.00
Cement (C) [kg/m3] 2351.00 228.00 478.52 450.00 357.32 182.00

Sand (S) [kg/m3] 900.00 335.00 657.25 745.00 124.88 182.00
Coarse aggregate (CA) [kg/m3] 1394.06 854.00 1088.86 933.00 130.15 182.00
Rice Husk Ash (RHA) [kg/m3] 171.00 0.00 52.10 0.00 42.58 182.00

Age of samples (A) [days} 365.00 1.00 38.48 28.00 55.26 182.00
Superplasticizer (SP) [kg/m3] 38.30 0.00 3.55 0.00 5.87 182.00

Compressive strength (CS) [MPa] 118.83 5.87 51.53 65.00 25.19 182.00

Frequency histograms and the mutual correlation between variables are shown in
Figure 6.

In the development of models using machine learning methodologies, a supervised
learning approach was implemented to ensure that the generated models predict values
within the range they acquired during the learning phase. Therefore, it becomes crucial to
highlight the boundaries of each individual variable.

Within the entire set of test data, the ratio of RHA to cement ranged from a minimum
value of 0% to a maximum value of 53.82%, with a mean value of 13.42%. The ratio of
water to binder (cement together with RHA) ranged from a minimum value of 0.0979 to a
maximum value of 0.8, with a mean value of 0.3928 for the entire data set.

In assessing the effectiveness of the prediction model, a set of criteria was employed,
including the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Pearson’s
Linear Correlation Coefficient (R), and Mean Absolute Percentage Error (MAPE) [37].
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4. Results and Discussion

An examination of models based on decision trees was conducted, employing Mean
Squared Error (MSE) values as the training criterion. The grid-search method was utilized
to determine the optimal model parameters. Following the training or calibration phase,
the models’ generalization characteristics were evaluated on the test dataset using RMSE,
MAE, MAPE, and R criteria.

The analysis encompassed the utilization of the following methods:

• Multiple linear regression,
• Bagging method (TreeBagger—TB),
• Random Forests (RF) method,
• Boosted Trees (BT) method,
• Support vector regression,
• Neural networks (standalone and ensamble models),
• Gaussian proces regression (GPR).

The mentioned methods were applied because they are appropriate for the amount
of data (909 samples) that was considered in the paper. In addition, all the mentioned
methods have been shown in the literature to be very suitable for implementation in similar
problems of prediction of the continuous value of the compressive strength of concrete, i.e.,
consideration of regression problems of a similar nature. All calculations were implemented
using Matlab software, while the SVR model used Matlab and the LIBSVM Library for
Support Vector Machines simultaneously.

In the implementation of multiple linear regression model, the parameters of the
model were calculated in the Table 3, as well as the corresponding t statistics and p values
for assessing the significance of individual variables.

The estimated intercept term (Intercept: 174.4430) represents the predicted value
of the dependent variable (y) when all predictor variables (x1 to x7) are zero. The t-
statistic (tStat) tests the hypothesis that the intercept is zero. In this case, a higher t-statistic
indicates that the intercept is significantly different from zero. Also, the very small p-value
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suggests that the intercept is highly statistically significant. The coefficient for x1 is highly
statistically significant (p-value: 2.0670 × 10−28), and the negative t-statistic (−11.546)
indicates that the relationship is significantly different from zero. Similar interpretations
apply to the coefficients for x2 to x7. All coefficients can be considered as statistically
significant, suggesting that each predictor variable contributes significantly to the prediction
of y. Additionaly, the overall model is highly statistically significant, as indicated by the
very small p-value associated with the F-statistic (5.04 × 10−74).

Table 3. Parameters for the multiple linear regression model.

Coefficient SE tStat p Value

Intercept 174.4430 10.6943 16.3117 3.9661 × 10−51

x1−Water (W) [kg/m3] −0.3158 0.0273 −11.5465 2.0670 × 10−28

x2−Cement (C) [kg/m3] 0.0134 0.0028 4.8252 1.7082 × 10−6

x3−Sand (S) [kg/m3] −0.0431 0.0059 −7.2656 9.6885 × 10−13

x4−Coarse aggregate (CA) [kg/m3] −0.0512 0.0062 −8.3186 4.4579 × 10−16

x5−Rice Husk Ash (RHA) [kg/m3] 0.0367 0.0166 2.2092 0.0275
x6−Age of samples (A) [days} 0.1108 0.0113 9.7783 2.7601 × 10−21

x7−Superplasticizer (SP) [kg/m3] 0.6695 0.10561 6.3395 4.0692 × 10−10

In the implementation of the TreeBagger (TB) and Random Forests (RF) methods,
various values of adaptive model parameters were explored, including (Figure 7):

1. Number of generated trees (B). Throughout this analysis, the maximum number of
generated trees was constrained to 500.

2. The number of variables utilized for splitting within the tree. TB and RF models
operate on a similar mechanism, with the key distinction being that the TB model
employs all variables as potential tree split points, while the RF model uses only a
specific subset of the entire variable set. Following the recommendation in L. Bryman’s
paper on Random Forests [39], it is advised that the subset m of variables for splitting
should be p/3 of the total number of variables or predictors p. In this study, values of
m from 1 to 7 (Figure 7) were examined.

3. The minimum number of data or samples assigned to a leaf (min leaf size) within a
tree. Consideration was given to values ranging from 1 to 10 samples per tree leaf.

The optimal model from TB and RF models is the TB model with 500 trees and a leaf
size equal to 1 (Figure 7).

In the Boosting Trees method, the following model parameters were taken into account
(Figure 8):

1. Number of generated trees (B): To prevent overtraining, the maximum limit of base
models within the ensemble was set to 100.

2. Learning rate (λ): This parameter, determining the model’s training speed, was
investigated across various values, including 0.001, 0.01, 0.1, 0.25, 0.5, 0.75, and 1.0.

Number of splits in the tree (d): Trees with a maximum number of splits ranging from
20 = 1 to 28 = 256 were generated.

The optimal model obtained by grid search, highlighted in yellow in Figure 8, featured
100 generated trees, a learning rate of 0.10, and a maximum of 128 splits.

To develop an effective regression model using the support vector regression (SVR)
method, the selection of an appropriate kernel function is crucial. Furthermore, determining
the parameters of the selected kernel functions and the penalty parameter (C) is essential
for optimal performance.
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In this study, the investigation involves testing various kernel functions to identify the
most suitable one. Linear, RBF and sigmoid kernels for SVR models were analyzed, with
input data normalized to the range [0, 1] before model training and testing. The optimal
model was identified using the grid search algorithm for all kernels, resulting in specific
parameter values for each:

Linear Kernel: C = 38.27, ε = 0.1012
RBF Kernel: C = 94.26, ε = 0.0164, γ = 3.3364
Sigmoid Kernel: C = 121.10, ε = 0.0947, γ = 0.0085.

A comparative analysis of different SVR models reveals variations in accuracy based
on different criteria, particularly dependent on the kernel function. Linear and sigmoid
kernel models demonstrate similar accuracy across various criteria, while the RBF kernel
model exhibits significantly higher accuracy in comparison, as indicated in Table 4.

This research undertook an investigation into the architectural configuration of a
neural network. The Multilayer Perceptron (MLP) neural network comprises a single input
layer, a hidden layer, and an output layer of neurons.

It is important to note that neurons in the output layer are characterized by a linear
activation function, while those in the hidden layer are subject to a nonlinear activation
function, known for its universal approximator property.
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Table 4. Parameter settings during model calibration in the MATLAB program.

Parameter
The Value of the Parameter

Lower Limit Upper Limit

Number of epochs / 1000

The value of MSE (performance) / 0

Gradient / 1.00 × 10−7

The value of the parameter λk (Mu) 0.005 1.00 × 1010

In the specific context of predicting compressive strength, a tailored architecture was
implemented, featuring seven neurons in the input layer and one in the output layer. The
number of hidden layer neurons is determined experimentally. To offer guidance on estab-
lishing the upper limit for neurons in the hidden layer, the research provides recommended
expressions (16) and (17), with a preference indicated for smaller values. These recommen-
dations (24), (25) serve as valuable insights for the meticulous optimization of the neural
network architecture, ensuring its efficacy in predicting compressive strength [37,42].

NH ≤ 2×Ni + 1 = 15, (24)

NH ≤ Ns

Ni + 1
= 113. (25)

The experimental determination of the optimal number of neurons in the hidden layer
constituted a key aspect of this study. Specifically, the analysis commenced with a structural
configuration featuring one neuron, followed by a gradual increment in the number of
neurons, each architecture systematically evaluated based on RMSE, MAE, R, and MAPE
criteria (Figure 9). Model calibration, denoting the adjustment of model parameters or
model training, was an integral step in this experimental procedure.
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Figure 9. Comparative evaluation of performance metrics across various configurations of multilayer
perceptron artificial neural networks (MLP-ANNs): (a) The comparison based on root mean squared
error (RMSE) and mean absolute error (MAE), (b) The comparison based on the coefficient of
correlation (R) and mean absolute percentage error (MAPE).

Uniformity across all variables was implemented by variable scaling. This precau-
tionary measure stems from the recognition that the absolute size of a variable need not
correspond directly to its actual influence. Within the scope of this paper, variables were
transformed into the interval [−1, 1]. Here, the minimum value was standardized to −1,
the maximum value to 1, and linear scaling was employed for values falling in between.

Throughout the model training process for all architectures, consistent standard set-
tings (Table 4) were applied within the MATLAB program. This standardized approach
ensured a reliable and consistent foundation for the comparative evaluation of different neu-
ral network structures. The optimal model for the MAE and MAPE criteria is a model with
14 neurons in the hidden layer and for the RMSE and R criteria a model with 13 neurons in
the hidden layer (Figure 9).

In the subsequent phase of the investigation, the study delved into the application of
ensemble methods with the primary objective of augmenting model generalization. This
examination involved using base models within neural networks, spanning a spectrum
of 1 to 15 neurons in their hidden layer (Figure 10). The RMSE value of the ensemble
model is indicated by a red circle, while the RMSE values of individual neural networks
are represented by blue circles (Figure 10a).
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Figure 10. (a) The Root Mean Squared Error (RMSE) values for each iteration are presented alongside
the corresponding architectural configurations, (b) the optimal number of neurons in the hidden
layer for each iteration.

Notably, each of these base models had the flexibility to incorporate a certain number
of neurons into its hidden layer. The dataset used to train the base models in each iteration
was carefully formulated using the bootstrap method [38].

This method was used to systematically generate a sample of the same size as the orig-
inal data set. In each iterative cycle, the base model was determined based on the minimum
RMSE (Root Mean Squared Error) value among the 15 generated models (Figure 10). This
iterative process continued until the cumulative number of training sets (M) was reached,
culminating in the creation of M base models for the ensemble. The comparison between
the target values, the ensemble prediction and the individual predictions of the neural
network is shown in Figure 11.
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In the following part, a sensitivity analysis was performed for the ensemble composed
of individual neural networks. Sensitivity analysis helps assess the impact of small changes
in input variables on the model’s predictions. In the provided Figure 12, sensitivity analysis
is conducted for each input variable in a neural network ensemble model. The mean
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sensitivity results are visualized using a bar chart. Positive values suggest an increase in
the output, while negative values suggest a decrease. The magnitude of the sensitivity
values reflects the strength of the influence of each variable.
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An examination of various covariance functions was conducted in the process of
developing the Gaussian process regression model. These functions included those with a
unified length scale parameter (Table 5) for all input variables (such as exponential, square-
exponential, Matern 3/2, Matern 5/2 and the rational quadratic covariance function).

Table 5. Optimal parameter values within GPR models utilizing distinct covariance functions.

GP Model Covariance Function Covariance Function Parameters

Exponential
k
((

xi, xj

∣∣∣Θ)) = σ2
f exp

[
− 1

2
r

σl
2

]
σl = 34.64 σf = 57.90

Squared Exponential
k
((

xi, xj

∣∣∣Θ)) = σ2
f exp

[
− 1

2
(xi−xj)

T
(xi−xj)

σl
2

]
σl = 1.78 σf = 29.25

Matern 3/2
k
((

xi, xj

∣∣∣Θ)) = σ2
f

(
1 +

√
3r

σl

)
exp
[
−

√
3r

σl

]
σl = 4.27 σf = 46.81

Matern 5/2
k
((

xi, xj

∣∣∣Θ)) = σ2
f

(
1 +

√
5r

σl
+ 5r2

3σl
2

)
exp
[
−

√
5r

σl

]
σl = 3.68 σf = 76.43

Rational Quadratic
k
((

xi, xj

∣∣∣Θ)) = σ2
f

(
1 + r2

2aσl
2

)−α
; r = 0

σl = 4.95 a = 0.15 σf = 121.35

Where r =
√(

xi − xj
)T(xi − xj

)
.

Additionally, exploration extended to equivalent ARD covariance functions, each
characterized by a distinct length scale for every input variable. A Z-score transformation
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was applied to ensure uniformity in the data, resulting in a mean of zero and a variance of
one. The analysis considered models with constant base functions (Table 6).

Table 6. Optimal parameter values within GPR ARD models utilizing distinct covariance functions.

Covariance Function Parameters

σ1 σ2 σ3 σ4 σ5 σ6 σ7

ARD Exponential:

k
((

xi, xj

∣∣∣Θ)) = σ2
f exp(−r); σF= 64.78; r =

√
∑d

m=1
(xim−xjm)

2

σm2

94.34 120.70 45.17 28.73 1619.22 11.91 147.58

ARD Squared exponential:

k
((

xi, xj

∣∣∣Θ)) = σ2
f exp

[
− 1

2 ∑d
m=1

(xim−xjm)
2

σm2

]
; σf = 30.60

1.25 0.98 1.41 0.87 4.60 0.37 3.10

ARD Matern 3/2:
k
((

xi, xj

∣∣∣Θ)) = σ2
f

(
1 +

√
3r
)

exp
[
−
√

3r
]
; σf = 33.94

2.94 1.82 2.45 1.20 10.02 0.30 5.99

ARD Matern 5/2:
k
((

xi, xj

∣∣∣Θ)) = σ2
f

(
1 +

√
5r + 5r2

3

)
exp
[
−
√

5r
]
; σf = 28.68

2.03 1.24 1.67 0.83 6.49 0.19 4.26

ARD Rational quadratic:

k
((

xi, xj

∣∣∣Θ)) = σ2
f

(
1 + 1

2α ∑d
m=1

(xim−xjm)
2

σm2

)−α

; α= 0.0228; σf = 94.38

5.36 3.21 4.27 2.17 19.30 0.54 11.01

Where r =

√
∑d

m=1
(xim−xjm)

2

σm2 .

Based on three distinctive criteria RMSE, MAE, and R, the model employing the ARD
rational quadratic covariance function emerges as the optimal selection, and ARD Mattern
3/2 is optimal according MAPE criteria. As for the MAPE criterion, it secures second place
in accuracy, with a marginal difference of 0.0037 compared to the leading model (ARD
Rational quadratic) based on this specific criterion. The comparative analysis of all models
in the research found that the BT model is optimal in terms of MAE and R criteria. In terms
of the RMSE value, the neural network ensemble is the optimal model, while in terms of
the MAPE value, the optimal model is the GP ARD matern 3/2 model (Table 6).

As the BT model is optimal regarding two criteria (MAE and R) of prediction accuracy,
further analysis was performed only on this model. The procedure for calculating RMSE
involves:

• squaring the difference between the target and forecast values,
• calculating the average, and
• subsequently determining the square root of this value.

Since the errors for RMSE are squared before averaging, this measure is particularly
sensitive to significant extreme errors. While RMSE gives more weight to the forecast of
extreme values of the samples, the MAE criterion gives equal weight to the prediction of all
samples, so the BT model can be considered better because it has a better value of the MAE
criterion and is therefore considered optimal (Table 7). Optimal values according specific
criteria are marked in bold.
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Table 7. Comparative analysis of machine learning models according to adopted accuracy criteria.

Model RMSE MAE MAPE/100 R

Mult. linear regression 18.4949 14.4915 0.3806 0.7013

TreeBagger 7.4754 5.3440 0.1404 0.9605
Random Forest 7.6917 5.4204 0.1416 0.9584
Boosted Trees 6.2397 3.9140 0.1067 0.9710

SVM linear 18.3955 14.2280 0.3738 0.6998
SVM RBF 7.0863 4.9661 0.1328 0.9598

SVM Sigmoid 18.4378 14.2290 0.3768 0.6987

NN 8-13- 1 8.5073 6.3133 0.1669 0.9407
NN 8-14- 1 8.6289 6.3032 0.1659 0.9381
Ensamble 5.7858 4.1518 0.1098 0.9705

GP exponential 8.3622 6.0671 0.1713 0.9441
GP Sq.exponential 7.2756 5.4373 0.1492 0.9573

GP matern 3/2 7.3460 5.3685 0.1494 0.9565
GP matern 5/2 7.2130 5.2829 0.1470 0.9581

GP Rat. quadratic 7.2162 5.3151 0.1470 0.9580

GP ARD exponential 8.2035 5.2744 0.1183 0.9505
GP ARD Sq. exponential 8.3531 5.2521 0.1188 0.9483

GP ARD matern 3/2 9.3960 5.0817 0.1045 0.9351
GP ARD matern 5/2 6.9976 4.7886 0.1127 0.9652

GP ARD Rat. quadratic 6.7137 4.6157 0.1082 0.9681

In this regard, an analysis of the significance of individual input variables on the
accuracy of the compression strength prediction was performed on BT model (Figure 13).
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Figure 13. Predictor (input variable) importance for optimal Boosted trees model.

Figure 13 shows the dependence of the compressive strength of the concrete on the
amount of rice husk ash added to the concrete in kg/m3, which was determined using the
optimal BT model. The diagram was created so that all RHAC components had an average
value from the database in Table 2 and only the RHA content varied from zero to 170 kg/m3.
The diagram (Figure 14) shows the positive effect of adding RHA to the concrete.
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The highest compressive strength is in the range of 100–140 kg/m3. Based on the
analyzed data, an increase in the RHA content above these values practically does not lead
to an increase in compressive strength. The maximum increase of CS concrete with RHA,
when all other variables have an average value, is 33% based on the analyzed database
(Figure 13).

The obtained results are compatible with a significant number of investigations. Re-
search conducted by Kishore et al. and Ganesan et al. showed that concretes with the
ad-dition of RHA increase their compressive strength in the initial 3–7 days and after
28 days [14,15]. Kishore et al. found that this increase is about 30% compared to the
concrete con-trol group. This research showed that the prediction of the best BT model
compared to the control group gives a maximum increase of 33% when the values of the
other variables are equal to their mean values. Almost all researchers [16–18,36] singled
out age, cement content, and water content as the most important input variables. At
the same time, the in-crease in age and the amount of cement are more significantly
positively correlated with CS, while the amount of water is more significantly negatively
correlated with CS, which is by the conducted research [33], where this research confirmed
the most significant im-portance of the age of concrete on the value of CS, while the content
of cement and the amount of water is the second or third most important variable for
compressive strength. The research also indicates a positive correlation of RHA with
concrete compressive strength in the considered range of RHA amounts.

5. Conclusions

This study describes a set of advanced machine learning methods developed for
predicting the compressive strength (CS) of RHA-enriched concrete. The study addresses
the use of different models, including those based on regression trees, such as TreeBagger
(TB), Random Forest (RF) and Boosted Trees (BT). In addition, the study includes Support
Vector Machine (SVM) models with linear, RBF and sigmoid kernels, single Neural Network
(NN) models and ensembles comprising single NN models. In addition, Gaussian Process
Regression (GPR) models are investigated, each characterized by different kernel functions.

The paper describes a meticulous process for determining the optimal parameters
for all models considered. It evaluates the accuracy of each model using predefined
criteria: Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute
Per-centage Error (MAPE) and Pearson’s Correlation Coefficient (R). The study emphasizes
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the importance of the individual input variables for model accuracy and highlights the
positive influence of rice husk ash on concrete strength.

The Boosted Trees (BT) model identified as the optimal model based on the prede-
fined criteria (RMSE, MAPE, MAPE and R) showed excellent performance with values of
6.24 MPa, 3.91 MPa, 10.67% and 0.97, respectively. Considering the ability of the model
to predict RHAC for different concrete ages (1 to 365 days), the accuracy achieved can be
accepted as satisfactory.

The work emphasizes the advantage of using ensembles, especially models with
stacked trees. The results facilitate sector-specific modelling and enable efficient mixture
composition with less time and financial expenditure.

The investigation uncovered that the correlation between compressive strength (CS)
and Rice Husk Ash (RHA) content lacks a strongly expressed peak. Instead, it indicates
a range of RHA levels linked to a more significant strength increase. This observation is
likely due to the exclusion of RHA’s factors like chemical composition, particle size, specific
gravity, and other properties in the current research. Addressing these aspects in future
studies has the potential to enhance precision and opens up new avenues for exploration.
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